def test_fix_obliquity(): target_filename = os.path.join(os.path.dirname(testing_data.__file__), 'anat.nii.gz') # ZCutUp removes the obliquity tmp_filename = os.path.join(tst.tmpdir, 'img_test_obliquity.nii.gz') slicer = afni.ZCutUp().run _ = slicer(in_file=target_filename, keep='0 27', out_file=tmp_filename) assert_false( orientation._check_same_obliquity(tmp_filename, target_filename)) tmp_filename_oblique = orientation.fix_obliquity(tmp_filename, target_filename) assert_true( orientation._check_same_obliquity(tmp_filename_oblique, target_filename))
def test_zcutup(): input_map = dict( args=dict(argstr='%s', ), environ=dict(usedefault=True, ), ignore_exception=dict(usedefault=True, ), in_file=dict( argstr='%s', mandatory=True, ), keep=dict(argstr='-keep %s', ), out_file=dict(argstr='-prefix %s'), outputtype=dict(), ) instance = afni.ZCutUp() for key, metadata in input_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(instance.inputs.traits()[key], metakey), value
def coregister_fmri_session(session_data, t_r, write_dir, brain_volume, use_rats_tool=True, slice_timing=True, prior_rigid_body_registration=False, caching=False, voxel_size_x=.1, voxel_size_y=.1, verbose=True, **environ_kwargs): """ Coregistration of the subject's functional and anatomical images. The functional volume is aligned to the anatomical, first with a rigid body registration and then on a per-slice basis (only a fine correction, this is mostly for correction of EPI distortion). Parameters ---------- session_data : sammba.registration.SessionData Single animal data, giving paths to its functional and anatomical image, as well as it identifier. t_r : float Repetition time for the EPI, in seconds. write_dir : str Directory to save the output and temporary images. brain_volume : int Volume of the brain in mm3 used for brain extraction. Typically 400 for mouse and 1800 for rat. use_rats_tool : bool, optional If True, brain mask is computed using RATS Mathematical Morphology. Otherwise, a histogram-based brain segmentation is used. prior_rigid_body_registration : bool, optional If True, a rigid-body registration of the anat to the func is performed prior to the warp. Useful if the images headers have missing/wrong information. voxel_size_x : float, optional Resampling resolution for the x-axis, in mm. voxel_size_y : float, optional Resampling resolution for the y-axis, in mm. caching : bool, optional Wether or not to use caching. verbose : bool, optional If True, all steps are verbose. Note that caching implies some verbosity in any case. environ_kwargs : extra arguments keywords Extra arguments keywords, passed to interfaces environ variable. Returns ------- the same sequence with each animal_data updated: the following attributes are added - `output_dir_` : str Path to the output directory. - `coreg_func_` : str Path to paths to the coregistered functional image. - `coreg_anat_` : str Path to paths to the coregistered functional image. - `coreg_transform_` : str Path to the transform from anat to func. Notes ----- If `use_rats_tool` is turned on, RATS tool is used for brain extraction and has to be cited. For more information, see `RATS <http://www.iibi.uiowa.edu/content/rats-overview/>`_ """ func_filename = session_data.func anat_filename = session_data.anat environ = {'AFNI_DECONFLICT': 'OVERWRITE'} for (key, value) in environ_kwargs.items(): environ[key] = value if verbose: terminal_output = 'allatonce' else: terminal_output = 'none' if use_rats_tool: if segmentation.interfaces.Info().version() is None: raise ValueError('Can not locate RATS') else: ComputeMask = segmentation.MathMorphoMask else: ComputeMask = segmentation.HistogramMask if ants.base.Info().version is None: raise ValueError('Can not locate ANTS') if caching: memory = Memory(write_dir) tshift = memory.cache(afni.TShift) clip_level = memory.cache(afni.ClipLevel) volreg = memory.cache(afni.Volreg) allineate = memory.cache(afni.Allineate) tstat = memory.cache(afni.TStat) compute_mask = memory.cache(ComputeMask) calc = memory.cache(afni.Calc) allineate = memory.cache(afni.Allineate) allineate2 = memory.cache(afni.Allineate) unifize = memory.cache(afni.Unifize) bias_correct = memory.cache(ants.N4BiasFieldCorrection) catmatvec = memory.cache(afni.CatMatvec) warp = memory.cache(afni.Warp) resample = memory.cache(afni.Resample) slicer = memory.cache(afni.ZCutUp) warp_apply = memory.cache(afni.NwarpApply) qwarp = memory.cache(afni.Qwarp) merge = memory.cache(afni.Zcat) copy_geom = memory.cache(fsl.CopyGeom) overwrite = False for step in [ tshift, volreg, allineate, allineate2, tstat, compute_mask, calc, unifize, resample, slicer, warp_apply, qwarp, merge ]: step.interface().set_default_terminal_output(terminal_output) else: tshift = afni.TShift(terminal_output=terminal_output).run clip_level = afni.ClipLevel().run volreg = afni.Volreg(terminal_output=terminal_output).run allineate = afni.Allineate(terminal_output=terminal_output).run allineate2 = afni.Allineate(terminal_output=terminal_output ).run # TODO: remove after fixed bug tstat = afni.TStat(terminal_output=terminal_output).run compute_mask = ComputeMask().run calc = afni.Calc(terminal_output=terminal_output).run unifize = afni.Unifize(terminal_output=terminal_output).run bias_correct = ants.N4BiasFieldCorrection( terminal_output=terminal_output).run catmatvec = afni.CatMatvec().run warp = afni.Warp().run resample = afni.Resample(terminal_output=terminal_output).run slicer = afni.ZCutUp(terminal_output=terminal_output).run warp_apply = afni.NwarpApply(terminal_output=terminal_output).run qwarp = afni.Qwarp(terminal_output=terminal_output).run merge = afni.Zcat(terminal_output=terminal_output).run copy_geom = fsl.CopyGeom(terminal_output=terminal_output).run overwrite = True session_data._check_inputs() output_dir = os.path.join(os.path.abspath(write_dir), session_data.animal_id) session_data._set_output_dir_(output_dir) current_dir = os.getcwd() os.chdir(output_dir) output_files = [] ####################################### # Correct functional for slice timing # ####################################### if slice_timing: out_tshift = tshift(in_file=func_filename, outputtype='NIFTI_GZ', tpattern='altplus', tr=str(t_r), environ=environ) func_filename = out_tshift.outputs.out_file output_files.append(func_filename) ################################################ # Register functional volumes to the first one # ################################################ # XXX why do you need a thresholded image ? out_clip_level = clip_level(in_file=func_filename) out_calc_threshold = calc(in_file_a=func_filename, expr='ispositive(a-{0}) * a'.format( out_clip_level.outputs.clip_val), outputtype='NIFTI_GZ') thresholded_filename = out_calc_threshold.outputs.out_file out_volreg = volreg( # XXX dfile not saved in_file=thresholded_filename, outputtype='NIFTI_GZ', environ=environ, oned_file=fname_presuffix(thresholded_filename, suffix='Vr.1Dfile.1D', use_ext=False), oned_matrix_save=fname_presuffix(thresholded_filename, suffix='Vr.aff12.1D', use_ext=False)) # Apply the registration to the whole head out_allineate = allineate(in_file=func_filename, master=func_filename, in_matrix=out_volreg.outputs.oned_matrix_save, out_file=fname_presuffix(func_filename, suffix='Av'), environ=environ) # 3dAllineate removes the obliquity. This is not a good way to readd it as # removes motion correction info in the header if it were an AFNI file...as # it happens it's NIfTI which does not store that so irrelevant! out_copy_geom = copy_geom(dest_file=out_allineate.outputs.out_file, in_file=out_volreg.outputs.out_file) allineated_filename = out_copy_geom.outputs.out_file # Create a (hopefully) nice mean image for use in the registration out_tstat = tstat(in_file=allineated_filename, args='-mean', outputtype='NIFTI_GZ', environ=environ) # Update outputs output_files.extend([ thresholded_filename, out_volreg.outputs.oned_matrix_save, out_volreg.outputs.out_file, out_volreg.outputs.md1d_file, allineated_filename, out_tstat.outputs.out_file ]) ########################################### # Corret anat and func for intensity bias # ########################################### # Correct the functional average for intensities bias out_bias_correct = bias_correct(input_image=out_tstat.outputs.out_file) unbiased_func_filename = out_bias_correct.outputs.output_image # Bias correct the antomical image out_unifize = unifize(in_file=anat_filename, outputtype='NIFTI_GZ', environ=environ) unbiased_anat_filename = out_unifize.outputs.out_file # Update outputs output_files.extend([unbiased_func_filename, unbiased_anat_filename]) ############################################# # Rigid-body registration anat -> mean func # ############################################# if prior_rigid_body_registration: # Mask the mean functional volume outside the brain. out_clip_level = clip_level(in_file=unbiased_func_filename) out_compute_mask_func = compute_mask( in_file=unbiased_func_filename, volume_threshold=brain_volume, intensity_threshold=int(out_clip_level.outputs.clip_val)) out_cacl_func = calc(in_file_a=unbiased_func_filename, in_file_b=out_compute_mask_func.outputs.out_file, expr='a*b', outputtype='NIFTI_GZ', environ=environ) # Mask the anatomical volume outside the brain. out_clip_level = clip_level(in_file=unbiased_anat_filename) out_compute_mask_anat = compute_mask( in_file=unbiased_anat_filename, volume_threshold=brain_volume, intensity_threshold=int(out_clip_level.outputs.clip_val)) out_cacl_anat = calc(in_file_a=unbiased_anat_filename, in_file_b=out_compute_mask_anat.outputs.out_file, expr='a*b', outputtype='NIFTI_GZ', environ=environ) # Compute the transformation from functional to anatomical brain # XXX: why in this sense out_allineate = allineate2( in_file=out_cacl_func.outputs.out_file, reference=out_cacl_anat.outputs.out_file, out_matrix=fname_presuffix(out_cacl_func.outputs.out_file, suffix='_shr.aff12.1D', use_ext=False), center_of_mass='', warp_type='shift_rotate', out_file=fname_presuffix(out_cacl_func.outputs.out_file, suffix='_shr'), environ=environ) rigid_transform_file = out_allineate.outputs.out_matrix output_files.extend([ out_compute_mask_func.outputs.out_file, out_cacl_func.outputs.out_file, out_compute_mask_anat.outputs.out_file, out_cacl_anat.outputs.out_file, rigid_transform_file, out_allineate.outputs.out_file ]) # apply the inverse transform to register the anatomical to the func catmatvec_out_file = fname_presuffix(rigid_transform_file, suffix='INV') out_catmatvec = catmatvec(in_file=[(rigid_transform_file, 'I')], oneline=True, out_file=catmatvec_out_file) output_files.append(out_catmatvec.outputs.out_file) out_allineate = allineate(in_file=unbiased_anat_filename, master=unbiased_func_filename, in_matrix=out_catmatvec.outputs.out_file, out_file=fname_presuffix( unbiased_anat_filename, suffix='_shr_in_func_space'), environ=environ) allineated_anat_filename = out_allineate.outputs.out_file output_files.append(allineated_anat_filename) else: allineated_anat_filename = unbiased_anat_filename ############################################ # Nonlinear registration anat -> mean func # ############################################ # 3dWarp doesn't put the obliquity in the header, so do it manually # This step generates one file per slice and per time point, so we are # making sure they are removed at the end out_warp = warp(in_file=allineated_anat_filename, oblique_parent=unbiased_func_filename, interp='quintic', gridset=unbiased_func_filename, outputtype='NIFTI_GZ', verbose=True, environ=environ) registered_anat_filename = out_warp.outputs.out_file registered_anat_oblique_filename = fix_obliquity(registered_anat_filename, unbiased_func_filename, verbose=verbose) # Concatenate all the anat to func tranforms mat_filename = fname_presuffix(registered_anat_filename, suffix='_warp.mat', use_ext=False) # XXX Handle this correctly according to caching if not os.path.isfile(mat_filename): np.savetxt(mat_filename, [out_warp.runtime.stdout], fmt='%s') output_files.append(mat_filename) transform_filename = fname_presuffix(registered_anat_filename, suffix='_anat_to_func.aff12.1D', use_ext=False) if prior_rigid_body_registration: _ = catmatvec(in_file=[(mat_filename, 'ONELINE'), (rigid_transform_file, 'ONELINE')], oneline=True, out_file=transform_filename) else: _ = catmatvec(in_file=[(mat_filename, 'ONELINE')], oneline=True, out_file=transform_filename) ################################################## # Per-slice non-linear registration func -> anat # ################################################## # Slice anatomical image anat_img = nibabel.load(registered_anat_oblique_filename) anat_n_slices = anat_img.header.get_data_shape()[2] sliced_registered_anat_filenames = [] for slice_n in range(anat_n_slices): out_slicer = slicer(in_file=registered_anat_oblique_filename, keep='{0} {0}'.format(slice_n), out_file=fname_presuffix( registered_anat_oblique_filename, suffix='Sl%d' % slice_n), environ=environ) oblique_slice = fix_obliquity(out_slicer.outputs.out_file, registered_anat_oblique_filename, verbose=verbose) sliced_registered_anat_filenames.append(oblique_slice) # Slice mean functional sliced_bias_corrected_filenames = [] img = nibabel.load(func_filename) n_slices = img.header.get_data_shape()[2] for slice_n in range(n_slices): out_slicer = slicer(in_file=unbiased_func_filename, keep='{0} {0}'.format(slice_n), out_file=fname_presuffix(unbiased_func_filename, suffix='Sl%d' % slice_n), environ=environ) oblique_slice = fix_obliquity(out_slicer.outputs.out_file, unbiased_func_filename, verbose=verbose) sliced_bias_corrected_filenames.append(oblique_slice) # Below line is to deal with slices where there is no signal (for example # rostral end of some anatomicals) # The inverse warp frequently fails, Resampling can help it work better # XXX why specifically .1 in voxel_size ? voxel_size_z = anat_img.header.get_zooms()[2] resampled_registered_anat_filenames = [] for sliced_registered_anat_filename in sliced_registered_anat_filenames: out_resample = resample(in_file=sliced_registered_anat_filename, voxel_size=(voxel_size_x, voxel_size_y, voxel_size_z), outputtype='NIFTI_GZ', environ=environ) resampled_registered_anat_filenames.append( out_resample.outputs.out_file) resampled_bias_corrected_filenames = [] for sliced_bias_corrected_filename in sliced_bias_corrected_filenames: out_resample = resample(in_file=sliced_bias_corrected_filename, voxel_size=(voxel_size_x, voxel_size_y, voxel_size_z), outputtype='NIFTI_GZ', environ=environ) resampled_bias_corrected_filenames.append( out_resample.outputs.out_file) # single slice non-linear functional to anatomical registration warped_slices = [] warp_filenames = [] for (resampled_bias_corrected_filename, resampled_registered_anat_filename) in zip( resampled_bias_corrected_filenames, resampled_registered_anat_filenames): warped_slice = fname_presuffix(resampled_bias_corrected_filename, suffix='_qw') out_qwarp = qwarp( in_file=resampled_bias_corrected_filename, base_file=resampled_registered_anat_filename, iwarp=True, # XXX: is this necessary noneg=True, blur=[0], nmi=True, noXdis=True, allineate=True, allineate_opts='-parfix 1 0 -parfix 2 0 -parfix 3 0 ' '-parfix 4 0 -parfix 5 0 -parfix 6 0 ' '-parfix 7 0 -parfix 9 0 ' '-parfix 10 0 -parfix 12 0', out_file=warped_slice, environ=environ) warped_slices.append(out_qwarp.outputs.warped_source) warp_filenames.append(out_qwarp.outputs.source_warp) output_files.append(out_qwarp.outputs.base_warp) # There are files geenrated by the allineate option output_files.extend([ fname_presuffix(out_qwarp.outputs.warped_source, suffix='_Allin'), fname_presuffix(out_qwarp.outputs.warped_source, suffix='_Allin.nii', use_ext=False), fname_presuffix(out_qwarp.outputs.warped_source, suffix='_Allin.aff12.1D', use_ext=False) ]) # Resample the mean volume back to the initial resolution, voxel_size = nibabel.load(unbiased_func_filename).header.get_zooms() resampled_warped_slices = [] for warped_slice in warped_slices: out_resample = resample(in_file=warped_slice, voxel_size=voxel_size, outputtype='NIFTI_GZ', environ=environ) resampled_warped_slices.append(out_resample.outputs.out_file) # fix the obliquity resampled_warped_slices_oblique = [] for (sliced_registered_anat_filename, resampled_warped_slice) in zip(sliced_registered_anat_filenames, resampled_warped_slices): oblique_slice = fix_obliquity(resampled_warped_slice, sliced_registered_anat_filename, verbose=verbose) resampled_warped_slices_oblique.append(oblique_slice) # slice functional sliced_func_filenames = [] for slice_n in range(n_slices): out_slicer = slicer(in_file=allineated_filename, keep='{0} {0}'.format(slice_n), out_file=fname_presuffix(allineated_filename, suffix='Sl%d' % slice_n), environ=environ) oblique_slice = fix_obliquity(out_slicer.outputs.out_file, allineated_filename, verbose=verbose) sliced_func_filenames.append(oblique_slice) # Apply the precomputed warp slice by slice warped_func_slices = [] for (sliced_func_filename, warp_filename) in zip(sliced_func_filenames, warp_filenames): out_warp_apply = warp_apply(in_file=sliced_func_filename, master=sliced_func_filename, warp=warp_filename, out_file=fname_presuffix( sliced_func_filename, suffix='_qw'), environ=environ) warped_func_slices.append(out_warp_apply.outputs.out_file) # Finally, merge all slices ! out_merge_func = merge(in_files=warped_func_slices, outputtype='NIFTI_GZ', environ=environ) # Fix the obliquity merged_oblique = fix_obliquity(out_merge_func.outputs.out_file, allineated_filename, verbose=verbose) # Update the fmri data setattr(session_data, "coreg_func_", merged_oblique) setattr(session_data, "coreg_anat_", registered_anat_oblique_filename) setattr(session_data, "coreg_transform_", transform_filename) os.chdir(current_dir) # Collect the outputs output_files.extend(sliced_registered_anat_filenames + sliced_bias_corrected_filenames + resampled_registered_anat_filenames + resampled_bias_corrected_filenames + warped_slices + warp_filenames + resampled_warped_slices_oblique + sliced_func_filenames + warped_func_slices) if not caching: for out_file in output_files: if os.path.isfile(out_file): os.remove(out_file)
def t1_pipeline(name='t1_preproc'): inputnode = pe.Node(utility.IdentityInterface(fields=['t1_dicom_dir']), name='inputspec') outputnode = pe.Node(utility.IdentityInterface( fields=['mask', 'corrected_t1', 'corrected_t1_brain']), name='outputspec') n_t1_dicom_files = pe.Node(nio.DataGrabber(sort_filelist=True, ), name='t1_dicom_files') n_to3d_t1 = pe.Node(afni.To3D(filetype='anat', environ=dict(AFNI_DICOM_RESCALE='YES')), name='to3d_t1') n_reorient_t1 = pe.Node(afni.Resample(orientation='RPI'), name='reorient_t1') n_autobox_t1 = pe.Node(afni.Autobox(padding=5), name='autobox_t1') n_zcut_t1 = pe.Node(afni.ZCutUp(outputtype='NIFTI'), name='zcut_t1') n_newsegment_t1 = pe.Node(spm.NewSegment( write_deformation_fields=[True, True], channel_info=(0.0001, 60, (True, True))), name='newsegment_t1') n_seg2mask = pe.Node(fsl.MultiImageMaths( output_type='NIFTI', op_string=' -add %s -add %s -thr 0.8 -bin -eroF -dilF -dilF'), name='seg2mask') n_mask_brain = pe.Node(interface=fsl.ImageMaths(op_string='-mul', suffix='_brain', output_type='NIFTI'), name='mask_brain') w = pe.Workflow(name=name) def zmax2keep(z): return '%d %d' % (max(0, z - 174), z) w.connect([ (inputnode, n_t1_dicom_files, [('t1_dicom_dir', 'base_directory')]), (n_t1_dicom_files, n_to3d_t1, [(('outfiles', sort_t1_files), 'in_files'), (('outfiles', t1_filename, 'nii.gz'), 'out_file')]), (n_to3d_t1, n_reorient_t1, [('out_file', 'in_file')]), (n_reorient_t1, n_autobox_t1, [('out_file', 'in_file')]), (n_reorient_t1, n_zcut_t1, [('out_file', 'in_file')]), (n_autobox_t1, n_zcut_t1, [(('z_max', zmax2keep), 'keep')]), (n_zcut_t1, n_newsegment_t1, [('out_file', 'channel_files')]), (n_newsegment_t1, n_seg2mask, [(('native_class_images', getitem_rec, 0, 0), 'in_file'), (('native_class_images', getitem_rec, slice(1, 3), 0), 'operand_files')]), (n_zcut_t1, n_seg2mask, [(('out_file', fname_presuffix_basename, '', '_mask', '.'), 'out_file')]), (n_newsegment_t1, n_mask_brain, [('bias_corrected_images', 'in_file') ]), (n_seg2mask, n_mask_brain, [('out_file', 'in_file2')]), (n_seg2mask, outputnode, [('out_file', 'mask')]), (n_newsegment_t1, outputnode, [('bias_corrected_images', 'corrected_t1')]) ]) return w