def make_matcher(): I = load_image(example_data.get_filename('neurospin', 'sulcal2000', 'nobias_ammon.nii.gz')) J = load_image(example_data.get_filename('neurospin', 'sulcal2000', 'nobias_anubis.nii.gz')) # Create a registration instance R = IconicRegistration(I, J) R.set_source_fov(fixed_npoints=64**3) R.similarity = 'llr_cc' return R
def load_ppm(): # Read input files for i in range(ntissues): fname = os.path.join(datadir, tissues[i]+'_1000Prior.img') if i == 0: im = load_image(fname) affine = im.affine data = np.zeros(list(im.shape)+[ntissues]) data[:,:,:,0] = im.data else: data[:,:,:,i] = load_image(fname).data #ppm = Image(data, affine) # Normalize and mask ppms psum = data.sum(3) X,Y,Z = np.where(psum>0) for i in range(ntissues): data[X,Y,Z,i] /= psum[X,Y,Z] mask = (X.astype('uint'), Y.astype('uint'), Z.astype('uint')) return data, mask, affine
pylab.pink() array = im.data if threshold==None: pylab.imshow(array[:,slice,:]) else: pylab.imshow(array[:,slice,:]>threshold) """ Main """ # Load images I = load_image(example_data.get_filename('neurospin', 'sulcal2000', 'nobias_ammon.nii.gz')) J = load_image(example_data.get_filename('neurospin', 'sulcal2000', 'nobias_anubis.nii.gz')) # Create a registration instance R = IconicRegistration(I, J) R.set_source_fov(fixed_npoints=64**3) R.similarity = 'llr_mi' T = np.eye(4) #T[0:3,3] = [4,5,6] print R.eval(T)
def load_mri(): fname = os.path.join(datadir, 'BiasCorIm.img') return load_image(fname)
def load_mri(): fname = os.path.join(datadir, subjects[s_idx]+'.nii') print(fname) return load_image(fname)