def test_naivebayesclassifier(self):
        np.random.seed(0)
        train_file = get_dataset("wiki_detox_train").as_filepath()
        (train, label) = get_X_y(train_file, label_column='Sentiment',
                                 sep='\t')
        X_train, X_test, y_train, y_test = train_test_split(
            train['SentimentText'], label)

        # map text reviews to vector space
        texttransform = NGramFeaturizer(
            word_feature_extractor=n_gram(),
            vector_normalizer='None') << 'SentimentText'
        X_train = texttransform.fit_transform(X_train)
        X_test = texttransform.transform(X_test)

        mymodel = NaiveBayesClassifier()
        mymodel.fit(X_train, y_train)

        scores = mymodel.predict(X_test)
        accuracy = np.mean(y_test == [i for i in scores])[0]
        assert_greater(
            accuracy,
            0.5,
            "accuracy should be greater than %s" %
            0.5)
예제 #2
0
 def test_pass_decision_function_multiclass_with_pipeline(self):
     assert_almost_equal(decfun_sum(Pipeline([NaiveBayesClassifier()])),
                         -96.87325,
                         decimal=4,
                         err_msg=invalid_decision_function_output)
예제 #3
0
 def test_fail_predict_proba_multiclass_with_pipeline(self):
     check_unsupported_predict_proba(self,
                                     Pipeline([NaiveBayesClassifier()]),
                                     X_train, y_train, X_test)
예제 #4
0
from nimbusml.datasets import get_dataset
from nimbusml.feature_extraction.text import NGramFeaturizer
from nimbusml.feature_extraction.text.extractor import Ngram
from nimbusml.naive_bayes import NaiveBayesClassifier
from nimbusml.utils import get_X_y
from sklearn.model_selection import train_test_split

# use 'wiki_detox_train' data set to create test and train data
# Sentiment	SentimentText
# 1	  ==RUDE== Dude, you are rude upload that carl picture back, or else.
# 1	  == OK! ==  IM GOING TO VANDALIZE WILD ONES WIKI THEN!!!
np.random.seed(0)
train_file = get_dataset("wiki_detox_train").as_filepath()
(train, label) = get_X_y(train_file, label_column='Sentiment', sep='\t')

X_train, X_test, y_train, y_test = train_test_split(train, label)

# map text reviews to vector space
texttransform = NGramFeaturizer(word_feature_extractor=Ngram(),
                                vector_normalizer='None') << 'SentimentText'
nb = NaiveBayesClassifier(feature=['SentimentText'])

ppl = Pipeline([texttransform, nb])

ppl.fit(X_train, y_train)

scores = ppl.predict(X_test)['PredictedLabel']

# evaluate the model
print('Accuracy:', np.mean(y_test == [i for i in scores]))
예제 #5
0
 'LpScaler': Pipeline([
     ColumnConcatenator() << {
         'concated_columns': [
             'Petal_Length',
             'Sepal_Width',
             'Sepal_Length']},
     LpScaler(columns={'normed_columns': 'concated_columns'})
 ]),
 'MutualInformationSelector': Pipeline([
     ColumnConcatenator(columns={'Features': ['Sepal_Width', 'Sepal_Length', 'Petal_Width']}),
     MutualInformationSelector(
         columns='Features',
         label='Label',
         slots_in_output=2)  # only accept one column
 ]),
 'NaiveBayesClassifier': NaiveBayesClassifier(feature=['Sepal_Width', 'Sepal_Length']),
 'NGramFeaturizer': NGramFeaturizer(word_feature_extractor=Ngram(),
                                    char_feature_extractor=Ngram(),
                                    keep_diacritics=True,
                                    columns={ 'features': ['SentimentText']}),
 'OneHotHashVectorizer': OneHotHashVectorizer(columns=['education_str']),
 'OneHotVectorizer': OneHotVectorizer(columns=['education_str']),
 'OneVsRestClassifier(AveragedPerceptronBinaryClassifier)': \
     OneVsRestClassifier(AveragedPerceptronBinaryClassifier(),
                         use_probabilities=True,
                         feature=['age',
                                  'education_str.0-5yrs',
                                  'education_str.6-11yrs',
                                  'education_str.12+ yrs'],
                         label='induced'),
 'OneVsRestClassifier(LinearSvmBinaryClassifier)': \
예제 #6
0
    LightGbmBinaryClassifier(),
    AveragedPerceptronBinaryClassifier(),
    FastLinearBinaryClassifier(),
    FastLinearClassifier(),
    FastLinearRegressor(),
    LogisticRegressionBinaryClassifier(),
    LogisticRegressionClassifier(),
    OnlineGradientDescentRegressor(),
    SgdBinaryClassifier(),
    # SymSgdBinaryClassifier(),
    OrdinaryLeastSquaresRegressor(),
    PoissonRegressionRegressor()
]

learners_not_supported = [
    NaiveBayesClassifier(),
    # fix in nimbusml, needs to implement ICanGetSummaryAsIDataView
    KMeansPlusPlus(),
    # fix in nimbusml, needs to implement ICanGetSummaryAsIDataView
    # fix in nimbusml, needs to implement ICanGetSummaryAsIDataView
    FactorizationMachineBinaryClassifier(),
    PcaAnomalyDetector(),
    # fix in nimbusml, needs to implement ICanGetSummaryAsIDataView
    # PcaTransformer(), # REVIEW: crashes
    GamBinaryClassifier(),
    # fix in nimbusml, needs to implement ICanGetSummaryAsIDataView
    GamRegressor(
    ),  # fix in nimbusml, needs to implement ICanGetSummaryAsIDataView
    LightGbmClassifier(),
    # fix in nimbusml, needs to implement ICanGetSummaryAsIDataView
    # LightGbmRanker(), # REVIEW: crashes
예제 #7
0
# data input (as a FileDataStream)
path = get_dataset('infert').as_filepath()

data = FileDataStream.read_csv(path)
print(data.head())
#    age  case education  induced  parity ... row_num  spontaneous  ...
# 0   26     1    0-5yrs        1       6 ...       1            2  ...
# 1   42     1    0-5yrs        1       1 ...       2            0  ...
# 2   39     1    0-5yrs        2       6 ...       3            0  ...
# 3   34     1    0-5yrs        2       4 ...       4            0  ...
# 4   35     1   6-11yrs        1       3 ...       5            1  ...

# define the training pipeline
pipeline = Pipeline([
    OneHotVectorizer(columns={'edu': 'education'}),
    NaiveBayesClassifier(feature=['age', 'edu'], label='induced')
])

# train, predict, and evaluate
# TODO: Replace with CV
metrics, predictions = pipeline.fit(data).test(data, output_scores=True)

# print predictions
print(predictions.head())
#   PredictedLabel   Score.0   Score.1   Score.2
# 0               2 -5.297264 -5.873055 -4.847996
# 1               2 -5.297264 -5.873055 -4.847996
# 2               2 -5.297264 -5.873055 -4.847996
# 3               2 -5.297264 -5.873055 -4.847996
# 4               0 -1.785266 -3.172440 -3.691075