예제 #1
0
def hmc_afni(name='fMRI_HMC_afni', st_correct=False):
    """A head motion correction (HMC) workflow for functional scans"""

    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(niu.IdentityInterface(
        fields=['in_file', 'fd_radius', 'start_idx', 'stop_idx']),
                        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(fields=['out_file', 'out_movpar']),
        name='outputnode')

    drop_trs = pe.Node(afp.Calc(expr='a', outputtype='NIFTI_GZ'),
                       name='drop_trs')
    deoblique = pe.Node(afp.Refit(deoblique=True), name='deoblique')
    reorient = pe.Node(afp.Resample(orientation='RPI', outputtype='NIFTI_GZ'),
                       name='reorient')
    get_mean_RPI = pe.Node(afp.TStat(options='-mean', outputtype='NIFTI_GZ'),
                           name='get_mean_RPI')

    # calculate hmc parameters
    hmc = pe.Node(afp.Volreg(args='-Fourier -twopass',
                             zpad=4,
                             outputtype='NIFTI_GZ'),
                  name='motion_correct')

    get_mean_motion = get_mean_RPI.clone('get_mean_motion')
    hmc_A = hmc.clone('motion_correct_A')
    hmc_A.inputs.md1d_file = 'max_displacement.1D'

    movpar = pe.Node(niu.Function(function=fd_jenkinson,
                                  input_names=['in_file', 'rmax'],
                                  output_names=['out_file']),
                     name='Mat2Movpar')

    workflow.connect([(inputnode, drop_trs, [('in_file', 'in_file_a'),
                                             ('start_idx', 'start_idx'),
                                             ('stop_idx', 'stop_idx')]),
                      (inputnode, movpar, [('fd_radius', 'rmax')]),
                      (deoblique, reorient, [('out_file', 'in_file')]),
                      (reorient, get_mean_RPI, [('out_file', 'in_file')]),
                      (reorient, hmc, [('out_file', 'in_file')]),
                      (get_mean_RPI, hmc, [('out_file', 'basefile')]),
                      (hmc, get_mean_motion, [('out_file', 'in_file')]),
                      (reorient, hmc_A, [('out_file', 'in_file')]),
                      (get_mean_motion, hmc_A, [('out_file', 'basefile')]),
                      (hmc_A, outputnode, [('out_file', 'out_file')]),
                      (hmc_A, movpar, [('oned_matrix_save', 'in_file')]),
                      (movpar, outputnode, [('out_file', 'out_movpar')])])

    if st_correct:
        st_corr = pe.Node(afp.TShift(outputtype='NIFTI_GZ'), name='TimeShifts')
        workflow.connect([(drop_trs, st_corr, [('out_file', 'in_file')]),
                          (st_corr, deoblique, [('out_file', 'in_file')])])
    else:
        workflow.connect([(drop_trs, deoblique, [('out_file', 'in_file')])])

    return workflow
예제 #2
0
def create_bo_func_preproc(slice_timing_correction = False, wf_name = 'bo_func_preproc'):
    """
    
    The main purpose of this workflow is to process functional data. Raw rest file is deobliqued and reoriented 
    into RPI. Then take the mean intensity values over all time points for each voxel and use this image 
    to calculate motion parameters. The image is then skullstripped, normalized and a processed mask is 
    obtained to use it further in Image analysis.
    
    Parameters
    ----------
    
    slice_timing_correction : boolean
        Slice timing Correction option
    wf_name : string
        Workflow name
    
    Returns 
    -------
    func_preproc : workflow object
        Functional Preprocessing workflow object
    
    Notes
    -----
    
    `Source <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/func_preproc/func_preproc.py>`_
    
    Workflow Inputs::
    
        inputspec.rest : func/rest file or a list of func/rest nifti file 
            User input functional(T2) Image, in any of the 8 orientations
            
        inputspec.start_idx : string 
            Starting volume/slice of the functional image (optional)
            
        inputspec.stop_idx : string
            Last volume/slice of the functional image (optional)
            
        scan_params.tr : string
            Subject TR
        
        scan_params.acquistion : string
            Acquisition pattern (interleaved/sequential, ascending/descending)
    
        scan_params.ref_slice : integer
            Reference slice for slice timing correction
            
    Workflow Outputs::
    
        outputspec.drop_tr : string (nifti file)
            Path to Output image with the initial few slices dropped
          
        outputspec.slice_time_corrected : string (nifti file)
            Path to Slice time corrected image
          
        outputspec.refit : string (nifti file)
            Path to deobliqued anatomical data 
        
        outputspec.reorient : string (nifti file)
            Path to RPI oriented anatomical data 
        
        outputspec.motion_correct_ref : string (nifti file)
             Path to Mean intensity Motion corrected image 
             (base reference image for the second motion correction run)
        
        outputspec.motion_correct : string (nifti file)
            Path to motion corrected output file
        
        outputspec.max_displacement : string (Mat file)
            Path to maximum displacement (in mm) for brain voxels in each volume
        
        outputspec.movement_parameters : string (Mat file)
            Path to 1D file containing six movement/motion parameters(3 Translation, 3 Rotations) 
            in different columns (roll pitch yaw dS  dL  dP)
        
        outputspec.skullstrip : string (nifti file)
            Path to skull stripped Motion Corrected Image 
        
        outputspec.mask : string (nifti file)
            Path to brain-only mask
            
        outputspec.example_func : string (nifti file)
            Mean, Skull Stripped, Motion Corrected output T2 Image path
            (Image with mean intensity values across voxels) 
        
        outputpsec.preprocessed : string (nifti file)
            output skull stripped, motion corrected T2 image 
            with normalized intensity values 

        outputspec.preprocessed_mask : string (nifti file)
           Mask obtained from normalized preprocessed image
           
    
    Order of commands:
    
    - Get the start and the end volume index of the functional run. If not defined by the user, return the first and last volume.
    
        get_idx(in_files, stop_idx, start_idx)
        
    - Dropping the initial TRs. For details see `3dcalc <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dcalc.html>`_::
        
        3dcalc -a rest.nii.gz[4..299] 
               -expr 'a' 
               -prefix rest_3dc.nii.gz
               
    - Slice timing correction. For details see `3dshift <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTshift.html>`_::
    
        3dTshift -TR 2.1s 
                 -slice 18 
                 -tpattern alt+z 
                 -prefix rest_3dc_shift.nii.gz rest_3dc.nii.gz

    - Deobliqing the scans.  For details see `3drefit <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3drefit.html>`_::
    
        3drefit -deoblique rest_3dc.nii.gz
        
    - Re-orienting the Image into Right-to-Left Posterior-to-Anterior Inferior-to-Superior (RPI) orientation. For details see `3dresample <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dresample.html>`_::
    
        3dresample -orient RPI 
                   -prefix rest_3dc_RPI.nii.gz 
                   -inset rest_3dc.nii.gz
        
    - Calculate voxel wise statistics. Get the RPI Image with mean intensity values over all timepoints for each voxel. For details see `3dTstat <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTstat.html>`_::
    
        3dTstat -mean 
                -prefix rest_3dc_RPI_3dT.nii.gz 
                rest_3dc_RPI.nii.gz
    
    - Motion Correction. For details see `3dvolreg <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dvolreg.html>`_::  
       
        3dvolreg -Fourier 
                 -twopass 
                 -base rest_3dc_RPI_3dT.nii.gz/
                 -zpad 4 
                 -maxdisp1D rest_3dc_RPI_3dvmd1D.1D 
                 -1Dfile rest_3dc_RPI_3dv1D.1D 
                 -prefix rest_3dc_RPI_3dv.nii.gz 
                 rest_3dc_RPI.nii.gz
                 
      The base image or the reference image is the mean intensity RPI image obtained in the above the step.For each volume 
      in RPI-oriented T2 image, the command, aligns the image with the base mean image and calculates the motion, displacement 
      and movement parameters. It also outputs the aligned 4D volume and movement and displacement parameters for each volume.
                 
    - Calculate voxel wise statistics. Get the motion corrected output Image from the above step, with mean intensity values over all timepoints for each voxel. 
      For details see `3dTstat <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTstat.html>`_::
    
        3dTstat -mean 
                -prefix rest_3dc_RPI_3dv_3dT.nii.gz 
                rest_3dc_RPI_3dv.nii.gz
    
    - Motion Correction and get motion, movement and displacement parameters. For details see `3dvolreg <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dvolreg.html>`_::   

        3dvolreg -Fourier 
                 -twopass 
                 -base rest_3dc_RPI_3dv_3dT.nii.gz 
                 -zpad 4 
                 -maxdisp1D rest_3dc_RPI_3dvmd1D.1D 
                 -1Dfile rest_3dc_RPI_3dv1D.1D 
                 -prefix rest_3dc_RPI_3dv.nii.gz 
                 rest_3dc_RPI.nii.gz
        
      The base image or the reference image is the mean intensity motion corrected image obtained from the above the step (first 3dvolreg run). 
      For each volume in RPI-oriented T2 image, the command, aligns the image with the base mean image and calculates the motion, displacement 
      and movement parameters. It also outputs the aligned 4D volume and movement and displacement parameters for each volume.
    
    - Unwarp the motion corrected using a regularized B0 field map that is in RPI space, one of the outputs from the calib_preproc using FSL FUGUE
    
    	fugue --nocheck=on 
		-i rest_3dc_RPI_3dv.nii.gz 
		--loadfmap=cal_reg_bo_RPI 
		--unwarpdir=x 
		--dwell=1 
		-u rest_3dc_RPI_3dv_unwarped.nii.gz
    
    
    - Create a  brain-only mask. For details see `3dautomask <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dAutomask.html>`_::
    
        3dAutomask  
                   -prefix rest_3dc_RPI_3dv_unwarped_automask.nii.gz 
                   rest_3dc_RPI_3dv_unwarped.nii.gz

    - Edge Detect(remove skull) and get the brain only. For details see `3dcalc <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dcalc.html>`_::
    
        3dcalc -a rest_3dc_RPI_3dv_unwarped.nii.gz 
               -b rest_3dc_RPI_3dv_unwarped_automask.nii.gz 
               -expr 'a*b' 
               -prefix rest_3dc_RPI_3dv_unwarped_3dc.nii.gz
    
    - Normalizing the image intensity values. For details see `fslmaths <http://www.fmrib.ox.ac.uk/fsl/avwutils/index.html>`_::
      
        fslmaths rest_3dc_RPI_3dv_unwarped_3dc.nii.gz 
                 -ing 10000 rest_3dc_RPI_3dv_unwarped_3dc_maths.nii.gz 
                 -odt float
                 
      Normalized intensity = (TrueValue*10000)/global4Dmean
                 
    - Calculate mean of skull stripped image. For details see `3dTstat <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTstat.html>`_::
        
        3dTstat -mean -prefix rest_3dc_RPI_3dv_unwarped_3dc_3dT.nii.gz rest_3dc_RPI_3dv_unwarped_3dc.nii.gz
        
    - Create Mask (Generate mask from Normalized data). For details see `fslmaths <http://www.fmrib.ox.ac.uk/fsl/avwutils/index.html>`_::
        
        fslmaths rest_3dc_RPI_3dv_unwarped_3dc_maths.nii.gz 
               -Tmin -bin rest_3dc_RPI_3dv_unwarped_3dc_maths_maths.nii.gz 
               -odt char

    High Level Workflow Graph:
    
    .. image:: ../images/func_preproc.dot.png
       :width: 1000
    
    
    Detailed Workflow Graph:
    
    .. image:: ../images/func_preproc_detailed.dot.png
       :width: 1000

    Examples
    --------
    
    >>> from func_preproc import *
    >>> preproc = create_func_preproc(slice_timing_correction=True)
    >>> preproc.inputs.inputspec.func='sub1/func/rest.nii.gz'
    >>> preproc.inputs.scan_params.TR = '2.0'
    >>> preproc.inputs.scan_params.ref_slice = 19
    >>> preproc.inputs.scan_params.acquisition = 'alt+z2'
    >>> preproc.run() #doctest: +SKIP


    >>> from func_preproc import *
    >>> preproc = create_func_preproc(slice_timing_correction=False)
    >>> preproc.inputs.inputspec.func='sub1/func/rest.nii.gz'
    >>> preproc.inputs.inputspec.start_idx = 4
    >>> preproc.inputs.inputspec.stop_idx = 250
    >>> preproc.run() #doctest: +SKIP
    
    """

    preproc = pe.Workflow(name=wf_name)
    inputNode = pe.Node(util.IdentityInterface(fields=['rest',
						       'calib_reg_bo_RPI',
                                                       'start_idx',
                                                       'stop_idx']),
                        name='inputspec')
    
    scan_params = pe.Node(util.IdentityInterface(fields=['tr',
                                                         'acquisition',
                                                         'ref_slice']),
                          name = 'scan_params')

    outputNode = pe.Node(util.IdentityInterface(fields=['drop_tr',
                                                        'refit',
                                                        'reorient',
                                                        'reorient_mean',
                                                        'motion_correct',
                                                        'motion_correct_ref',
                                                        'movement_parameters',
                                                        'max_displacement',
                                                        'bo_unwarped',
                                                        'mask',
							'mask_preunwarp',
                                                        'skullstrip',
                                                        'example_func',
                                                        'preprocessed',
                                                        'preprocessed_mask',
                                                        'slice_time_corrected']),

                          name='outputspec')

    func_get_idx = pe.Node(util.Function(input_names=['in_files', 
                                                      'stop_idx', 
                                                      'start_idx'],
                               output_names=['stopidx', 
                                             'startidx'],
                 function=get_idx), name='func_get_idx')
    
    preproc.connect(inputNode, 'rest',
                    func_get_idx, 'in_files')
		    		    
    preproc.connect(inputNode, 'start_idx',
                    func_get_idx, 'start_idx')
    preproc.connect(inputNode, 'stop_idx',
                    func_get_idx, 'stop_idx')
    
    
    func_drop_trs = pe.Node(interface=preprocess.Calc(),
                           name='func_drop_trs')
    func_drop_trs.inputs.expr = 'a'
    func_drop_trs.inputs.outputtype = 'NIFTI_GZ'
    
    preproc.connect(inputNode, 'rest',
                    func_drop_trs, 'in_file_a')
    preproc.connect(func_get_idx, 'startidx',
                    func_drop_trs, 'start_idx')
    preproc.connect(func_get_idx, 'stopidx',
                    func_drop_trs, 'stop_idx')
    
    preproc.connect(func_drop_trs, 'out_file',
                    outputNode, 'drop_tr')
    
    
    func_slice_timing_correction = pe.Node(interface=preprocess.TShift(),
                                           name = 'func_slice_timing_correction')
    func_slice_timing_correction.inputs.outputtype = 'NIFTI_GZ'
    
    func_deoblique = pe.Node(interface=preprocess.Refit(),
                            name='func_deoblique')
    func_deoblique.inputs.deoblique = True
    
    
    if slice_timing_correction:
        preproc.connect(func_drop_trs, 'out_file',
                        func_slice_timing_correction,'in_file')
        preproc.connect(scan_params, 'tr',
                        func_slice_timing_correction, 'tr')
        preproc.connect(scan_params, 'acquisition',
                        func_slice_timing_correction, 'tpattern')
        preproc.connect(scan_params, 'ref_slice',
                        func_slice_timing_correction, 'tslice')
        
        preproc.connect(func_slice_timing_correction, 'out_file',
                        func_deoblique, 'in_file')
        
        preproc.connect(func_slice_timing_correction, 'out_file',
                        outputNode, 'slice_time_corrected')
    else:
        preproc.connect(func_drop_trs, 'out_file',
                        func_deoblique, 'in_file')
    
    preproc.connect(func_deoblique, 'out_file',
                    outputNode, 'refit')

    func_reorient = pe.Node(interface=preprocess.Resample(),
                               name='func_reorient')
    func_reorient.inputs.orientation = 'RPI'
    func_reorient.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_deoblique, 'out_file',
                    func_reorient, 'in_file')
    
    preproc.connect(func_reorient, 'out_file',
                    outputNode, 'reorient')
    
    func_get_mean_RPI = pe.Node(interface=preprocess.TStat(),
                            name='func_get_mean_RPI')
    func_get_mean_RPI.inputs.options = '-mean'
    func_get_mean_RPI.inputs.outputtype = 'NIFTI_GZ'
    
    preproc.connect(func_reorient, 'out_file',
                    func_get_mean_RPI, 'in_file')
        
    #calculate motion parameters
    func_motion_correct = pe.Node(interface=preprocess.Volreg(),
                             name='func_motion_correct')
    func_motion_correct.inputs.args = '-Fourier -twopass'
    func_motion_correct.inputs.zpad = 4
    func_motion_correct.inputs.outputtype = 'NIFTI_GZ'
    
    preproc.connect(func_reorient, 'out_file',
                    func_motion_correct, 'in_file')
    preproc.connect(func_get_mean_RPI, 'out_file',
                    func_motion_correct, 'basefile')

    
    func_get_mean_motion = func_get_mean_RPI.clone('func_get_mean_motion')
    preproc.connect(func_motion_correct, 'out_file',
                    func_get_mean_motion, 'in_file')
    
    preproc.connect(func_get_mean_motion, 'out_file',
                    outputNode, 'motion_correct_ref')
    
    
    func_motion_correct_A = func_motion_correct.clone('func_motion_correct_A')
    func_motion_correct_A.inputs.md1d_file = 'max_displacement.1D'
    
    preproc.connect(func_reorient, 'out_file',
                    func_motion_correct_A, 'in_file')
    preproc.connect(func_get_mean_motion, 'out_file',
                    func_motion_correct_A, 'basefile')
    
    
    
    
    
    preproc.connect(func_motion_correct_A, 'out_file',
                    outputNode, 'motion_correct')
    preproc.connect(func_motion_correct_A, 'md1d_file',
                    outputNode, 'max_displacement')
    preproc.connect(func_motion_correct_A, 'oned_file',
                    outputNode, 'movement_parameters')


    
    func_get_brain_mask = pe.Node(interface=preprocess.Automask(),
                               name='func_get_brain_mask')
#    func_get_brain_mask.inputs.dilate = 1
    func_get_brain_mask.inputs.outputtype = 'NIFTI_GZ'

#-------------------------

    func_bo_unwarp = pe.Node(interface=fsl.FUGUE(),name='bo_unwarp')
    #func_bo_unwarp.inputs.in_file='lfo_mc'
    func_bo_unwarp.inputs.args='--nocheck=on'
    #func_bo_unwarp.inputs.fmap_in_file='calib'
    func_bo_unwarp.inputs.dwell_time=1.0
    func_bo_unwarp.inputs.unwarp_direction='x'
    
    preproc.connect(inputNode, 'calib_reg_bo_RPI',
                    func_bo_unwarp, 'fmap_in_file')
    
        
    preproc.connect(func_motion_correct_A, 'out_file',
                    func_bo_unwarp, 'in_file')
    
    preproc.connect(func_bo_unwarp, 'unwarped_file',
                    outputNode, 'bo_unwarped')
    
    
    preproc.connect(func_bo_unwarp, 'unwarped_file',
                    func_get_brain_mask, 'in_file')
    

#--------------------------

    preproc.connect(func_get_brain_mask, 'out_file',
                    outputNode, 'mask')
        
#------------ ALSO give the example_func_preunwarp

    func_get_brain_mask_A = func_get_brain_mask.clone('func_get_brain_mask_A')
    
    preproc.connect(func_motion_correct_A, 'out_file',
                    func_get_brain_mask_A, 'in_file')
    	    
    preproc.connect(func_get_brain_mask_A, 'out_file',
                    outputNode, 'mask_preunwarp')
    
    
    
    
    
    
    
    func_edge_detect = pe.Node(interface=preprocess.Calc(),
                            name='func_edge_detect')
    func_edge_detect.inputs.expr = 'a*b'
    func_edge_detect.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_bo_unwarp, 'unwarped_file',
                    func_edge_detect, 'in_file_a')
    preproc.connect(func_get_brain_mask, 'out_file',
                    func_edge_detect, 'in_file_b')

    preproc.connect(func_edge_detect, 'out_file',
                    outputNode, 'skullstrip')

    
    func_mean_skullstrip = pe.Node(interface=preprocess.TStat(),
                           name='func_mean_skullstrip')
    func_mean_skullstrip.inputs.options = '-mean'
    func_mean_skullstrip.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_edge_detect, 'out_file',
                    func_mean_skullstrip, 'in_file')
    
    preproc.connect(func_mean_skullstrip, 'out_file',
                    outputNode, 'example_func')
    
    
    func_normalize = pe.Node(interface=fsl.ImageMaths(),
                            name='func_normalize')
    func_normalize.inputs.op_string = '-ing 10000'
    func_normalize.inputs.out_data_type = 'float'

    preproc.connect(func_edge_detect, 'out_file',
                    func_normalize, 'in_file')
    
    preproc.connect(func_normalize, 'out_file',
                    outputNode, 'preprocessed')
    
    
    func_mask_normalize = pe.Node(interface=fsl.ImageMaths(),
                           name='func_mask_normalize')
    func_mask_normalize.inputs.op_string = '-Tmin -bin'
    func_mask_normalize.inputs.out_data_type = 'char'

    preproc.connect(func_normalize, 'out_file',
                    func_mask_normalize, 'in_file')
    
    preproc.connect(func_mask_normalize, 'out_file',
                    outputNode, 'preprocessed_mask')

    return preproc
예제 #3
0
def func_motion_correct_workflow(workflow, resource_pool, config):

    # resource pool should have:
    #     functional_scan

    import os
    import sys

    import nipype.interfaces.io as nio
    import nipype.pipeline.engine as pe

    import nipype.interfaces.utility as util
    import nipype.interfaces.fsl.maths as fsl

    from nipype.interfaces.afni import preprocess

    from workflow_utils import check_input_resources, \
                               check_config_settings

    check_input_resources(resource_pool, "functional_scan")
    check_config_settings(config, "start_idx")
    check_config_settings(config, "stop_idx")
    check_config_settings(config, "slice_timing_correction")

    func_get_idx = pe.Node(util.Function(
        input_names=['in_files', 'stop_idx', 'start_idx'],
        output_names=['stopidx', 'startidx'],
        function=get_idx),
                           name='func_get_idx')

    func_get_idx.inputs.in_files = resource_pool["functional_scan"]
    func_get_idx.inputs.start_idx = config["start_idx"]
    func_get_idx.inputs.stop_idx = config["stop_idx"]

    func_drop_trs = pe.Node(interface=preprocess.Calc(), name='func_drop_trs')

    func_drop_trs.inputs.in_file_a = resource_pool["functional_scan"]
    func_drop_trs.inputs.expr = 'a'
    func_drop_trs.inputs.outputtype = 'NIFTI_GZ'

    workflow.connect(func_get_idx, 'startidx', func_drop_trs, 'start_idx')

    workflow.connect(func_get_idx, 'stopidx', func_drop_trs, 'stop_idx')

    #workflow.connect(func_drop_trs, 'out_file',
    #                outputNode, 'drop_tr')

    func_slice_timing_correction = pe.Node(interface=preprocess.TShift(),
                                           name='func_slice_time_correction')

    func_slice_timing_correction.inputs.outputtype = 'NIFTI_GZ'

    func_deoblique = pe.Node(interface=preprocess.Refit(),
                             name='func_deoblique')

    func_deoblique.inputs.deoblique = True

    if config["slice_timing_correction"] == True:

        workflow.connect(func_drop_trs, 'out_file',
                         func_slice_timing_correction, 'in_file')

        workflow.connect(func_slice_timing_correction, 'out_file',
                         func_deoblique, 'in_file')

    else:

        workflow.connect(func_drop_trs, 'out_file', func_deoblique, 'in_file')

    func_reorient = pe.Node(interface=preprocess.Resample(),
                            name='func_reorient')
    func_reorient.inputs.orientation = 'RPI'
    func_reorient.inputs.outputtype = 'NIFTI_GZ'

    workflow.connect(func_deoblique, 'out_file', func_reorient, 'in_file')

    func_get_mean_RPI = pe.Node(interface=preprocess.TStat(),
                                name='func_get_mean_RPI')
    func_get_mean_RPI.inputs.options = '-mean'
    func_get_mean_RPI.inputs.outputtype = 'NIFTI_GZ'

    workflow.connect(func_reorient, 'out_file', func_get_mean_RPI, 'in_file')

    # calculate motion parameters
    func_motion_correct = pe.Node(interface=preprocess.Volreg(),
                                  name='func_motion_correct')

    func_motion_correct.inputs.args = '-Fourier -twopass'
    func_motion_correct.inputs.zpad = 4
    func_motion_correct.inputs.outputtype = 'NIFTI_GZ'

    workflow.connect(func_reorient, 'out_file', func_motion_correct, 'in_file')

    workflow.connect(func_get_mean_RPI, 'out_file', func_motion_correct,
                     'basefile')

    func_get_mean_motion = func_get_mean_RPI.clone('func_get_mean_motion')

    workflow.connect(func_motion_correct, 'out_file', func_get_mean_motion,
                     'in_file')

    func_motion_correct_A = func_motion_correct.clone('func_motion_correct_A')
    func_motion_correct_A.inputs.md1d_file = 'max_displacement.1D'

    workflow.connect(func_reorient, 'out_file', func_motion_correct_A,
                     'in_file')

    workflow.connect(func_get_mean_motion, 'out_file', func_motion_correct_A,
                     'basefile')

    resource_pool["func_motion_correct"] = (func_motion_correct_A, 'out_file')
    resource_pool["coordinate_transformation"] = \
        (func_motion_correct_A, 'oned_matrix_save')

    return workflow, resource_pool
예제 #4
0
def create_func_preproc(use_bet=False, wf_name='func_preproc'):
    """

    The main purpose of this workflow is to process functional data. Raw rest file is deobliqued and reoriented
    into RPI. Then take the mean intensity values over all time points for each voxel and use this image
    to calculate motion parameters. The image is then skullstripped, normalized and a processed mask is
    obtained to use it further in Image analysis.

    Parameters
    ----------

    wf_name : string
        Workflow name

    Returns
    -------
    func_preproc : workflow object
        Functional Preprocessing workflow object

    Notes
    -----

    `Source <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/func_preproc/func_preproc.py>`_

    Workflow Inputs::

        inputspec.rest : func/rest file or a list of func/rest nifti file
            User input functional(T2) Image, in any of the 8 orientations

        scan_params.tr : string
            Subject TR

        scan_params.acquistion : string
            Acquisition pattern (interleaved/sequential, ascending/descending)

        scan_params.ref_slice : integer
            Reference slice for slice timing correction

    Workflow Outputs::

        outputspec.refit : string (nifti file)
            Path to deobliqued anatomical data

        outputspec.reorient : string (nifti file)
            Path to RPI oriented anatomical data

        outputspec.motion_correct_ref : string (nifti file)
             Path to Mean intensity Motion corrected image
             (base reference image for the second motion correction run)

        outputspec.motion_correct : string (nifti file)
            Path to motion corrected output file

        outputspec.max_displacement : string (Mat file)
            Path to maximum displacement (in mm) for brain voxels in each volume

        outputspec.movement_parameters : string (Mat file)
            Path to 1D file containing six movement/motion parameters(3 Translation, 3 Rotations)
            in different columns (roll pitch yaw dS  dL  dP)

        outputspec.skullstrip : string (nifti file)
            Path to skull stripped Motion Corrected Image

        outputspec.mask : string (nifti file)
            Path to brain-only mask

        outputspec.example_func : string (nifti file)
            Mean, Skull Stripped, Motion Corrected output T2 Image path
            (Image with mean intensity values across voxels)

        outputpsec.preprocessed : string (nifti file)
            output skull stripped, motion corrected T2 image
            with normalized intensity values

        outputspec.preprocessed_mask : string (nifti file)
           Mask obtained from normalized preprocessed image

    Order of commands:

    - Deobliqing the scans.  For details see `3drefit <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3drefit.html>`_::

        3drefit -deoblique rest_3dc.nii.gz

    - Re-orienting the Image into Right-to-Left Posterior-to-Anterior Inferior-to-Superior (RPI) orientation. For details see `3dresample <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dresample.html>`_::

        3dresample -orient RPI
                   -prefix rest_3dc_RPI.nii.gz
                   -inset rest_3dc.nii.gz

    - Calculate voxel wise statistics. Get the RPI Image with mean intensity values over all timepoints for each voxel. For details see `3dTstat <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTstat.html>`_::

        3dTstat -mean
                -prefix rest_3dc_RPI_3dT.nii.gz
                rest_3dc_RPI.nii.gz

    - Motion Correction. For details see `3dvolreg <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dvolreg.html>`_::

        3dvolreg -Fourier
                 -twopass
                 -base rest_3dc_RPI_3dT.nii.gz/
                 -zpad 4
                 -maxdisp1D rest_3dc_RPI_3dvmd1D.1D
                 -1Dfile rest_3dc_RPI_3dv1D.1D
                 -prefix rest_3dc_RPI_3dv.nii.gz
                 rest_3dc_RPI.nii.gz

      The base image or the reference image is the mean intensity RPI image obtained in the above the step.For each volume
      in RPI-oriented T2 image, the command, aligns the image with the base mean image and calculates the motion, displacement
      and movement parameters. It also outputs the aligned 4D volume and movement and displacement parameters for each volume.

    - Calculate voxel wise statistics. Get the motion corrected output Image from the above step, with mean intensity values over all timepoints for each voxel.
      For details see `3dTstat <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTstat.html>`_::

        3dTstat -mean
                -prefix rest_3dc_RPI_3dv_3dT.nii.gz
                rest_3dc_RPI_3dv.nii.gz

    - Motion Correction and get motion, movement and displacement parameters. For details see `3dvolreg <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dvolreg.html>`_::

        3dvolreg -Fourier
                 -twopass
                 -base rest_3dc_RPI_3dv_3dT.nii.gz
                 -zpad 4
                 -maxdisp1D rest_3dc_RPI_3dvmd1D.1D
                 -1Dfile rest_3dc_RPI_3dv1D.1D
                 -prefix rest_3dc_RPI_3dv.nii.gz
                 rest_3dc_RPI.nii.gz

      The base image or the reference image is the mean intensity motion corrected image obtained from the above the step (first 3dvolreg run).
      For each volume in RPI-oriented T2 image, the command, aligns the image with the base mean image and calculates the motion, displacement
      and movement parameters. It also outputs the aligned 4D volume and movement and displacement parameters for each volume.

    - Create a brain-only mask. For details see `3dautomask <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dAutomask.html>`_::

        3dAutomask
                   -prefix rest_3dc_RPI_3dv_automask.nii.gz
                   rest_3dc_RPI_3dv.nii.gz

    - Edge Detect(remove skull) and get the brain only. For details see `3dcalc <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dcalc.html>`_::

        3dcalc -a rest_3dc_RPI_3dv.nii.gz
               -b rest_3dc_RPI_3dv_automask.nii.gz
               -expr 'a*b'
               -prefix rest_3dc_RPI_3dv_3dc.nii.gz

    - Normalizing the image intensity values. For details see `fslmaths <http://www.fmrib.ox.ac.uk/fsl/avwutils/index.html>`_::

        fslmaths rest_3dc_RPI_3dv_3dc.nii.gz
                 -ing 10000 rest_3dc_RPI_3dv_3dc_maths.nii.gz
                 -odt float

      Normalized intensity = (TrueValue*10000)/global4Dmean

    - Calculate mean of skull stripped image. For details see `3dTstat <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTstat.html>`_::

        3dTstat -mean -prefix rest_3dc_RPI_3dv_3dc_3dT.nii.gz rest_3dc_RPI_3dv_3dc.nii.gz

    - Create Mask (Generate mask from Normalized data). For details see `fslmaths <http://www.fmrib.ox.ac.uk/fsl/avwutils/index.html>`_::

        fslmaths rest_3dc_RPI_3dv_3dc_maths.nii.gz
               -Tmin -bin rest_3dc_RPI_3dv_3dc_maths_maths.nii.gz
               -odt char

    High Level Workflow Graph:

    .. image:: ../images/func_preproc.dot.png
       :width: 1000


    Detailed Workflow Graph:

    .. image:: ../images/func_preproc_detailed.dot.png
       :width: 1000

    Examples
    --------

    >>> import func_preproc
    >>> preproc = create_func_preproc(bet=True)
    >>> preproc.inputs.inputspec.func='sub1/func/rest.nii.gz'
    >>> preproc.run() #doctest: +SKIP


    >>> import func_preproc
    >>> preproc = create_func_preproc(bet=False)
    >>> preproc.inputs.inputspec.func='sub1/func/rest.nii.gz'
    >>> preproc.run() #doctest: +SKIP

    """

    preproc = pe.Workflow(name=wf_name)
    inputNode = pe.Node(util.IdentityInterface(fields=['func']),
                        name='inputspec')

    outputNode = pe.Node(
        util.IdentityInterface(fields=[
            'refit',
            'reorient',
            'reorient_mean',
            'motion_correct',
            'motion_correct_ref',
            'movement_parameters',
            'max_displacement',
            # 'xform_matrix',
            'mask',
            'skullstrip',
            'example_func',
            'preprocessed',
            'preprocessed_mask',
            'slice_time_corrected',
            'oned_matrix_save'
        ]),
        name='outputspec')

    try:
        from nipype.interfaces.afni import utils as afni_utils
        func_deoblique = pe.Node(interface=afni_utils.Refit(),
                                 name='func_deoblique')
    except ImportError:
        func_deoblique = pe.Node(interface=preprocess.Refit(),
                                 name='func_deoblique')
    func_deoblique.inputs.deoblique = True

    preproc.connect(inputNode, 'func', func_deoblique, 'in_file')

    try:
        func_reorient = pe.Node(interface=afni_utils.Resample(),
                                name='func_reorient')
    except UnboundLocalError:
        func_reorient = pe.Node(interface=preprocess.Resample(),
                                name='func_reorient')

    func_reorient.inputs.orientation = 'RPI'
    func_reorient.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_deoblique, 'out_file', func_reorient, 'in_file')

    preproc.connect(func_reorient, 'out_file', outputNode, 'reorient')

    try:
        func_get_mean_RPI = pe.Node(interface=afni_utils.TStat(),
                                    name='func_get_mean_RPI')
    except UnboundLocalError:
        func_get_mean_RPI = pe.Node(interface=preprocess.TStat(),
                                    name='func_get_mean_RPI')

    func_get_mean_RPI.inputs.options = '-mean'
    func_get_mean_RPI.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_reorient, 'out_file', func_get_mean_RPI, 'in_file')

    # calculate motion parameters
    func_motion_correct = pe.Node(interface=preprocess.Volreg(),
                                  name='func_motion_correct')
    func_motion_correct.inputs.args = '-Fourier -twopass'
    func_motion_correct.inputs.zpad = 4
    func_motion_correct.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_reorient, 'out_file', func_motion_correct, 'in_file')
    preproc.connect(func_get_mean_RPI, 'out_file', func_motion_correct,
                    'basefile')

    func_get_mean_motion = func_get_mean_RPI.clone('func_get_mean_motion')
    preproc.connect(func_motion_correct, 'out_file', func_get_mean_motion,
                    'in_file')

    preproc.connect(func_get_mean_motion, 'out_file', outputNode,
                    'motion_correct_ref')

    func_motion_correct_A = func_motion_correct.clone('func_motion_correct_A')
    func_motion_correct_A.inputs.md1d_file = 'max_displacement.1D'

    preproc.connect(func_reorient, 'out_file', func_motion_correct_A,
                    'in_file')
    preproc.connect(func_get_mean_motion, 'out_file', func_motion_correct_A,
                    'basefile')

    preproc.connect(func_motion_correct_A, 'out_file', outputNode,
                    'motion_correct')
    preproc.connect(func_motion_correct_A, 'md1d_file', outputNode,
                    'max_displacement')
    preproc.connect(func_motion_correct_A, 'oned_file', outputNode,
                    'movement_parameters')
    preproc.connect(func_motion_correct_A, 'oned_matrix_save', outputNode,
                    'oned_matrix_save')

    if not use_bet:

        func_get_brain_mask = pe.Node(interface=preprocess.Automask(),
                                      name='func_get_brain_mask')

        func_get_brain_mask.inputs.outputtype = 'NIFTI_GZ'

        preproc.connect(func_motion_correct_A, 'out_file', func_get_brain_mask,
                        'in_file')

        preproc.connect(func_get_brain_mask, 'out_file', outputNode, 'mask')

    else:

        func_get_brain_mask = pe.Node(interface=fsl.BET(),
                                      name='func_get_brain_mask_BET')

        func_get_brain_mask.inputs.mask = True
        func_get_brain_mask.inputs.functional = True

        erode_one_voxel = pe.Node(interface=fsl.ErodeImage(),
                                  name='erode_one_voxel')

        erode_one_voxel.inputs.kernel_shape = 'box'
        erode_one_voxel.inputs.kernel_size = 1.0

        preproc.connect(func_motion_correct_A, 'out_file', func_get_brain_mask,
                        'in_file')

        preproc.connect(func_get_brain_mask, 'mask_file', erode_one_voxel,
                        'in_file')

        preproc.connect(erode_one_voxel, 'out_file', outputNode, 'mask')

    try:
        func_edge_detect = pe.Node(interface=afni_utils.Calc(),
                                   name='func_edge_detect')
    except UnboundLocalError:
        func_edge_detect = pe.Node(interface=preprocess.Calc(),
                                   name='func_edge_detect')

    func_edge_detect.inputs.expr = 'a*b'
    func_edge_detect.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_motion_correct_A, 'out_file', func_edge_detect,
                    'in_file_a')

    if not use_bet:
        preproc.connect(func_get_brain_mask, 'out_file', func_edge_detect,
                        'in_file_b')
    else:
        preproc.connect(erode_one_voxel, 'out_file', func_edge_detect,
                        'in_file_b')

    preproc.connect(func_edge_detect, 'out_file', outputNode, 'skullstrip')

    try:
        func_mean_skullstrip = pe.Node(interface=afni_utils.TStat(),
                                       name='func_mean_skullstrip')
    except UnboundLocalError:
        func_mean_skullstrip = pe.Node(interface=preprocess.TStat(),
                                       name='func_mean_skullstrip')

    func_mean_skullstrip.inputs.options = '-mean'
    func_mean_skullstrip.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_edge_detect, 'out_file', func_mean_skullstrip,
                    'in_file')

    preproc.connect(func_mean_skullstrip, 'out_file', outputNode,
                    'example_func')

    func_normalize = pe.Node(interface=fsl.ImageMaths(), name='func_normalize')
    func_normalize.inputs.op_string = '-ing 10000'
    func_normalize.inputs.out_data_type = 'float'

    preproc.connect(func_edge_detect, 'out_file', func_normalize, 'in_file')

    preproc.connect(func_normalize, 'out_file', outputNode, 'preprocessed')

    func_mask_normalize = pe.Node(interface=fsl.ImageMaths(),
                                  name='func_mask_normalize')
    func_mask_normalize.inputs.op_string = '-Tmin -bin'
    func_mask_normalize.inputs.out_data_type = 'char'

    preproc.connect(func_normalize, 'out_file', func_mask_normalize, 'in_file')

    preproc.connect(func_mask_normalize, 'out_file', outputNode,
                    'preprocessed_mask')

    return preproc
예제 #5
0
파일: workflows.py 프로젝트: MichlF/misc
def create_motion_correction_workflow(name='moco',
                                      method='AFNI',
                                      extend_moco_params=False):
    """uses sub-workflows to perform different registration steps.
    Requires fsl and freesurfer tools
    Parameters
    ----------
    name : string
        name of workflow

    Example
    -------
    >>> motion_correction_workflow = create_motion_correction_workflow('motion_correction_workflow')
    >>> motion_correction_workflow.inputs.inputspec.output_directory = '/data/project/raw/BIDS/sj_1/'
    >>> motion_correction_workflow.inputs.inputspec.in_files = ['sub-001.nii.gz','sub-002.nii.gz']
    >>> motion_correction_workflow.inputs.inputspec.which_file_is_EPI_space = 'middle'

    Inputs::
          inputspec.output_directory : directory in which to sink the result files
          inputspec.in_files : list of functional files
          inputspec.which_file_is_EPI_space : determines which file is the 'standard EPI space'
    Outputs::
           outputspec.EPI_space_file : standard EPI space file, one timepoint
           outputspec.motion_corrected_files : motion corrected files
           outputspec.motion_correction_plots : motion correction plots
           outputspec.motion_correction_parameters : motion correction parameters
    """

    ### NODES
    input_node = pe.Node(IdentityInterface(fields=[
        'in_files', 'output_directory', 'which_file_is_EPI_space', 'sub_id',
        'tr'
    ]),
                         name='inputspec')
    output_node = pe.Node(IdentityInterface(fields=([
        'motion_corrected_files', 'EPI_space_file', 'mask_EPI_space_file',
        'motion_correction_plots', 'motion_correction_parameters',
        'extended_motion_correction_parameters',
        'new_motion_correction_parameters'
    ])),
                          name='outputspec')

    ########################################################################################
    # Invariant nodes
    ########################################################################################

    EPI_file_selector_node = pe.Node(interface=EPI_file_selector,
                                     name='EPI_file_selector_node')
    mean_bold = pe.Node(interface=fsl.maths.MeanImage(dimension='T'),
                        name='mean_space')
    rename_mean_bold = pe.Node(niu.Rename(format_string='session_EPI_space',
                                          keep_ext=True),
                               name='rename_mean_bold')

    ########################################################################################
    # Workflow
    ########################################################################################

    motion_correction_workflow = pe.Workflow(name=name)
    motion_correction_workflow.connect(input_node, 'which_file_is_EPI_space',
                                       EPI_file_selector_node, 'which_file')
    motion_correction_workflow.connect(input_node, 'in_files',
                                       EPI_file_selector_node, 'in_files')

    ########################################################################################
    # outputs via datasink
    ########################################################################################
    datasink = pe.Node(nio.DataSink(), name='sinker')
    datasink.inputs.parameterization = False

    # first link the workflow's output_directory into the datasink.
    motion_correction_workflow.connect(input_node, 'output_directory',
                                       datasink, 'base_directory')
    motion_correction_workflow.connect(input_node, 'sub_id', datasink,
                                       'container')

    ########################################################################################
    # FSL MCFlirt
    ########################################################################################
    # new approach, which should aid in the joint motion correction of
    # multiple sessions together, by pre-registering each run.
    # the strategy would be to, for each run, take the first TR
    # and FLIRT-align (6dof) it to the EPI_space file.
    # then we can use this as an --infile argument to mcflirt.

    if method == 'FSL':

        rename_motion_files = pe.MapNode(
            niu.Rename(keep_ext=False),
            name='rename_motion_files',
            iterfield=['in_file', 'format_string'])

        remove_niigz_ext = pe.MapNode(interface=Remove_extension,
                                      name='remove_niigz_ext',
                                      iterfield=['in_file'])

        motion_correct_EPI_space = pe.Node(interface=fsl.MCFLIRT(
            cost='normcorr', interpolation='sinc', mean_vol=True),
                                           name='motion_correct_EPI_space')

        motion_correct_all = pe.MapNode(interface=fsl.MCFLIRT(
            save_mats=True,
            save_plots=True,
            cost='normcorr',
            interpolation='sinc',
            stats_imgs=True),
                                        name='motion_correct_all',
                                        iterfield=['in_file'])

        plot_motion = pe.MapNode(
            interface=fsl.PlotMotionParams(in_source='fsl'),
            name='plot_motion',
            iterfield=['in_file'])

        if extend_moco_params:
            # make extend_motion_pars node here
            # extend_motion_pars = pe.MapNode(Function(input_names=['moco_par_file', 'tr'], output_names=['new_out_file', 'ext_out_file'],
            # function=_extend_motion_parameters), name='extend_motion_pars', iterfield = ['moco_par_file'])
            pass

        # create reference:
        motion_correction_workflow.connect(EPI_file_selector_node, 'out_file',
                                           motion_correct_EPI_space, 'in_file')
        motion_correction_workflow.connect(motion_correct_EPI_space,
                                           'out_file', mean_bold, 'in_file')
        motion_correction_workflow.connect(mean_bold, 'out_file',
                                           motion_correct_all, 'ref_file')

        # motion correction across runs
        motion_correction_workflow.connect(input_node, 'in_files',
                                           motion_correct_all, 'in_file')
        #motion_correction_workflow.connect(motion_correct_all, 'out_file', output_node, 'motion_corrected_files')
        # motion_correction_workflow.connect(motion_correct_all, 'par_file', extend_motion_pars, 'moco_par_file')
        # motion_correction_workflow.connect(input_node, 'tr', extend_motion_pars, 'tr')
        # motion_correction_workflow.connect(extend_motion_pars, 'ext_out_file', output_node, 'extended_motion_correction_parameters')
        # motion_correction_workflow.connect(extend_motion_pars, 'new_out_file', output_node, 'new_motion_correction_parameters')

        ########################################################################################
        # Plot the estimated motion parameters
        ########################################################################################

        # rename:
        motion_correction_workflow.connect(mean_bold, 'out_file',
                                           rename_mean_bold, 'in_file')
        motion_correction_workflow.connect(motion_correct_all, 'par_file',
                                           rename_motion_files, 'in_file')
        motion_correction_workflow.connect(motion_correct_all, 'par_file',
                                           remove_niigz_ext, 'in_file')
        motion_correction_workflow.connect(remove_niigz_ext, 'out_file',
                                           rename_motion_files,
                                           'format_string')

        # plots:
        plot_motion.iterables = ('plot_type', ['rotations', 'translations'])
        motion_correction_workflow.connect(rename_motion_files, 'out_file',
                                           plot_motion, 'in_file')
        motion_correction_workflow.connect(plot_motion, 'out_file',
                                           output_node,
                                           'motion_correction_plots')

        # output node:
        motion_correction_workflow.connect(mean_bold, 'out_file', output_node,
                                           'EPI_space_file')
        motion_correction_workflow.connect(rename_motion_files, 'out_file',
                                           output_node,
                                           'motion_correction_parameters')
        motion_correction_workflow.connect(motion_correct_all, 'out_file',
                                           output_node,
                                           'motion_corrected_files')

        # datasink:
        motion_correction_workflow.connect(rename_mean_bold, 'out_file',
                                           datasink, 'reg')
        motion_correction_workflow.connect(motion_correct_all, 'out_file',
                                           datasink, 'mcf')
        motion_correction_workflow.connect(rename_motion_files, 'out_file',
                                           datasink, 'mcf.motion_pars')
        motion_correction_workflow.connect(plot_motion, 'out_file', datasink,
                                           'mcf.motion_plots')
        # motion_correction_workflow.connect(extend_motion_pars, 'ext_out_file', datasink, 'mcf.ext_motion_pars')
        # motion_correction_workflow.connect(extend_motion_pars, 'new_out_file', datasink, 'mcf.new_motion_pars')

    ########################################################################################
    # AFNI 3DVolReg
    ########################################################################################
    # for speed, we use AFNI's 3DVolReg brute-force.
    # this loses plotting of motion parameters but increases speed
    # we hold on to the same setup, first moco the selected run
    # and then moco everything to that image, but without the
    # intermediate FLIRT step.

    if method == 'AFNI':
        motion_correct_EPI_space = pe.Node(
            interface=afni.Volreg(
                outputtype='NIFTI_GZ',
                zpad=5,
                args=' -cubic '  # -twopass -Fourier
            ),
            name='motion_correct_EPI_space')

        motion_correct_all = pe.MapNode(
            interface=afni.Volreg(
                outputtype='NIFTI_GZ',
                zpad=5,
                args=' -cubic '  # -twopass
            ),
            name='motion_correct_all',
            iterfield=['in_file'])

        # for renaming *_volreg.nii.gz to *_mcf.nii.gz
        set_postfix_mcf = pe.MapNode(interface=Set_postfix,
                                     name='set_postfix_mcf',
                                     iterfield=['in_file'])
        set_postfix_mcf.inputs.postfix = 'mcf'

        rename_volreg = pe.MapNode(interface=Rename(keep_ext=True),
                                   name='rename_volreg',
                                   iterfield=['in_file', 'format_string'])

        # curate for moco between sessions
        motion_correction_workflow.connect(EPI_file_selector_node, 'out_file',
                                           motion_correct_EPI_space, 'in_file')
        motion_correction_workflow.connect(motion_correct_EPI_space,
                                           'out_file', mean_bold, 'in_file')

        # motion correction across runs
        motion_correction_workflow.connect(input_node, 'in_files',
                                           motion_correct_all, 'in_file')
        motion_correction_workflow.connect(mean_bold, 'out_file',
                                           motion_correct_all, 'basefile')
        # motion_correction_workflow.connect(mean_bold, 'out_file', motion_correct_all, 'rotparent')
        # motion_correction_workflow.connect(mean_bold, 'out_file', motion_correct_all, 'gridparent')

        # output node:
        motion_correction_workflow.connect(mean_bold, 'out_file', output_node,
                                           'EPI_space_file')
        motion_correction_workflow.connect(motion_correct_all, 'md1d_file',
                                           output_node,
                                           'max_displacement_info')
        motion_correction_workflow.connect(motion_correct_all, 'oned_file',
                                           output_node,
                                           'motion_correction_parameter_info')
        motion_correction_workflow.connect(
            motion_correct_all, 'oned_matrix_save', output_node,
            'motion_correction_parameter_matrix')
        motion_correction_workflow.connect(input_node, 'in_files',
                                           set_postfix_mcf, 'in_file')
        motion_correction_workflow.connect(set_postfix_mcf, 'out_file',
                                           rename_volreg, 'format_string')
        motion_correction_workflow.connect(motion_correct_all, 'out_file',
                                           rename_volreg, 'in_file')
        motion_correction_workflow.connect(rename_volreg, 'out_file',
                                           output_node,
                                           'motion_corrected_files')

        # datasink:
        motion_correction_workflow.connect(mean_bold, 'out_file',
                                           rename_mean_bold, 'in_file')
        motion_correction_workflow.connect(rename_mean_bold, 'out_file',
                                           datasink, 'reg')
        motion_correction_workflow.connect(rename_volreg, 'out_file', datasink,
                                           'mcf')
        motion_correction_workflow.connect(motion_correct_all, 'md1d_file',
                                           datasink,
                                           'mcf.max_displacement_info')
        motion_correction_workflow.connect(motion_correct_all, 'oned_file',
                                           datasink, 'mcf.parameter_info')
        motion_correction_workflow.connect(motion_correct_all,
                                           'oned_matrix_save', datasink,
                                           'mcf.motion_pars')

    return motion_correction_workflow
예제 #6
0
def create_func_preproc(skullstrip_tool,
                        n4_correction,
                        anatomical_mask_dilation=False,
                        wf_name='func_preproc'):
    """

    The main purpose of this workflow is to process functional data. Raw rest file is deobliqued and reoriented
    into RPI. Then take the mean intensity values over all time points for each voxel and use this image
    to calculate motion parameters. The image is then skullstripped, normalized and a processed mask is
    obtained to use it further in Image analysis.

    Parameters
    ----------

    wf_name : string
        Workflow name

    Returns
    -------
    func_preproc : workflow object
        Functional Preprocessing workflow object

    Notes
    -----

    `Source <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/func_preproc/func_preproc.py>`_

    Workflow Inputs::

        inputspec.func : func nifti file
            User input functional(T2) Image, in any of the 8 orientations

        inputspec.twopass : boolean
            Perform two-pass on volume registration

    Workflow Outputs::

        outputspec.refit : string (nifti file)
            Path to deobliqued anatomical data

        outputspec.reorient : string (nifti file)
            Path to RPI oriented anatomical data

        outputspec.motion_correct_ref : string (nifti file)
             Path to Mean intensity Motion corrected image
             (base reference image for the second motion correction run)

        outputspec.motion_correct : string (nifti file)
            Path to motion corrected output file

        outputspec.max_displacement : string (Mat file)
            Path to maximum displacement (in mm) for brain voxels in each volume

        outputspec.movement_parameters : string (Mat file)
            Path to 1D file containing six movement/motion parameters(3 Translation, 3 Rotations)
            in different columns (roll pitch yaw dS  dL  dP)

        outputspec.skullstrip : string (nifti file)
            Path to skull stripped Motion Corrected Image

        outputspec.mask : string (nifti file)
            Path to brain-only mask

        outputspec.func_mean : string (nifti file)
            Mean, Skull Stripped, Motion Corrected output T2 Image path
            (Image with mean intensity values across voxels)

        outputpsec.preprocessed : string (nifti file)
            output skull stripped, motion corrected T2 image
            with normalized intensity values

        outputspec.preprocessed_mask : string (nifti file)
           Mask obtained from normalized preprocessed image

    Order of commands:

    - Deobliqing the scans.  For details see `3drefit <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3drefit.html>`_::

        3drefit -deoblique rest_3dc.nii.gz

    - Re-orienting the Image into Right-to-Left Posterior-to-Anterior Inferior-to-Superior (RPI) orientation. For details see `3dresample <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dresample.html>`_::

        3dresample -orient RPI
                   -prefix rest_3dc_RPI.nii.gz
                   -inset rest_3dc.nii.gz

    - Calculate voxel wise statistics. Get the RPI Image with mean intensity values over all timepoints for each voxel. For details see `3dTstat <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTstat.html>`_::

        3dTstat -mean
                -prefix rest_3dc_RPI_3dT.nii.gz
                rest_3dc_RPI.nii.gz

    - Motion Correction. For details see `3dvolreg <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dvolreg.html>`_::

        3dvolreg -Fourier
                 -twopass
                 -base rest_3dc_RPI_3dT.nii.gz/
                 -zpad 4
                 -maxdisp1D rest_3dc_RPI_3dvmd1D.1D
                 -1Dfile rest_3dc_RPI_3dv1D.1D
                 -prefix rest_3dc_RPI_3dv.nii.gz
                 rest_3dc_RPI.nii.gz

      The base image or the reference image is the mean intensity RPI image obtained in the above the step.For each volume
      in RPI-oriented T2 image, the command, aligns the image with the base mean image and calculates the motion, displacement
      and movement parameters. It also outputs the aligned 4D volume and movement and displacement parameters for each volume.

    - Calculate voxel wise statistics. Get the motion corrected output Image from the above step, with mean intensity values over all timepoints for each voxel.
      For details see `3dTstat <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTstat.html>`_::

        3dTstat -mean
                -prefix rest_3dc_RPI_3dv_3dT.nii.gz
                rest_3dc_RPI_3dv.nii.gz

    - Motion Correction and get motion, movement and displacement parameters. For details see `3dvolreg <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dvolreg.html>`_::

        3dvolreg -Fourier
                 -twopass
                 -base rest_3dc_RPI_3dv_3dT.nii.gz
                 -zpad 4
                 -maxdisp1D rest_3dc_RPI_3dvmd1D.1D
                 -1Dfile rest_3dc_RPI_3dv1D.1D
                 -prefix rest_3dc_RPI_3dv.nii.gz
                 rest_3dc_RPI.nii.gz

      The base image or the reference image is the mean intensity motion corrected image obtained from the above the step (first 3dvolreg run).
      For each volume in RPI-oriented T2 image, the command, aligns the image with the base mean image and calculates the motion, displacement
      and movement parameters. It also outputs the aligned 4D volume and movement and displacement parameters for each volume.

    - Create a brain-only mask. For details see `3dautomask <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dAutomask.html>`_::

        3dAutomask
                   -prefix rest_3dc_RPI_3dv_automask.nii.gz
                   rest_3dc_RPI_3dv.nii.gz

    - Edge Detect(remove skull) and get the brain only. For details see `3dcalc <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dcalc.html>`_::

        3dcalc -a rest_3dc_RPI_3dv.nii.gz
               -b rest_3dc_RPI_3dv_automask.nii.gz
               -expr 'a*b'
               -prefix rest_3dc_RPI_3dv_3dc.nii.gz

    - Normalizing the image intensity values. For details see `fslmaths <http://www.fmrib.ox.ac.uk/fsl/avwutils/index.html>`_::

        fslmaths rest_3dc_RPI_3dv_3dc.nii.gz
                 -ing 10000 rest_3dc_RPI_3dv_3dc_maths.nii.gz
                 -odt float

      Normalized intensity = (TrueValue*10000)/global4Dmean

    - Calculate mean of skull stripped image. For details see `3dTstat <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTstat.html>`_::

        3dTstat -mean -prefix rest_3dc_RPI_3dv_3dc_3dT.nii.gz rest_3dc_RPI_3dv_3dc.nii.gz

    - Create Mask (Generate mask from Normalized data). For details see `fslmaths <http://www.fmrib.ox.ac.uk/fsl/avwutils/index.html>`_::

        fslmaths rest_3dc_RPI_3dv_3dc_maths.nii.gz
               -Tmin -bin rest_3dc_RPI_3dv_3dc_maths_maths.nii.gz
               -odt char

    .. exec::
        from CPAC.func_preproc import create_func_preproc
        wf = create_func_preproc()
        wf.write_graph(
            graph2use='orig',
            dotfilename='./images/generated/func_preproc.dot'
        )

    High Level Workflow Graph:

    .. image:: ../images/generated/func_preproc.png
       :width: 1000

    Detailed Workflow Graph:

    .. image:: ../images/generated/func_preproc_detailed.png
       :width: 1000

    Examples
    --------

    >>> import func_preproc
    >>> preproc = create_func_preproc(bet=True)
    >>> preproc.inputs.inputspec.func='sub1/func/rest.nii.gz'
    >>> preproc.run() #doctest: +SKIP


    >>> import func_preproc
    >>> preproc = create_func_preproc(bet=False)
    >>> preproc.inputs.inputspec.func='sub1/func/rest.nii.gz'
    >>> preproc.run() #doctest: +SKIP

    """

    preproc = pe.Workflow(name=wf_name)
    input_node = pe.Node(util.IdentityInterface(
        fields=['func', 'twopass', 'anatomical_brain_mask', 'anat_skull']),
                         name='inputspec')

    output_node = pe.Node(util.IdentityInterface(fields=[
        'refit', 'reorient', 'reorient_mean', 'motion_correct',
        'motion_correct_ref', 'movement_parameters', 'max_displacement',
        'mask', 'skullstrip', 'func_mean', 'preprocessed', 'preprocessed_mask',
        'slice_time_corrected', 'transform_matrices'
    ]),
                          name='outputspec')

    func_deoblique = pe.Node(interface=afni_utils.Refit(),
                             name='func_deoblique')
    func_deoblique.inputs.deoblique = True

    preproc.connect(input_node, 'func', func_deoblique, 'in_file')

    func_reorient = pe.Node(interface=afni_utils.Resample(),
                            name='func_reorient')

    func_reorient.inputs.orientation = 'RPI'
    func_reorient.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_deoblique, 'out_file', func_reorient, 'in_file')

    preproc.connect(func_reorient, 'out_file', output_node, 'reorient')

    func_get_mean_RPI = pe.Node(interface=afni_utils.TStat(),
                                name='func_get_mean_RPI')

    func_get_mean_RPI.inputs.options = '-mean'
    func_get_mean_RPI.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_reorient, 'out_file', func_get_mean_RPI, 'in_file')

    # calculate motion parameters
    func_motion_correct = pe.Node(interface=preprocess.Volreg(),
                                  name='func_motion_correct_3dvolreg')
    func_motion_correct.inputs.zpad = 4
    func_motion_correct.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect([
        (input_node, func_motion_correct,
         [(('twopass', collect_arguments, '-twopass', '-Fourier'), 'args')]),
    ])
    preproc.connect(func_get_mean_RPI, 'out_file', func_motion_correct,
                    'basefile')

    preproc.connect(func_reorient, 'out_file', func_motion_correct, 'in_file')

    func_get_mean_motion = func_get_mean_RPI.clone('func_get_mean_motion')
    preproc.connect(func_motion_correct, 'out_file', func_get_mean_motion,
                    'in_file')

    preproc.connect(func_get_mean_motion, 'out_file', output_node,
                    'motion_correct_ref')

    func_motion_correct_A = func_motion_correct.clone('func_motion_correct_A')
    func_motion_correct_A.inputs.md1d_file = 'max_displacement.1D'

    preproc.connect([
        (input_node, func_motion_correct_A,
         [(('twopass', collect_arguments, '-twopass', '-Fourier'), 'args')]),
    ])

    preproc.connect(func_reorient, 'out_file', func_motion_correct_A,
                    'in_file')
    preproc.connect(func_get_mean_motion, 'out_file', func_motion_correct_A,
                    'basefile')

    preproc.connect(func_motion_correct_A, 'out_file', output_node,
                    'motion_correct')
    preproc.connect(func_motion_correct_A, 'md1d_file', output_node,
                    'max_displacement')
    preproc.connect(func_motion_correct_A, 'oned_file', output_node,
                    'movement_parameters')
    preproc.connect(func_motion_correct_A, 'oned_matrix_save', output_node,
                    'transform_matrices')

    skullstrip_func = skullstrip_functional(skullstrip_tool,
                                            anatomical_mask_dilation,
                                            "{0}_skullstrip".format(wf_name))

    preproc.connect(func_motion_correct_A, 'out_file', skullstrip_func,
                    'inputspec.func')

    preproc.connect(input_node, 'anatomical_brain_mask', skullstrip_func,
                    'inputspec.anatomical_brain_mask')

    preproc.connect(input_node, 'anat_skull', skullstrip_func,
                    'inputspec.anat_skull')

    preproc.connect(skullstrip_func, 'outputspec.func_brain', output_node,
                    'skullstrip')

    preproc.connect(skullstrip_func, 'outputspec.func_brain_mask', output_node,
                    'mask')

    func_mean = pe.Node(interface=afni_utils.TStat(), name='func_mean')

    func_mean.inputs.options = '-mean'
    func_mean.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(skullstrip_func, 'outputspec.func_brain', func_mean,
                    'in_file')

    if n4_correction:
        func_mean_n4_corrected = pe.Node(interface=ants.N4BiasFieldCorrection(
            dimension=3, copy_header=True, bspline_fitting_distance=200),
                                         shrink_factor=2,
                                         name='func_mean_n4_corrected')
        func_mean_n4_corrected.inputs.args = '-r True'
        # func_mean_n4_corrected.inputs.rescale_intensities = True
        preproc.connect(func_mean, 'out_file', func_mean_n4_corrected,
                        'input_image')
        preproc.connect(func_mean_n4_corrected, 'output_image', output_node,
                        'func_mean')

    else:
        preproc.connect(func_mean, 'out_file', output_node, 'func_mean')

    func_normalize = pe.Node(interface=fsl.ImageMaths(), name='func_normalize')
    func_normalize.inputs.op_string = '-ing 10000'
    func_normalize.inputs.out_data_type = 'float'

    preproc.connect(skullstrip_func, 'outputspec.func_brain', func_normalize,
                    'in_file')

    preproc.connect(func_normalize, 'out_file', output_node, 'preprocessed')

    func_mask_normalize = pe.Node(interface=fsl.ImageMaths(),
                                  name='func_mask_normalize')
    func_mask_normalize.inputs.op_string = '-Tmin -bin'
    func_mask_normalize.inputs.out_data_type = 'char'

    preproc.connect(func_normalize, 'out_file', func_mask_normalize, 'in_file')

    preproc.connect(func_mask_normalize, 'out_file', output_node,
                    'preprocessed_mask')

    return preproc
예제 #7
0
def mc_workflow_afni(reference_vol="mid",
                     FD_mode="Power",
                     SinkTag="func_preproc",
                     wf_name="motion_correction_afni"):
    from nipype.interfaces.afni import preprocess
    import sys
    import os
    import nipype
    import nipype.pipeline as pe
    import nipype.interfaces.utility as utility
    import PUMI.func_preproc.info.info_get as info_get
    import nipype.interfaces.io as io
    import nipype.algorithms.confounds as conf
    import PUMI.utils.utils_math as utils_math
    import PUMI.utils.utils_convert as utils_convert
    import PUMI.utils.globals as globals
    import PUMI.utils.QC as qc

    SinkDir = os.path.abspath(globals._SinkDir_ + "/" + SinkTag)
    if not os.path.exists(SinkDir):
        os.makedirs(SinkDir)
    QCDir = os.path.abspath(globals._SinkDir_ + "/" + globals._QCDir_)
    if not os.path.exists(QCDir):
        os.makedirs(QCDir)

    # Basic interface class generates identity mappings
    inputspec = pe.Node(utility.IdentityInterface(
        fields=['func', 'ref_vol', 'save_plots', 'stats_imgs']),
                        name='inputspec')
    inputspec.inputs.save_plots = True
    inputspec.inputs.stats_imgs = True
    inputspec.inputs.ref_vol = reference_vol

    # extract reference volume
    refvol = pe.MapNode(utility.Function(input_names=['refvol', 'func'],
                                         output_names=['refvol'],
                                         function=getRefVol),
                        iterfield=['func'],
                        name='getRefVol')

    if (reference_vol == "mean"):
        func_motion_correct1 = pe.MapNode(interface=preprocess.Volreg(),
                                          iterfield=["in_file", "basefile"],
                                          name='mc_afni_init')
        func_motion_correct1.inputs.args = '-Fourier -twopass'
        func_motion_correct1.inputs.zpad = 4
        func_motion_correct1.inputs.outputtype = 'NIFTI_GZ'

        # extract reference volume
        refvol2 = pe.MapNode(utility.Function(input_names=['refvol', 'func'],
                                              output_names=['refvol'],
                                              function=getRefVol),
                             iterfield=['func'],
                             name='getRefVol2')

    func_motion_correct = pe.MapNode(interface=preprocess.Volreg(),
                                     iterfield=["in_file", "basefile"],
                                     name='mc_afni')
    func_motion_correct.inputs.args = '-Fourier -twopass'
    func_motion_correct.inputs.zpad = 4
    func_motion_correct.inputs.outputtype = 'NIFTI_GZ'

    myqc = qc.timecourse2png("timeseries", tag="010_motioncorr")

    # Calculate Friston24 parameters
    calc_friston = pe.MapNode(utility.Function(
        input_names=['in_file'],
        output_names=['out_file'],
        function=calc_friston_twenty_four),
                              iterfield=['in_file'],
                              name='calc_friston')

    if FD_mode == "Power":
        calculate_FD = pe.MapNode(conf.FramewiseDisplacement(
            parameter_source='AFNI', save_plot=True),
                                  iterfield=['in_file'],
                                  name='calculate_FD_Power')
    elif FD_mode == "Jenkinson":
        calculate_FD = pe.MapNode(utility.Function(input_names=['in_file'],
                                                   output_names=['out_file'],
                                                   function=calculate_FD_J),
                                  iterfield=['in_file'],
                                  name='calculate_FD_Jenkinson')

        # compute mean and max FD
        meanFD = pe.MapNode(interface=utils_math.Txt2meanTxt,
                            iterfield=['in_file'],
                            name='meanFD')
        meanFD.inputs.axis = 0  # global mean
        meanFD.inputs.header = True  # global mean

        maxFD = pe.MapNode(interface=utils_math.Txt2maxTxt,
                           iterfield=['in_file'],
                           name='maxFD')
        maxFD.inputs.axis = 0  # global mean
        maxFD.inputs.header = True  # global mean

        pop_FD = pe.Node(interface=utils_convert.List2TxtFileOpen,
                         name='pop_FD')
        pop_FDmax = pe.Node(interface=utils_convert.List2TxtFileOpen,
                            name='pop_FDmax')

    # save data out with Datasink
    ds_fd = pe.Node(interface=io.DataSink(), name='ds_pop_fd')
    ds_fd.inputs.regexp_substitutions = [("(\/)[^\/]*$", "FD.txt")]
    ds_fd.inputs.base_directory = SinkDir

    # save data out with Datasink
    ds_fd_max = pe.Node(interface=io.DataSink(), name='ds_pop_fd_max')
    ds_fd_max.inputs.regexp_substitutions = [("(\/)[^\/]*$", "FD_max.txt")]
    ds_fd_max.inputs.base_directory = SinkDir

    # Save outputs which are important
    ds_qc_fd = pe.Node(interface=io.DataSink(), name='ds_qc_fd')
    ds_qc_fd.inputs.base_directory = QCDir
    ds_qc_fd.inputs.regexp_substitutions = [("(\/)[^\/]*$", "_FD.pdf")]

    # Basic interface class generates identity mappings
    outputspec = pe.Node(utility.IdentityInterface(fields=[
        'func_out_file', 'first24_file', 'mat_file', 'mc_par_file', 'FD_file'
    ]),
                         name='outputspec')

    # save data out with Datasink
    ds_nii = pe.Node(interface=io.DataSink(), name='ds_nii')
    ds_nii.inputs.regexp_substitutions = [("(\/)[^\/]*$", ".nii.gz")]
    ds_nii.inputs.base_directory = SinkDir

    # save data out with Datasink
    ds_text = pe.Node(interface=io.DataSink(), name='ds_txt')
    ds_text.inputs.regexp_substitutions = [("(\/)[^\/]*$", ".txt")]
    ds_text.inputs.base_directory = SinkDir

    # TODO_ready set the proper images which has to be saved in a the datasink specified directory
    # Create a workflow to connect all those nodes
    analysisflow = nipype.Workflow(wf_name)

    analysisflow.connect(inputspec, 'func', refvol, 'func')
    analysisflow.connect(inputspec, 'ref_vol', refvol, 'refvol')
    if (reference_vol == "mean"):
        analysisflow.connect(inputspec, 'func', func_motion_correct1,
                             'in_file')
        analysisflow.connect(refvol, 'refvol', func_motion_correct1,
                             'basefile')
        analysisflow.connect(func_motion_correct1, 'out_file', refvol2, 'func')
        analysisflow.connect(inputspec, 'ref_vol', refvol2, 'refvol')
        analysisflow.connect(inputspec, 'func', func_motion_correct, 'in_file')
        analysisflow.connect(refvol2, 'refvol', func_motion_correct,
                             'basefile')
    else:
        analysisflow.connect(inputspec, 'func', func_motion_correct, 'in_file')
        analysisflow.connect(refvol, 'refvol', func_motion_correct, 'basefile')

    analysisflow.connect(func_motion_correct, 'oned_file', calc_friston,
                         'in_file')
    analysisflow.connect(func_motion_correct, 'oned_file', calculate_FD,
                         'in_file')

    analysisflow.connect(func_motion_correct, 'out_file', outputspec,
                         'func_out_file')
    analysisflow.connect(func_motion_correct, 'oned_matrix_save', outputspec,
                         'mat_file')
    analysisflow.connect(func_motion_correct, 'oned_file', outputspec,
                         'mc_par_file')
    analysisflow.connect(func_motion_correct, 'out_file', ds_nii, 'mc_func')
    analysisflow.connect(func_motion_correct, 'oned_file', ds_text, 'mc_par')
    # analysisflow.connect(func_motion_correct, 'variance_img', ds, 'mc.@variance_img')
    analysisflow.connect(calc_friston, 'out_file', outputspec, 'first24_file')
    analysisflow.connect(calc_friston, 'out_file', ds_text, 'mc_first24')
    analysisflow.connect(calculate_FD, 'out_file', outputspec, 'FD_file')
    analysisflow.connect(func_motion_correct, 'out_file', myqc,
                         'inputspec.func')
    # pop-level mean FD
    analysisflow.connect(calculate_FD, 'out_file', meanFD, 'in_file')
    analysisflow.connect(calculate_FD, 'out_file', ds_text, 'mc_fd')
    analysisflow.connect(meanFD, 'mean_file', pop_FD, 'in_list')
    analysisflow.connect(pop_FD, 'txt_file', ds_fd, 'pop')
    analysisflow.connect(calculate_FD, 'out_figure', ds_qc_fd, 'FD')

    analysisflow.connect(calculate_FD, 'out_file', maxFD, 'in_file')
    analysisflow.connect(maxFD, 'max_file', pop_FDmax, 'in_list')
    analysisflow.connect(pop_FDmax, 'txt_file', ds_fd_max, 'pop')

    return analysisflow
예제 #8
0
def func_motion_correct_workflow(workflow, resource_pool, config, name="_"):
    """Build and run a Nipype workflow to calculate the motion correction
    parameters of a functional timeseries using AFNI's 3dvolreg.

    - If any resources/outputs required by this workflow are not in the
      resource pool, this workflow will call pre-requisite workflow builder
      functions to further populate the pipeline with workflows which will
      calculate/generate these necessary pre-requisites.

    Expected Resources in Resource Pool
      - func_reorient: The deobliqued, reoriented functional timeseries.

    New Resources Added to Resource Pool:
      - func_motion_correct: The motion-corrected functional timeseries.
      - coordinate_transformation: The matrix transformation from AFNI's
                                   3dvolreg (--1Dmatrix_save option).

    Workflow Steps
      1. AFNI 3dcalc to extract the first volume of the functional timeseries
         for the basefile for 3dvolreg.
      2. AFNI 3dvolreg to calculate the motion correction parameters.

    :type workflow: Nipype workflow object
    :param workflow: A Nipype workflow object which can already contain other
                     connected nodes; this function will insert the following
                     workflow into this one provided.
    :type resource_pool: dict
    :param resource_pool: A dictionary defining input files and pointers to
                          Nipype node outputs / workflow connections; the keys
                          are the resource names.
    :type config: dict
    :param config: A dictionary defining the configuration settings for the
                   workflow, such as directory paths or toggled options.
    :type name: str
    :param name: (default: "_") A string to append to the end of each node
                 name.
    :rtype: Nipype workflow object
    :return: The Nipype workflow originally provided, but with this function's
              sub-workflow connected into it.
    :rtype: dict
    :return: The resource pool originally provided, but updated (if
             applicable) with the newest outputs and connections.
    """

    import copy
    import nipype.pipeline.engine as pe
    from nipype.interfaces.afni import preprocess

    if "func_reorient" not in resource_pool.keys():
        from functional_preproc import func_preproc_workflow
        old_rp = copy.copy(resource_pool)
        workflow, resource_pool = \
            func_preproc_workflow(workflow, resource_pool, config, name)
        if resource_pool == old_rp:
            return workflow, resource_pool
    
    # get the first volume of the time series
    get_func_volume = pe.Node(interface=preprocess.Calc(),
                              name='get_func_volume%s' % name)
         
    get_func_volume.inputs.expr = 'a'
    get_func_volume.inputs.single_idx = 0
    get_func_volume.inputs.outputtype = 'NIFTI_GZ'

    if len(resource_pool["func_reorient"]) == 2:
        node, out_file = resource_pool["func_reorient"]
        workflow.connect(node, out_file, get_func_volume, 'in_file_a')
    else:
        get_func_volume.inputs.in_file_a = resource_pool["func_reorient"]
        
    # calculate motion parameters
    func_motion_correct = pe.Node(interface=preprocess.Volreg(),
                             name='func_motion_correct%s' % name)

    func_motion_correct.inputs.args = '-Fourier -twopass'
    func_motion_correct.inputs.zpad = 4
    func_motion_correct.inputs.outputtype = 'NIFTI_GZ'
    
    if len(resource_pool["func_reorient"]) == 2:
        node, out_file = resource_pool["func_reorient"]
        workflow.connect(node, out_file, func_motion_correct, 'in_file')
    else:
        func_motion_correct.inputs.in_file = resource_pool["func_reorient"]

    workflow.connect(get_func_volume, 'out_file',
                     func_motion_correct, 'basefile')

    resource_pool["func_motion_correct"] = (func_motion_correct, 'out_file')
    resource_pool["coordinate_transformation"] = \
        (func_motion_correct, 'oned_matrix_save')

    return workflow, resource_pool