예제 #1
0
def create_mgzconvert_pipeline(name='mgzconvert'):
    # workflow
    mgzconvert = Workflow(name='mgzconvert')
    # inputnode
    inputnode = Node(
        util.IdentityInterface(fields=['fs_subjects_dir', 'fs_subject_id']),
        name='inputnode')
    # outputnode
    outputnode = Node(util.IdentityInterface(fields=[
        'anat_head', 'anat_brain', 'anat_brain_mask', 'wmseg', 'wmedge'
    ]),
                      name='outputnode')
    # import files from freesurfer
    fs_import = Node(interface=nio.FreeSurferSource(), name='fs_import')
    # convert Freesurfer T1 file to nifti
    head_convert = Node(fs.MRIConvert(out_type='niigz', out_file='T1.nii.gz'),
                        name='head_convert')

    # create brainmask from aparc+aseg with single dilation
    def get_aparc_aseg(files):
        for name in files:
            if 'aparc+aseg' in name:
                return name

    # create brain by converting only freesurfer output
    brain_convert = Node(fs.MRIConvert(out_type='niigz',
                                       out_file='brain.nii.gz'),
                         name='brain_convert')
    brain_binarize = Node(fsl.ImageMaths(op_string='-bin -fillh',
                                         out_file='T1_brain_mask.nii.gz'),
                          name='brain_binarize')

    # cortical and cerebellar white matter volumes to construct wm edge
    # [lh cerebral wm, lh cerebellar wm, rh cerebral wm, rh cerebellar wm, brain stem]
    wmseg = Node(fs.Binarize(out_type='nii.gz',
                             match=[2, 7, 41, 46, 16],
                             binary_file='T1_brain_wmseg.nii.gz'),
                 name='wmseg')
    # make edge from wmseg to visualize coregistration quality
    edge = Node(fsl.ApplyMask(args='-edge -bin',
                              out_file='T1_brain_wmedge.nii.gz'),
                name='edge')
    # connections
    mgzconvert.connect([
        (inputnode, fs_import, [('fs_subjects_dir', 'subjects_dir'),
                                ('fs_subject_id', 'subject_id')]),
        (fs_import, head_convert, [('T1', 'in_file')]),
        (fs_import, wmseg, [(('aparc_aseg', get_aparc_aseg), 'in_file')]),
        (fs_import, brain_convert, [('brainmask', 'in_file')]),
        (wmseg, edge, [('binary_file', 'in_file'),
                       ('binary_file', 'mask_file')]),
        (head_convert, outputnode, [('out_file', 'anat_head')]),
        (brain_convert, outputnode, [('out_file', 'anat_brain')]),
        (brain_convert, brain_binarize, [('out_file', 'in_file')]),
        (brain_binarize, outputnode, [('out_file', 'anat_brain_mask')]),
        (wmseg, outputnode, [('binary_file', 'wmseg')]),
        (edge, outputnode, [('out_file', 'wmedge')])
    ])

    return mgzconvert
예제 #2
0
def get_regions(name='get_regions'):
    import nipype.pipeline.engine as pe
    import nipype.interfaces.utility as niu
    import nipype.interfaces.io as nio
    import nipype.interfaces.freesurfer as fs
    wf = pe.Workflow(name=name)
    inputspec = pe.Node(niu.IdentityInterface(
        fields=["surf_dir", "subject_id", "surface", "reg_file", "mean"]),
                        name='inputspec')
    l2v = pe.MapNode(fs.Label2Vol(),
                     name="label2vol",
                     iterfield=['hemi', 'annot_file'])
    l2v.inputs.hemi = ['lh', 'rh']
    wf.connect(inputspec, 'surf_dir', l2v, "subjects_dir")
    wf.connect(inputspec, 'subject_id', l2v, 'subject_id')
    wf.connect(inputspec, "reg_file", l2v, "reg_file")
    wf.connect(inputspec, "mean", l2v, "template_file")
    fssource = pe.MapNode(nio.FreeSurferSource(),
                          name='fssource',
                          iterfield=['hemi'])
    fssource.inputs.hemi = ['lh', 'rh']
    wf.connect(inputspec, 'surf_dir', fssource, "subjects_dir")
    wf.connect(inputspec, 'subject_id', fssource, 'subject_id')
    wf.connect(fssource, ('annot', pickfile), l2v, 'annot_file')
    bin = pe.MapNode(niu.Function(
        input_names=["in_file", "subject_id", "surf_dir", "hemi"],
        output_names=["out_files"],
        function=binarize_and_name),
                     name="binarize_and_name",
                     iterfield=['hemi', "in_file"])
    wf.connect(inputspec, "subject_id", bin, "subject_id")
    wf.connect(inputspec, "surf_dir", bin, "surf_dir")
    wf.connect(l2v, "vol_label_file", bin, "in_file")
    bin.inputs.hemi = ['lh', 'rh']
    outputspec = pe.Node(niu.IdentityInterface(fields=["ROIs"]),
                         name='outputspec')
    wf.connect(bin, ("out_files", merge), outputspec, "ROIs")

    return wf
예제 #3
0
def create_get_T1_brainmask(name='get_T1_brainmask'):

    get_T1_brainmask = Workflow(name='get_T1_brainmask')
    # Define nodes
    inputnode = Node(util.IdentityInterface(fields=[
        'fs_subjects_dir',
        'fs_subject_id',
    ]),
                     name='inputnode')

    outputnode = Node(
        interface=util.IdentityInterface(fields=['T1', 'brain_mask']),
        name='outputnode')

    # import files from freesurfer
    fs_import = Node(interface=nio.FreeSurferSource(), name='fs_import')

    #transform to nii
    convert_mask = Node(interface=fs.MRIConvert(), name="convert_mask")
    convert_mask.inputs.out_type = "niigz"
    convert_T1 = Node(interface=fs.MRIConvert(), name="convert_T1")
    convert_T1.inputs.out_type = "niigz"

    #binarize brain mask (like done in Lemon_Scripts_mod/struct_preproc/mgzconvert.py)
    brain_binarize = Node(fsl.ImageMaths(op_string='-bin',
                                         out_file='T1_brain_mask.nii.gz'),
                          name='brain_binarize')

    get_T1_brainmask.connect([
        (inputnode, fs_import, [('fs_subjects_dir', 'subjects_dir'),
                                ('fs_subject_id', 'subject_id')]),
        (fs_import, convert_mask, [('brainmask', 'in_file')]),
        (fs_import, convert_T1, [('T1', 'in_file')]),
        (convert_mask, brain_binarize, [('out_file', 'in_file')]),
        (brain_binarize, outputnode, [('out_file', 'brain_mask')]),
        (convert_T1, outputnode, [('out_file', 'T1')])
    ])

    return get_T1_brainmask
예제 #4
0
def create_custom_template(c):
    import nipype.pipeline.engine as pe
    #from nipype.interfaces.ants import BuildTemplate
    import nipype.interfaces.io as nio
    import nipype.interfaces.utility as niu
    import nipype.interfaces.freesurfer as fs

    wf = pe.Workflow(name='create_fs_masked_brains')
    #temp = pe.Node(BuildTemplate(parallelization=1), name='create_template')
    fssource = pe.Node(nio.FreeSurferSource(subjects_dir=c.surf_dir),
                       name='fssource')
    infosource = pe.Node(niu.IdentityInterface(fields=["subject_id"]),
                         name="subject_names")
    infosource.iterables = ("subject_id", c.subjects)
    wf.connect(infosource, "subject_id", fssource, "subject_id")
    sink = pe.Node(nio.DataSink(base_directory=c.sink_dir), name='sinker')
    applymask = pe.Node(fs.ApplyMask(mask_thresh=0.5), name='applymask')
    binarize = pe.Node(fs.Binarize(dilate=1, min=0.5, subjects_dir=c.surf_dir),
                       name='binarize')
    convert = pe.Node(fs.MRIConvert(out_type='niigz'), name='convert')
    wf.connect(fssource, 'orig', applymask, 'in_file')
    wf.connect(fssource, ('aparc_aseg', pickaparc), binarize, 'in_file')
    wf.connect(binarize, 'binary_file', applymask, 'mask_file')
    wf.connect(applymask, 'out_file', convert, 'in_file')
    wf.connect(convert, "out_file", sink, "masked_images")

    def getsubs(subject_id):
        subs = []
        subs.append(('_subject_id_%s/' % subject_id, '%s_' % subject_id))
        return subs

    wf.connect(infosource, ("subject_id", getsubs), sink, "substitutions")
    #wf.connect(convert,'out_file',temp,'in_files')
    #wf.connect(temp,'final_template_file',sink,'custom_template.final_template_file')
    #wf.connect(temp,'subject_outfiles',sink,'custom_template.subject_outfiles')
    #wf.connect(temp,'template_files',sink,'template_files')
    return wf
예제 #5
0
def init_gifti_surface_wf(name="gifti_surface_wf",
                          subjects_dir=getenv("SUBJECTS_DIR", None)):
    """
    Build a Nipype workflow to prepare GIFTI surfaces from FreeSurfer.

    This workflow prepares GIFTI surfaces from a FreeSurfer subjects directory
    If midthickness (or graymid) surfaces do not exist, they are generated and
    saved to the subject directory as ``lh/rh.midthickness``.
    These, along with the gray/white matter boundary (``lh/rh.smoothwm``), pial
    sufaces (``lh/rh.pial``) and inflated surfaces (``lh/rh.inflated``) are
    converted to GIFTI files.
    Additionally, the vertex coordinates are :py:class:`recentered
    <smriprep.interfaces.NormalizeSurf>` to align with native T1w space.

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from niworkflows.anat.freesurfer import init_gifti_surface_wf
            wf = init_gifti_surface_wf(subjects_dir="/tmp")

    Parameters
    ----------
    subjects_dir : str
        FreeSurfer's ``$SUBJECTS_DIR`` environment variable.
    name : str
        Name for the workflow hierarchy of Nipype

    Inputs
    ------
    in_t1w : str
        original (pre-``recon-all``), reference T1w image.
    subject_id : str
        FreeSurfer subject ID

    Outputs
    -------
    surfaces : list
        GIFTI surfaces for gray/white matter boundary, pial surface,
        midthickness (or graymid) surface, and inflated surfaces.
    surf_norm : list
        Normalized (re-centered) GIFTI surfaces aligned in native T1w
        space, corresponding to the ``surfaces`` output.
    fsnative_to_t1w_xfm : str
        LTA formatted affine transform file.

    """
    if subjects_dir is None:
        raise RuntimeError("``$SUBJECTS_DIR`` must be set")

    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(["in_t1w", "subject_id"]),
                        name="inputnode")
    outputnode = pe.Node(
        niu.IdentityInterface(["surfaces", "surf_norm",
                               "fsnative_to_t1w_xfm"]),
        name="outputnode",
    )

    fssource = pe.Node(
        nio.FreeSurferSource(subjects_dir=subjects_dir),
        name="fssource",
        run_without_submitting=True,
    )

    fsnative_2_t1_xfm = pe.Node(RobustRegister(auto_sens=True,
                                               est_int_scale=True),
                                name="fsnative_2_t1_xfm")

    midthickness = pe.MapNode(
        MakeMidthickness(thickness=True, distance=0.5,
                         out_name="midthickness"),
        iterfield="in_file",
        name="midthickness",
    )

    save_midthickness = pe.Node(
        nio.DataSink(parameterization=False, base_directory=subjects_dir),
        name="save_midthickness",
        run_without_submitting=True,
    )

    surface_list = pe.Node(
        niu.Merge(4, ravel_inputs=True),
        name="surface_list",
        run_without_submitting=True,
    )
    fs_2_gii = pe.MapNode(fs.MRIsConvert(out_datatype="gii"),
                          iterfield="in_file",
                          name="fs_2_gii")
    fix_surfs = pe.MapNode(NormalizeSurf(),
                           iterfield="in_file",
                           name="fix_surfs")

    # fmt: off
    workflow.connect([
        (inputnode, fssource, [("subject_id", "subject_id")]),
        (inputnode, save_midthickness, [("subject_id", "container")]),
        # Generate fsnative-to-T1w transform
        (inputnode, fsnative_2_t1_xfm, [("in_t1w", "target_file")]),
        (fssource, fsnative_2_t1_xfm, [("orig", "source_file")]),
        # Generate midthickness surfaces and save to FreeSurfer derivatives
        (fssource, midthickness, [("smoothwm", "in_file"),
                                  ("graymid", "graymid")]),
        (midthickness, save_midthickness, [("out_file", "surf.@graymid")]),
        # Produce valid GIFTI surface files (dense mesh)
        (fssource, surface_list, [
            ("smoothwm", "in1"),
            ("pial", "in2"),
            ("inflated", "in3"),
        ]),
        (save_midthickness, surface_list, [("out_file", "in4")]),
        (surface_list, fs_2_gii, [("out", "in_file")]),
        (fs_2_gii, fix_surfs, [("converted", "in_file")]),
        (fsnative_2_t1_xfm, fix_surfs, [("out_reg_file", "transform_file")]),
        (fsnative_2_t1_xfm, outputnode, [("out_reg_file",
                                          "fsnative_to_t1w_xfm")]),
        (fix_surfs, outputnode, [("out_file", "surf_norm")]),
        (fs_2_gii, outputnode, [("converted", "surfaces")]),
    ])
    # fmt: on

    return workflow
예제 #6
0
def create_precoth_pipeline(name="precoth", tractography_type='probabilistic', reg_pet_T1=True):
    inputnode = pe.Node(
        interface=util.IdentityInterface(fields=["subjects_dir",
                                                 "subject_id",
                                                 "dwi",
                                                 "bvecs",
                                                 "bvals",
                                                 "fdgpet",
                                                 "dose",
                                                 "weight",
                                                 "delay",
                                                 "glycemie",
                                                 "scan_time"]),
        name="inputnode")

    nonlinfit_interface = util.Function(input_names=["dwi", "bvecs", "bvals", "base_name"],
    output_names=["tensor", "FA", "MD", "evecs", "evals", "rgb_fa", "norm", "mode", "binary_mask", "b0_masked"], function=nonlinfit_fn)

    nonlinfit_node = pe.Node(interface=nonlinfit_interface, name="nonlinfit_node")

    coregister = pe.Node(interface=fsl.FLIRT(dof=12), name = 'coregister')
    coregister.inputs.cost = ('normmi')

    invertxfm = pe.Node(interface=fsl.ConvertXFM(), name = 'invertxfm')
    invertxfm.inputs.invert_xfm = True

    WM_to_FA = pe.Node(interface=fsl.ApplyXfm(), name = 'WM_to_FA')
    WM_to_FA.inputs.interp = 'nearestneighbour'
    TermMask_to_FA = WM_to_FA.clone("TermMask_to_FA")

    mni_for_reg = op.join(os.environ["FSL_DIR"],"data","standard","MNI152_T1_1mm.nii.gz")
    reorientBrain = pe.Node(interface=fsl.FLIRT(dof=6), name = 'reorientBrain')
    reorientBrain.inputs.reference = mni_for_reg
    reorientROIs = pe.Node(interface=fsl.ApplyXfm(), name = 'reorientROIs')
    reorientROIs.inputs.interp = "nearestneighbour"
    reorientROIs.inputs.reference = mni_for_reg
    reorientRibbon = reorientROIs.clone("reorientRibbon")
    reorientRibbon.inputs.interp = "nearestneighbour"
    reorientT1 = reorientROIs.clone("reorientT1")
    reorientT1.inputs.interp = "trilinear"

    fsl2mrtrix = pe.Node(interface=mrtrix.FSL2MRTrix(), name='fsl2mrtrix')
    fsl2mrtrix.inputs.invert_y = True

    erode_mask_firstpass = pe.Node(interface=mrtrix.Erode(),
                                   name='erode_mask_firstpass')
    erode_mask_firstpass.inputs.out_filename = "b0_mask_median3D_erode.nii.gz"
    erode_mask_secondpass = pe.Node(interface=mrtrix.Erode(),
                                    name='erode_mask_secondpass')
    erode_mask_secondpass.inputs.out_filename = "b0_mask_median3D_erode_secondpass.nii.gz"
 
    threshold_FA = pe.Node(interface=fsl.ImageMaths(), name='threshold_FA')
    threshold_FA.inputs.op_string = "-thr 0.8 -uthr 0.99"
    threshold_mode = pe.Node(interface=fsl.ImageMaths(), name='threshold_mode')
    threshold_mode.inputs.op_string = "-thr 0.1 -uthr 0.99"    

    make_termination_mask = pe.Node(interface=fsl.ImageMaths(), name='make_termination_mask')
    make_termination_mask.inputs.op_string = "-bin"

    get_wm_mask = pe.Node(interface=fsl.ImageMaths(), name='get_wm_mask')
    get_wm_mask.inputs.op_string = "-thr 0.1"

    MRmultiply = pe.Node(interface=mrtrix.MRMultiply(), name='MRmultiply')
    MRmultiply.inputs.out_filename = "Eroded_FA.nii.gz"
    MRmult_merge = pe.Node(interface=util.Merge(2), name='MRmultiply_merge')

    median3d = pe.Node(interface=mrtrix.MedianFilter3D(), name='median3D')

    fdgpet_regions = pe.Node(interface=RegionalValues(), name='fdgpet_regions')

    compute_cmr_glc_interface = util.Function(input_names=["in_file", "dose", "weight", "delay",
        "glycemie", "scan_time"], output_names=["out_file"], function=CMR_glucose)
    compute_cmr_glc = pe.Node(interface=compute_cmr_glc_interface, name='compute_cmr_glc')

    csdeconv = pe.Node(interface=mrtrix.ConstrainedSphericalDeconvolution(),
                       name='csdeconv')

    estimateresponse = pe.Node(interface=mrtrix.EstimateResponseForSH(),
                               name='estimateresponse')

    if tractography_type == 'probabilistic':
        CSDstreamtrack = pe.Node(
            interface=mrtrix.ProbabilisticSphericallyDeconvolutedStreamlineTrack(
            ),
            name='CSDstreamtrack')
    else:
        CSDstreamtrack = pe.Node(
            interface=mrtrix.SphericallyDeconvolutedStreamlineTrack(),
            name='CSDstreamtrack')

    #CSDstreamtrack.inputs.desired_number_of_tracks = 10000
    CSDstreamtrack.inputs.minimum_tract_length = 50

    tck2trk = pe.Node(interface=mrtrix.MRTrix2TrackVis(), name='tck2trk')

    extract_PreCoTh_interface = util.Function(input_names=["in_file", "out_filename"],
                                         output_names=["out_file"],
                                         function=extract_PreCoTh)
    thalamus2precuneus2cortex_ROIs = pe.Node(
        interface=extract_PreCoTh_interface, name='thalamus2precuneus2cortex_ROIs')


    wm_mask_interface = util.Function(input_names=["in_file", "out_filename"],
                                         output_names=["out_file"],
                                         function=wm_labels_only)
    make_wm_mask = pe.Node(
        interface=wm_mask_interface, name='make_wm_mask')

    write_precoth_data_interface = util.Function(input_names=["dwi_network_file", "fdg_stats_file", "subject_id"],
                                         output_names=["out_file"],
                                         function=summarize_precoth)
    write_csv_data = pe.Node(
        interface=write_precoth_data_interface, name='write_csv_data')

    thalamus2precuneus2cortex = pe.Node(
        interface=cmtk.CreateMatrix(), name="thalamus2precuneus2cortex")
    thalamus2precuneus2cortex.inputs.count_region_intersections = True

    FreeSurferSource = pe.Node(
        interface=nio.FreeSurferSource(), name='fssource')
    mri_convert_Brain = pe.Node(
        interface=fs.MRIConvert(), name='mri_convert_Brain')
    mri_convert_Brain.inputs.out_type = 'niigz'
    mri_convert_Brain.inputs.no_change = True

    if reg_pet_T1:
        reg_pet_T1 = pe.Node(interface=fsl.FLIRT(dof=6), name = 'reg_pet_T1')
        reg_pet_T1.inputs.cost = ('corratio')
    
    reslice_fdgpet = mri_convert_Brain.clone("reslice_fdgpet")
    reslice_fdgpet.inputs.no_change = True

    mri_convert_Ribbon = mri_convert_Brain.clone("mri_convert_Ribbon")
    mri_convert_ROIs = mri_convert_Brain.clone("mri_convert_ROIs")
    mri_convert_T1 = mri_convert_Brain.clone("mri_convert_T1")

    workflow = pe.Workflow(name=name)
    workflow.base_output_dir = name

    workflow.connect(
        [(inputnode, FreeSurferSource, [("subjects_dir", "subjects_dir")])])
    workflow.connect(
        [(inputnode, FreeSurferSource, [("subject_id", "subject_id")])])

    workflow.connect(
        [(FreeSurferSource, mri_convert_T1, [('T1', 'in_file')])])
    workflow.connect(
        [(mri_convert_T1, reorientT1, [('out_file', 'in_file')])])

    workflow.connect(
        [(FreeSurferSource, mri_convert_Brain, [('brain', 'in_file')])])
    workflow.connect(
        [(mri_convert_Brain, reorientBrain, [('out_file', 'in_file')])])
    workflow.connect(
        [(reorientBrain, reorientROIs, [('out_matrix_file', 'in_matrix_file')])])
    workflow.connect(
        [(reorientBrain, reorientRibbon, [('out_matrix_file', 'in_matrix_file')])])
    workflow.connect(
        [(reorientBrain, reorientT1, [('out_matrix_file', 'in_matrix_file')])])

    workflow.connect(
        [(FreeSurferSource, mri_convert_ROIs, [(('aparc_aseg', select_aparc), 'in_file')])])
    workflow.connect(
        [(mri_convert_ROIs, reorientROIs, [('out_file', 'in_file')])])
    workflow.connect(
        [(reorientROIs, make_wm_mask, [('out_file', 'in_file')])])

    workflow.connect(
        [(FreeSurferSource, mri_convert_Ribbon, [(('ribbon', select_ribbon), 'in_file')])])
    workflow.connect(
        [(mri_convert_Ribbon, reorientRibbon, [('out_file', 'in_file')])])
    workflow.connect(
        [(reorientRibbon, make_termination_mask, [('out_file', 'in_file')])])

    workflow.connect([(inputnode, fsl2mrtrix, [("bvecs", "bvec_file"),
                                               ("bvals", "bval_file")])])

    workflow.connect(inputnode, 'dwi', nonlinfit_node, 'dwi')
    workflow.connect(inputnode, 'subject_id', nonlinfit_node, 'base_name')
    workflow.connect(inputnode, 'bvecs', nonlinfit_node, 'bvecs')
    workflow.connect(inputnode, 'bvals', nonlinfit_node, 'bvals')

    workflow.connect([(inputnode, compute_cmr_glc, [("dose", "dose")])])
    workflow.connect([(inputnode, compute_cmr_glc, [("weight", "weight")])])
    workflow.connect([(inputnode, compute_cmr_glc, [("delay", "delay")])])
    workflow.connect([(inputnode, compute_cmr_glc, [("glycemie", "glycemie")])])
    workflow.connect([(inputnode, compute_cmr_glc, [("scan_time", "scan_time")])])

    if reg_pet_T1:
        workflow.connect([(inputnode, reg_pet_T1, [("fdgpet", "in_file")])])
        workflow.connect(
            [(reorientBrain, reg_pet_T1, [("out_file", "reference")])])
        workflow.connect(
            [(reg_pet_T1, reslice_fdgpet, [("out_file", "in_file")])])
        workflow.connect(
            [(reorientROIs, reslice_fdgpet, [("out_file", "reslice_like")])])
        workflow.connect(
            [(reslice_fdgpet, compute_cmr_glc, [("out_file", "in_file")])])
    else:
        workflow.connect([(inputnode, reslice_fdgpet, [("fdgpet", "in_file")])])
        workflow.connect(
            [(reorientROIs, reslice_fdgpet, [("out_file", "reslice_like")])])
        workflow.connect(
            [(reslice_fdgpet, compute_cmr_glc, [("out_file", "in_file")])])
    workflow.connect(
        [(compute_cmr_glc, fdgpet_regions, [("out_file", "in_files")])])
    workflow.connect(
        [(thalamus2precuneus2cortex_ROIs, fdgpet_regions, [("out_file", "segmentation_file")])])

    workflow.connect([(nonlinfit_node, coregister,[("FA","in_file")])])
    workflow.connect([(make_wm_mask, coregister,[('out_file','reference')])])
    workflow.connect([(nonlinfit_node, tck2trk,[("FA","image_file")])])
    workflow.connect([(reorientBrain, tck2trk,[("out_file","registration_image_file")])])
    workflow.connect([(coregister, tck2trk,[("out_matrix_file","matrix_file")])])

    workflow.connect([(coregister, invertxfm,[("out_matrix_file","in_file")])])
    workflow.connect([(invertxfm, WM_to_FA,[("out_file","in_matrix_file")])])
    workflow.connect([(make_wm_mask, WM_to_FA,[("out_file","in_file")])])
    workflow.connect([(nonlinfit_node, WM_to_FA,[("FA","reference")])])
    
    workflow.connect([(invertxfm, TermMask_to_FA,[("out_file","in_matrix_file")])])
    workflow.connect([(make_termination_mask, TermMask_to_FA,[("out_file","in_file")])])
    workflow.connect([(nonlinfit_node, TermMask_to_FA,[("FA","reference")])])

    workflow.connect([(nonlinfit_node, median3d, [("binary_mask", "in_file")])])
    workflow.connect(
        [(median3d, erode_mask_firstpass, [("out_file", "in_file")])])
    workflow.connect(
        [(erode_mask_firstpass, erode_mask_secondpass, [("out_file", "in_file")])])

    workflow.connect([(nonlinfit_node, MRmult_merge, [("FA", "in1")])])
    workflow.connect(
        [(erode_mask_secondpass, MRmult_merge, [("out_file", "in2")])])
    workflow.connect([(MRmult_merge, MRmultiply, [("out", "in_files")])])
    workflow.connect([(MRmultiply, threshold_FA, [("out_file", "in_file")])])
    workflow.connect(
        [(threshold_FA, estimateresponse, [("out_file", "mask_image")])])

    workflow.connect([(inputnode, estimateresponse, [("dwi", "in_file")])])
    workflow.connect(
        [(fsl2mrtrix, estimateresponse, [("encoding_file", "encoding_file")])])

    workflow.connect([(inputnode, csdeconv, [("dwi", "in_file")])])
    #workflow.connect(
    #    [(TermMask_to_FA, csdeconv, [("out_file", "mask_image")])])
    workflow.connect(
        [(estimateresponse, csdeconv, [("response", "response_file")])])
    workflow.connect(
        [(fsl2mrtrix, csdeconv, [("encoding_file", "encoding_file")])])
    workflow.connect(
        [(WM_to_FA, CSDstreamtrack, [("out_file", "seed_file")])])
    workflow.connect(
        [(TermMask_to_FA, CSDstreamtrack, [("out_file", "mask_file")])])
    workflow.connect(
        [(csdeconv, CSDstreamtrack, [("spherical_harmonics_image", "in_file")])])
    
    workflow.connect([(CSDstreamtrack, tck2trk, [("tracked", "in_file")])])

    workflow.connect(
        [(tck2trk, thalamus2precuneus2cortex, [("out_file", "tract_file")])])
    workflow.connect(
        [(inputnode, thalamus2precuneus2cortex, [("subject_id", "out_matrix_file")])])
    workflow.connect(
        [(inputnode, thalamus2precuneus2cortex, [("subject_id", "out_matrix_mat_file")])])

    workflow.connect(
        [(reorientROIs, thalamus2precuneus2cortex_ROIs, [("out_file", "in_file")])])
    workflow.connect(
        [(thalamus2precuneus2cortex_ROIs, thalamus2precuneus2cortex, [("out_file", "roi_file")])])
    workflow.connect(
        [(thalamus2precuneus2cortex, fdgpet_regions, [("matrix_file", "resolution_network_file")])])

    workflow.connect(
        [(inputnode, write_csv_data, [("subject_id", "subject_id")])])
    workflow.connect(
        [(fdgpet_regions, write_csv_data, [("stats_file", "fdg_stats_file")])])
    workflow.connect(
        [(thalamus2precuneus2cortex, write_csv_data, [("intersection_matrix_file", "dwi_network_file")])])

    output_fields = ["fa", "rgb_fa", "md", "csdeconv", "tracts_tck", "rois", "t1",
        "t1_brain", "wmmask_dtispace", "fa_t1space", "summary", "filtered_tractographies",
        "matrix_file", "connectome", "CMR_nodes", "fiber_labels_noorphans", "fiber_length_file",
        "fiber_label_file", "intersection_matrix_mat_file"]

    outputnode = pe.Node(
        interface=util.IdentityInterface(fields=output_fields),
        name="outputnode")

    workflow.connect(
        [(CSDstreamtrack, outputnode, [("tracked", "tracts_tck")]),
         (csdeconv, outputnode,
          [("spherical_harmonics_image", "csdeconv")]),
         (nonlinfit_node, outputnode, [("FA", "fa")]),
         (coregister, outputnode, [("out_file", "fa_t1space")]),
         (reorientBrain, outputnode, [("out_file", "t1_brain")]),
         (reorientT1, outputnode, [("out_file", "t1")]),
         (thalamus2precuneus2cortex_ROIs, outputnode, [("out_file", "rois")]),
         (thalamus2precuneus2cortex, outputnode, [("filtered_tractographies", "filtered_tractographies")]),
         (thalamus2precuneus2cortex, outputnode, [("matrix_file", "connectome")]),
         (thalamus2precuneus2cortex, outputnode, [("fiber_labels_noorphans", "fiber_labels_noorphans")]),
         (thalamus2precuneus2cortex, outputnode, [("fiber_length_file", "fiber_length_file")]),
         (thalamus2precuneus2cortex, outputnode, [("fiber_label_file", "fiber_label_file")]),
         (thalamus2precuneus2cortex, outputnode, [("intersection_matrix_mat_file", "intersection_matrix_mat_file")]),
         (fdgpet_regions, outputnode, [("networks", "CMR_nodes")]),
         (nonlinfit_node, outputnode, [("rgb_fa", "rgb_fa")]),
         (nonlinfit_node, outputnode, [("MD", "md")]),
         (write_csv_data, outputnode, [("out_file", "summary")]),
         ])

    return workflow
예제 #7
0
def create_struct_preproc_pipeline(working_dir,
                                   freesurfer_dir,
                                   ds_dir,
                                   use_fs_brainmask,
                                   name='struct_preproc'):
    """

    """

    # initiate workflow
    struct_preproc_wf = Workflow(name=name)
    struct_preproc_wf.base_dir = os.path.join(working_dir, 'LeiCA_resting',
                                              'rsfMRI_preprocessing')
    # set fsl output
    fsl.FSLCommand.set_default_output_type('NIFTI_GZ')

    # inputnode
    inputnode = Node(util.IdentityInterface(fields=['t1w', 'subject_id']),
                     name='inputnode')

    # outputnode
    outputnode = Node(util.IdentityInterface(fields=[
        't1w_brain', 'struct_brain_mask', 'fast_partial_volume_files',
        'wm_mask', 'csf_mask', 'wm_mask_4_bbr', 'gm_mask'
    ]),
                      name='outputnode')

    ds = Node(nio.DataSink(base_directory=ds_dir), name='ds')
    ds.inputs.substitutions = [('_TR_id_', 'TR_')]

    # CREATE BRAIN MASK
    if use_fs_brainmask:
        # brainmask with fs
        fs_source = Node(interface=nio.FreeSurferSource(), name='fs_source')
        fs_source.inputs.subjects_dir = freesurfer_dir
        struct_preproc_wf.connect(inputnode, 'subject_id', fs_source,
                                  'subject_id')

        # get aparc+aseg from list
        def get_aparc_aseg(files):
            for name in files:
                if 'aparc+aseg' in name:
                    return name

        aseg = Node(fs.MRIConvert(out_type='niigz', out_file='aseg.nii.gz'),
                    name='aseg')
        struct_preproc_wf.connect(fs_source, ('aparc_aseg', get_aparc_aseg),
                                  aseg, 'in_file')

        fs_brainmask = Node(
            fs.Binarize(
                min=0.5,  #dilate=1,
                out_type='nii.gz'),
            name='fs_brainmask')
        struct_preproc_wf.connect(aseg, 'out_file', fs_brainmask, 'in_file')

        # fill holes in mask, smooth, rebinarize
        fillholes = Node(fsl.maths.MathsCommand(
            args='-fillh -s 3 -thr 0.1 -bin', out_file='T1_brain_mask.nii.gz'),
                         name='fillholes')

        struct_preproc_wf.connect(fs_brainmask, 'binary_file', fillholes,
                                  'in_file')

        fs_2_struct_mat = Node(util.Function(
            input_names=['moving_image', 'target_image'],
            output_names=['fsl_file'],
            function=tkregister2_fct),
                               name='fs_2_struct_mat')

        struct_preproc_wf.connect([(fs_source, fs_2_struct_mat,
                                    [('T1', 'moving_image'),
                                     ('rawavg', 'target_image')])])

        struct_brain_mask = Node(fsl.ApplyXfm(interp='nearestneighbour'),
                                 name='struct_brain_mask_fs')
        struct_preproc_wf.connect(fillholes, 'out_file', struct_brain_mask,
                                  'in_file')
        struct_preproc_wf.connect(inputnode, 't1w', struct_brain_mask,
                                  'reference')
        struct_preproc_wf.connect(fs_2_struct_mat, 'fsl_file',
                                  struct_brain_mask, 'in_matrix_file')
        struct_preproc_wf.connect(struct_brain_mask, 'out_file', outputnode,
                                  'struct_brain_mask')
        struct_preproc_wf.connect(struct_brain_mask, 'out_file', ds,
                                  'struct_prep.struct_brain_mask')

        # multiply t1w with fs brain mask
        t1w_brain = Node(fsl.maths.BinaryMaths(operation='mul'),
                         name='t1w_brain')
        struct_preproc_wf.connect(inputnode, 't1w', t1w_brain, 'in_file')
        struct_preproc_wf.connect(struct_brain_mask, 'out_file', t1w_brain,
                                  'operand_file')
        struct_preproc_wf.connect(t1w_brain, 'out_file', outputnode,
                                  't1w_brain')
        struct_preproc_wf.connect(t1w_brain, 'out_file', ds,
                                  'struct_prep.t1w_brain')

    else:  # use bet
        t1w_brain = Node(fsl.BET(mask=True, outline=True, surfaces=True),
                         name='t1w_brain')
        struct_preproc_wf.connect(inputnode, 't1w', t1w_brain, 'in_file')
        struct_preproc_wf.connect(t1w_brain, 'out_file', outputnode,
                                  't1w_brain')

        def struct_brain_mask_bet_fct(in_file):
            return in_file

        struct_brain_mask = Node(util.Function(
            input_names=['in_file'],
            output_names=['out_file'],
            function=struct_brain_mask_bet_fct),
                                 name='struct_brain_mask')
        struct_preproc_wf.connect(t1w_brain, 'mask_file', struct_brain_mask,
                                  'in_file')
        struct_preproc_wf.connect(struct_brain_mask, 'out_file', outputnode,
                                  'struct_brain_mask')
        struct_preproc_wf.connect(struct_brain_mask, 'out_file', ds,
                                  'struct_prep.struct_brain_mask')

    # SEGMENTATION WITH FAST
    fast = Node(fsl.FAST(), name='fast')
    struct_preproc_wf.connect(t1w_brain, 'out_file', fast, 'in_files')
    struct_preproc_wf.connect(fast, 'partial_volume_files', outputnode,
                              'fast_partial_volume_files')
    struct_preproc_wf.connect(fast, 'partial_volume_files', ds,
                              'struct_prep.fast')

    # functions to select tissue classes
    def selectindex(files, idx):
        import numpy as np
        from nipype.utils.filemanip import filename_to_list, list_to_filename
        return list_to_filename(
            np.array(filename_to_list(files))[idx].tolist())

    def selectsingle(files, idx):
        return files[idx]

    # pve0: CSF
    # pve1: GM
    # pve2: WM
    # binarize tissue classes
    binarize_tissue = MapNode(
        fsl.ImageMaths(op_string='-nan -thr 0.99 -ero -bin'),
        iterfield=['in_file'],
        name='binarize_tissue')

    struct_preproc_wf.connect(fast,
                              ('partial_volume_files', selectindex, [0, 2]),
                              binarize_tissue, 'in_file')

    # OUTPUT  WM AND CSF MASKS FOR CPAC DENOISING
    struct_preproc_wf.connect([(binarize_tissue, outputnode,
                                [(('out_file', selectsingle, 0), 'csf_mask'),
                                 (('out_file', selectsingle, 1), 'wm_mask')])])

    # WRITE WM MASK WITH P > .5 FOR FSL BBR
    # use threshold of .5 like FSL's epi_reg script
    wm_mask_4_bbr = Node(fsl.ImageMaths(op_string='-thr 0.5 -bin'),
                         name='wm_mask_4_bbr')
    struct_preproc_wf.connect(fast, ('partial_volume_files', selectindex, [2]),
                              wm_mask_4_bbr, 'in_file')
    struct_preproc_wf.connect(wm_mask_4_bbr, 'out_file', outputnode,
                              'wm_mask_4_bbr')

    struct_preproc_wf.write_graph(dotfilename=struct_preproc_wf.name,
                                  graph2use='flat',
                                  format='pdf')

    return struct_preproc_wf
예제 #8
0
파일: surfaces.py 프로젝트: jerdra/smriprep
def init_gifti_surface_wf(name='gifti_surface_wf'):
    r"""
    Prepare GIFTI surfaces from a FreeSurfer subjects directory.

    If midthickness (or graymid) surfaces do not exist, they are generated and
    saved to the subject directory as ``lh/rh.midthickness``.
    These, along with the gray/white matter boundary (``lh/rh.smoothwm``), pial
    sufaces (``lh/rh.pial``) and inflated surfaces (``lh/rh.inflated``) are
    converted to GIFTI files.
    Additionally, the vertex coordinates are :py:class:`recentered
    <smriprep.interfaces.NormalizeSurf>` to align with native T1w space.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from smriprep.workflows.surfaces import init_gifti_surface_wf
        wf = init_gifti_surface_wf()

    **Inputs**

        subjects_dir
            FreeSurfer SUBJECTS_DIR
        subject_id
            FreeSurfer subject ID
        fsnative2t1w_xfm
            LTA formatted affine transform file (inverse)

    **Outputs**

        surfaces
            GIFTI surfaces for gray/white matter boundary, pial surface,
            midthickness (or graymid) surface, and inflated surfaces

    """
    workflow = Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(
        ['subjects_dir', 'subject_id', 'fsnative2t1w_xfm']),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(['surfaces']),
                         name='outputnode')

    get_surfaces = pe.Node(nio.FreeSurferSource(), name='get_surfaces')

    midthickness = pe.MapNode(MakeMidthickness(thickness=True,
                                               distance=0.5,
                                               out_name='midthickness'),
                              iterfield='in_file',
                              name='midthickness')

    save_midthickness = pe.Node(nio.DataSink(parameterization=False),
                                name='save_midthickness')

    surface_list = pe.Node(niu.Merge(4, ravel_inputs=True),
                           name='surface_list',
                           run_without_submitting=True)
    fs2gii = pe.MapNode(fs.MRIsConvert(out_datatype='gii'),
                        iterfield='in_file',
                        name='fs2gii')
    fix_surfs = pe.MapNode(NormalizeSurf(),
                           iterfield='in_file',
                           name='fix_surfs')

    workflow.connect([
        (inputnode, get_surfaces, [('subjects_dir', 'subjects_dir'),
                                   ('subject_id', 'subject_id')]),
        (inputnode, save_midthickness, [('subjects_dir', 'base_directory'),
                                        ('subject_id', 'container')]),
        # Generate midthickness surfaces and save to FreeSurfer derivatives
        (get_surfaces, midthickness, [('smoothwm', 'in_file'),
                                      ('graymid', 'graymid')]),
        (midthickness, save_midthickness, [('out_file', 'surf.@graymid')]),
        # Produce valid GIFTI surface files (dense mesh)
        (get_surfaces, surface_list, [('smoothwm', 'in1'), ('pial', 'in2'),
                                      ('inflated', 'in3')]),
        (save_midthickness, surface_list, [('out_file', 'in4')]),
        (surface_list, fs2gii, [('out', 'in_file')]),
        (fs2gii, fix_surfs, [('converted', 'in_file')]),
        (inputnode, fix_surfs, [('fsnative2t1w_xfm', 'transform_file')]),
        (fix_surfs, outputnode, [('out_file', 'surfaces')]),
    ])
    return workflow
예제 #9
0
def init_gifti_surface_wf(name='gifti_surface_wf',
                          subjects_dir=getenv('SUBJECTS_DIR', None)):
    """
    This workflow prepares GIFTI surfaces from a FreeSurfer subjects directory
    If midthickness (or graymid) surfaces do not exist, they are generated and
    saved to the subject directory as ``lh/rh.midthickness``.
    These, along with the gray/white matter boundary (``lh/rh.smoothwm``), pial
    sufaces (``lh/rh.pial``) and inflated surfaces (``lh/rh.inflated``) are
    converted to GIFTI files.
    Additionally, the vertex coordinates are :py:class:`recentered
    <smriprep.interfaces.NormalizeSurf>` to align with native T1w space.

    .. workflow::
        :graph2use: orig
        :simple_form: yes
        from fmriprep.workflows.anatomical import init_gifti_surface_wf
        wf = init_gifti_surface_wf()

    **Parameters**

        subjects_dir
            FreeSurfer SUBJECTS_DIR
        name
            Name for the workflow hierarchy of Nipype

    **Inputs**

        in_t1w
            original (pre-``recon-all``), reference T1w image.
        subject_id
            FreeSurfer subject ID

    **Outputs**

        surfaces
            GIFTI surfaces for gray/white matter boundary, pial surface,
            midthickness (or graymid) surface, and inflated surfaces.
        surf_norm
            Normalized (re-centered) GIFTI surfaces aligned in native T1w
            space, corresponding to the ``surfaces`` output.
        fsnative_to_t1w_xfm
            LTA formatted affine transform file.

    """
    if subjects_dir is None:
        raise RuntimeError('``$SUBJECTS_DIR`` must be set')

    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(
        ['in_t1w', 'subject_id']), name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(
        ['surfaces', 'surf_norm', 'fsnative_to_t1w_xfm']), name='outputnode')

    fssource = pe.Node(nio.FreeSurferSource(subjects_dir=subjects_dir),
                       name='fssource', run_without_submitting=True)

    fsnative_2_t1_xfm = pe.Node(RobustRegister(auto_sens=True, est_int_scale=True),
                                name='fsnative_2_t1_xfm')

    midthickness = pe.MapNode(
        MakeMidthickness(thickness=True, distance=0.5, out_name='midthickness'),
        iterfield='in_file',
        name='midthickness')

    save_midthickness = pe.Node(nio.DataSink(
        parameterization=False, base_directory=subjects_dir),
        name='save_midthickness', run_without_submitting=True)

    surface_list = pe.Node(niu.Merge(4, ravel_inputs=True),
                           name='surface_list', run_without_submitting=True)
    fs_2_gii = pe.MapNode(fs.MRIsConvert(out_datatype='gii'),
                          iterfield='in_file', name='fs_2_gii')
    fix_surfs = pe.MapNode(NormalizeSurf(), iterfield='in_file', name='fix_surfs')

    workflow.connect([
        (inputnode, fssource, [('subject_id', 'subject_id')]),
        (inputnode, save_midthickness, [('subject_id', 'container')]),
        # Generate fsnative-to-T1w transform
        (inputnode, fsnative_2_t1_xfm, [('in_t1w', 'target_file')]),
        (fssource, fsnative_2_t1_xfm, [('orig', 'source_file')]),
        # Generate midthickness surfaces and save to FreeSurfer derivatives
        (fssource, midthickness, [('smoothwm', 'in_file'),
                                  ('graymid', 'graymid')]),
        (midthickness, save_midthickness, [('out_file', 'surf.@graymid')]),
        # Produce valid GIFTI surface files (dense mesh)
        (fssource, surface_list, [('smoothwm', 'in1'),
                                  ('pial', 'in2'),
                                  ('inflated', 'in3')]),
        (save_midthickness, surface_list, [('out_file', 'in4')]),
        (surface_list, fs_2_gii, [('out', 'in_file')]),
        (fs_2_gii, fix_surfs, [('converted', 'in_file')]),
        (fsnative_2_t1_xfm, fix_surfs, [('out_reg_file', 'transform_file')]),
        (fsnative_2_t1_xfm, outputnode, [('out_reg_file', 'fsnative_to_t1w_xfm')]),
        (fix_surfs, outputnode, [('out_file', 'surf_norm')]),
        (fs_2_gii, outputnode, [('converted', 'surfaces')]),
    ])

    return workflow
예제 #10
0
def test_freesurfersource():
    fss = nio.FreeSurferSource()
    assert fss.inputs.hemi == 'both'
    assert fss.inputs.subject_id == Undefined
    assert fss.inputs.subjects_dir == Undefined
예제 #11
0
psb6351_wf.connect(tshifter, 'out_file', Blur, 'in_file')

# Added a mapnode to do temporal smoothing
# Saving the outputs to the datasink
temp_smooth = pe.MapNode(afni.TSmooth(),
                         iterfield=['in_file'],
                         name='temp_smooth')
temp_smooth.inputs.adaptive = 5
temp_smooth.inputs.lin = True
temp_smooth.inputs.med = True
temp_smooth.inputs.outputtype = 'NIFTI_GZ'
psb6351_wf.connect(Blur, 'out_file', temp_smooth, 'in_file')

# Register a source file to fs space and create a brain mask in source space
# The node below creates the Freesurfer source
fssource = pe.Node(nio.FreeSurferSource(), name='fssource')
fssource.inputs.subject_id = f'sub-{sids[0]}'
fssource.inputs.subjects_dir = fs_dir

# Extract aparc+aseg brain mask, binarize, and dilate by 1 voxel
fs_threshold = pe.Node(fs.Binarize(min=0.5, out_type='nii'),
                       name='fs_threshold')
fs_threshold.inputs.dilate = 1
psb6351_wf.connect(fssource, ('aparc_aseg', get_aparc_aseg), fs_threshold,
                   'in_file')

# Transform the binarized aparc+aseg file to the EPI space
# use a nearest neighbor interpolation
fs_voltransform = pe.Node(fs.ApplyVolTransform(inverse=True),
                          name='fs_transform')
fs_voltransform.inputs.subjects_dir = fs_dir
예제 #12
0
def create_connectivity_pipeline(name="connectivity"):
    """Creates a pipeline that does the same connectivity processing as in the
    :ref:`example_dmri_connectivity` example script. Given a subject id (and completed Freesurfer reconstruction)
    diffusion-weighted image, b-values, and b-vectors, the workflow will return the subject's connectome
    as a Connectome File Format (CFF) file for use in Connectome Viewer (http://www.cmtk.org).

    Example
    -------

    >>> from nipype.workflows.dmri.camino.connectivity_mapping import create_connectivity_pipeline
    >>> conmapper = create_connectivity_pipeline("nipype_conmap")
    >>> conmapper.inputs.inputnode.subjects_dir = '.'
    >>> conmapper.inputs.inputnode.subject_id = 'subj1'
    >>> conmapper.inputs.inputnode.dwi = 'data.nii.gz'
    >>> conmapper.inputs.inputnode.bvecs = 'bvecs'
    >>> conmapper.inputs.inputnode.bvals = 'bvals'
    >>> conmapper.run()                 # doctest: +SKIP

    Inputs::

        inputnode.subject_id
        inputnode.subjects_dir
        inputnode.dwi
        inputnode.bvecs
        inputnode.bvals
        inputnode.resolution_network_file

    Outputs::

        outputnode.connectome
        outputnode.cmatrix
        outputnode.gpickled_network
        outputnode.fa
        outputnode.struct
        outputnode.trace
        outputnode.tracts
        outputnode.tensors

    """

    inputnode_within = pe.Node(interface=util.IdentityInterface(fields=["subject_id",
                                                                  "dwi",
                                                                  "bvecs",
                                                                  "bvals",
                                                                  "subjects_dir",
                                                                  "resolution_network_file",
                                                                  ]),
                         name="inputnode_within")

    FreeSurferSource = pe.Node(interface=nio.FreeSurferSource(), name='fssource')

    FreeSurferSourceLH = pe.Node(interface=nio.FreeSurferSource(), name='fssourceLH')
    FreeSurferSourceLH.inputs.hemi = 'lh'

    FreeSurferSourceRH = pe.Node(interface=nio.FreeSurferSource(), name='fssourceRH')
    FreeSurferSourceRH.inputs.hemi = 'rh'

    """
    Since the b values and b vectors come from the FSL course, we must convert it to a scheme file
    for use in Camino.
    """

    fsl2scheme = pe.Node(interface=camino.FSL2Scheme(), name="fsl2scheme")
    fsl2scheme.inputs.usegradmod = True

    """
    FSL's Brain Extraction tool is used to create a mask from the b0 image
    """

    b0Strip = pe.Node(interface=fsl.BET(mask = True), name = 'bet_b0')

    """
    FSL's FLIRT function is used to coregister the b0 mask and the structural image.
    A convert_xfm node is then used to obtain the inverse of the transformation matrix.
    FLIRT is used once again to apply the inverse transformation to the parcellated brain image.
    """

    coregister = pe.Node(interface=fsl.FLIRT(dof=6), name = 'coregister')
    coregister.inputs.cost = ('normmi')

    convertxfm = pe.Node(interface=fsl.ConvertXFM(), name = 'convertxfm')
    convertxfm.inputs.invert_xfm = True

    inverse = pe.Node(interface=fsl.FLIRT(), name = 'inverse')
    inverse.inputs.interp = ('nearestneighbour')

    inverse_AparcAseg = pe.Node(interface=fsl.FLIRT(), name = 'inverse_AparcAseg')
    inverse_AparcAseg.inputs.interp = ('nearestneighbour')

    """
    A number of conversion operations are required to obtain NIFTI files from the FreesurferSource for each subject.
    Nodes are used to convert the following:
        * Original structural image to NIFTI
        * Parcellated white matter image to NIFTI
        * Parcellated whole-brain image to NIFTI
        * Pial, white, inflated, and spherical surfaces for both the left and right hemispheres
            are converted to GIFTI for visualization in ConnectomeViewer
        * Parcellated annotation files for the left and right hemispheres are also converted to GIFTI
    """

    mri_convert_Brain = pe.Node(interface=fs.MRIConvert(), name='mri_convert_Brain')
    mri_convert_Brain.inputs.out_type = 'nii'

    mri_convert_AparcAseg = mri_convert_Brain.clone('mri_convert_AparcAseg')

    mris_convertLH = pe.Node(interface=fs.MRIsConvert(), name='mris_convertLH')
    mris_convertLH.inputs.out_datatype = 'gii'
    mris_convertRH = mris_convertLH.clone('mris_convertRH')
    mris_convertRHwhite = mris_convertLH.clone('mris_convertRHwhite')
    mris_convertLHwhite = mris_convertLH.clone('mris_convertLHwhite')
    mris_convertRHinflated = mris_convertLH.clone('mris_convertRHinflated')
    mris_convertLHinflated = mris_convertLH.clone('mris_convertLHinflated')
    mris_convertRHsphere = mris_convertLH.clone('mris_convertRHsphere')
    mris_convertLHsphere = mris_convertLH.clone('mris_convertLHsphere')
    mris_convertLHlabels = mris_convertLH.clone('mris_convertLHlabels')
    mris_convertRHlabels = mris_convertLH.clone('mris_convertRHlabels')

    """
    In this section we create the nodes necessary for diffusion analysis.
    First, the diffusion image is converted to voxel order, since this is the format in which Camino does
    its processing.
    """

    image2voxel = pe.Node(interface=camino.Image2Voxel(), name="image2voxel")

    """
    Second, diffusion tensors are fit to the voxel-order data.
    If desired, these tensors can be converted to a Nifti tensor image using the DT2NIfTI interface.
    """

    dtifit = pe.Node(interface=camino.DTIFit(),name='dtifit')

    """
    Next, a lookup table is generated from the schemefile and the
    signal-to-noise ratio (SNR) of the unweighted (q=0) data.
    """

    dtlutgen = pe.Node(interface=camino.DTLUTGen(), name="dtlutgen")
    dtlutgen.inputs.snr = 16.0
    dtlutgen.inputs.inversion = 1

    """
    In this tutorial we implement probabilistic tractography using the PICo algorithm.
    PICo tractography requires an estimate of the fibre direction and a model of its uncertainty in each voxel;
    this probabilitiy distribution map is produced using the following node.
    """

    picopdfs = pe.Node(interface=camino.PicoPDFs(), name="picopdfs")
    picopdfs.inputs.inputmodel = 'dt'

    """
    Finally, tractography is performed. In this tutorial, we will use only one iteration for time-saving purposes.
    It is important to note that we use the TrackPICo interface here. This interface now expects the files required
    for PICo tracking (i.e. the output from picopdfs). Similar interfaces exist for alternative types of tracking,
    such as Bayesian tracking with Dirac priors (TrackBayesDirac).
    """

    track = pe.Node(interface=camino.TrackPICo(), name="track")
    track.inputs.iterations = 1

    """
    Currently, the best program for visualizing tracts is TrackVis. For this reason, a node is included to
    convert the raw tract data to .trk format. Solely for testing purposes, another node is added to perform the reverse.
    """

    camino2trackvis = pe.Node(interface=cam2trk.Camino2Trackvis(), name="camino2trackvis")
    camino2trackvis.inputs.min_length = 30
    camino2trackvis.inputs.voxel_order = 'LAS'
    trk2camino = pe.Node(interface=cam2trk.Trackvis2Camino(), name="trk2camino")

    """
    Tracts can also be converted to VTK and OOGL formats, for use in programs such as GeomView and Paraview,
    using the following two nodes.
    """

    vtkstreamlines = pe.Node(interface=camino.VtkStreamlines(), name="vtkstreamlines")
    procstreamlines = pe.Node(interface=camino.ProcStreamlines(), name="procstreamlines")

    """
    We can easily produce a variety of scalar values from our fitted tensors. The following nodes generate the
    fractional anisotropy and diffusivity trace maps and their associated headers, and then merge them back
    into a single .nii file.
    """

    fa = pe.Node(interface=camino.ComputeFractionalAnisotropy(),name='fa')
    trace = pe.Node(interface=camino.ComputeTensorTrace(),name='trace')
    dteig = pe.Node(interface=camino.ComputeEigensystem(), name='dteig')

    analyzeheader_fa = pe.Node(interface=camino.AnalyzeHeader(),name='analyzeheader_fa')
    analyzeheader_fa.inputs.datatype = 'double'
    analyzeheader_trace = pe.Node(interface=camino.AnalyzeHeader(),name='analyzeheader_trace')
    analyzeheader_trace.inputs.datatype = 'double'

    fa2nii = pe.Node(interface=misc.CreateNifti(),name='fa2nii')
    trace2nii = fa2nii.clone("trace2nii")

    """
    This section adds the Connectome Mapping Toolkit (CMTK) nodes.
    These interfaces are fairly experimental and may not function properly.
    In order to perform connectivity mapping using CMTK, the parcellated structural data is rewritten
    using the indices and parcellation scheme from the connectome mapper (CMP). This process has been
    written into the ROIGen interface, which will output a remapped aparc+aseg image as well as a
    dictionary of label information (i.e. name, display colours) pertaining to the original and remapped regions.
    These label values are input from a user-input lookup table, if specified, and otherwise the default
    Freesurfer LUT (/freesurfer/FreeSurferColorLUT.txt).
    """

    roigen = pe.Node(interface=cmtk.ROIGen(), name="ROIGen")
    roigen_structspace = roigen.clone("ROIGen_structspace")

    """
    The CreateMatrix interface takes in the remapped aparc+aseg image as well as the label dictionary and fiber tracts
    and outputs a number of different files. The most important of which is the connectivity network itself, which is stored
    as a 'gpickle' and can be loaded using Python's NetworkX package (see CreateMatrix docstring). Also outputted are various
    NumPy arrays containing detailed tract information, such as the start and endpoint regions, and statistics on the mean and
    standard deviation for the fiber length of each connection. These matrices can be used in the ConnectomeViewer to plot the
    specific tracts that connect between user-selected regions.
    """

    createnodes = pe.Node(interface=cmtk.CreateNodes(), name="CreateNodes")
    creatematrix = pe.Node(interface=cmtk.CreateMatrix(), name="CreateMatrix")
    creatematrix.inputs.count_region_intersections = True

    """
    Here we define the endpoint of this tutorial, which is the CFFConverter node, as well as a few nodes which use
    the Nipype Merge utility. These are useful for passing lists of the files we want packaged in our CFF file.
    """

    CFFConverter = pe.Node(interface=cmtk.CFFConverter(), name="CFFConverter")

    giftiSurfaces = pe.Node(interface=util.Merge(8), name="GiftiSurfaces")
    giftiLabels = pe.Node(interface=util.Merge(2), name="GiftiLabels")
    niftiVolumes = pe.Node(interface=util.Merge(3), name="NiftiVolumes")
    fiberDataArrays = pe.Node(interface=util.Merge(4), name="FiberDataArrays")
    gpickledNetworks = pe.Node(interface=util.Merge(1), name="NetworkFiles")

    """
    Since we have now created all our nodes, we can define our workflow and start making connections.
    """

    mapping = pe.Workflow(name='mapping')

    """
    First, we connect the input node to the early conversion functions.
    FreeSurfer input nodes:
    """


    mapping.connect([(inputnode_within, FreeSurferSource,[("subjects_dir","subjects_dir")])])
    mapping.connect([(inputnode_within, FreeSurferSource,[("subject_id","subject_id")])])

    mapping.connect([(inputnode_within, FreeSurferSourceLH,[("subjects_dir","subjects_dir")])])
    mapping.connect([(inputnode_within, FreeSurferSourceLH,[("subject_id","subject_id")])])

    mapping.connect([(inputnode_within, FreeSurferSourceRH,[("subjects_dir","subjects_dir")])])
    mapping.connect([(inputnode_within, FreeSurferSourceRH,[("subject_id","subject_id")])])

    """
    Required conversions for processing in Camino:
    """

    mapping.connect([(inputnode_within, image2voxel, [("dwi", "in_file")]),
                           (inputnode_within, fsl2scheme, [("bvecs", "bvec_file"),
                                                    ("bvals", "bval_file")]),
                           (image2voxel, dtifit,[['voxel_order','in_file']]),
                           (fsl2scheme, dtifit,[['scheme','scheme_file']])
                          ])

    """
    Nifti conversions for the subject's stripped brain image from Freesurfer:
    """


    mapping.connect([(FreeSurferSource, mri_convert_Brain,[('brain','in_file')])])

    """
    Surface conversions to GIFTI (pial, white, inflated, and sphere for both hemispheres)
    """

    mapping.connect([(FreeSurferSourceLH, mris_convertLH,[('pial','in_file')])])
    mapping.connect([(FreeSurferSourceRH, mris_convertRH,[('pial','in_file')])])
    mapping.connect([(FreeSurferSourceLH, mris_convertLHwhite,[('white','in_file')])])
    mapping.connect([(FreeSurferSourceRH, mris_convertRHwhite,[('white','in_file')])])
    mapping.connect([(FreeSurferSourceLH, mris_convertLHinflated,[('inflated','in_file')])])
    mapping.connect([(FreeSurferSourceRH, mris_convertRHinflated,[('inflated','in_file')])])
    mapping.connect([(FreeSurferSourceLH, mris_convertLHsphere,[('sphere','in_file')])])
    mapping.connect([(FreeSurferSourceRH, mris_convertRHsphere,[('sphere','in_file')])])

    """
    The annotation files are converted using the pial surface as a map via the MRIsConvert interface.
    One of the functions defined earlier is used to select the lh.aparc.annot and rh.aparc.annot files
    specifically (rather than i.e. rh.aparc.a2009s.annot) from the output list given by the FreeSurferSource.
    """

    mapping.connect([(FreeSurferSourceLH, mris_convertLHlabels,[('pial','in_file')])])
    mapping.connect([(FreeSurferSourceRH, mris_convertRHlabels,[('pial','in_file')])])
    mapping.connect([(FreeSurferSourceLH, mris_convertLHlabels, [(('annot', select_aparc_annot), 'annot_file')])])
    mapping.connect([(FreeSurferSourceRH, mris_convertRHlabels, [(('annot', select_aparc_annot), 'annot_file')])])

    """
    This section coregisters the diffusion-weighted and parcellated white-matter / whole brain images.
    At present the conmap node connection is left commented, as there have been recent changes in Camino
    code that have presented some users with errors.
    """

    mapping.connect([(inputnode_within, b0Strip,[('dwi','in_file')])])
    mapping.connect([(inputnode_within, b0Strip,[('dwi','t2_guided')])]) # Added to improve damaged brain extraction
    mapping.connect([(b0Strip, coregister,[('out_file','in_file')])])
    mapping.connect([(mri_convert_Brain, coregister,[('out_file','reference')])])
    mapping.connect([(coregister, convertxfm,[('out_matrix_file','in_file')])])
    mapping.connect([(b0Strip, inverse,[('out_file','reference')])])
    mapping.connect([(convertxfm, inverse,[('out_file','in_matrix_file')])])
    mapping.connect([(mri_convert_Brain, inverse,[('out_file','in_file')])])

    """
    The tractography pipeline consists of the following nodes. Further information about the tractography
    can be found in nipype/examples/dmri_camino_dti.py.
    """

    mapping.connect([(b0Strip, track,[("mask_file","seed_file")])])
    mapping.connect([(fsl2scheme, dtlutgen,[("scheme","scheme_file")])])
    mapping.connect([(dtlutgen, picopdfs,[("dtLUT","luts")])])
    mapping.connect([(dtifit, picopdfs,[("tensor_fitted","in_file")])])
    mapping.connect([(picopdfs, track,[("pdfs","in_file")])])

    """
    Connecting the Fractional Anisotropy and Trace nodes is simple, as they obtain their input from the
    tensor fitting. This is also where our voxel- and data-grabbing functions come in. We pass these functions,
    along with the original DWI image from the input node, to the header-generating nodes. This ensures that the
    files will be correct and readable.
    """

    mapping.connect([(dtifit, fa,[("tensor_fitted","in_file")])])
    mapping.connect([(fa, analyzeheader_fa,[("fa","in_file")])])
    mapping.connect([(inputnode_within, analyzeheader_fa,[(('dwi', get_vox_dims), 'voxel_dims'),
        (('dwi', get_data_dims), 'data_dims')])])
    mapping.connect([(fa, fa2nii,[('fa','data_file')])])
    mapping.connect([(inputnode_within, fa2nii,[(('dwi', get_affine), 'affine')])])
    mapping.connect([(analyzeheader_fa, fa2nii,[('header', 'header_file')])])


    mapping.connect([(dtifit, trace,[("tensor_fitted","in_file")])])
    mapping.connect([(trace, analyzeheader_trace,[("trace","in_file")])])
    mapping.connect([(inputnode_within, analyzeheader_trace,[(('dwi', get_vox_dims), 'voxel_dims'),
        (('dwi', get_data_dims), 'data_dims')])])
    mapping.connect([(trace, trace2nii,[('trace','data_file')])])
    mapping.connect([(inputnode_within, trace2nii,[(('dwi', get_affine), 'affine')])])
    mapping.connect([(analyzeheader_trace, trace2nii,[('header', 'header_file')])])

    mapping.connect([(dtifit, dteig,[("tensor_fitted","in_file")])])

    """
    The output tracts are converted to Trackvis format (and back). Here we also use the voxel- and data-grabbing
    functions defined at the beginning of the pipeline.
    """

    mapping.connect([(track, camino2trackvis, [('tracked','in_file')]),
                           (track, vtkstreamlines,[['tracked','in_file']]),
                           (camino2trackvis, trk2camino,[['trackvis','in_file']])
                          ])
    mapping.connect([(inputnode_within, camino2trackvis,[(('dwi', get_vox_dims), 'voxel_dims'),
        (('dwi', get_data_dims), 'data_dims')])])

    """
    Here the CMTK connectivity mapping nodes are connected.
    The original aparc+aseg image is converted to NIFTI, then registered to
    the diffusion image and delivered to the ROIGen node. The remapped parcellation,
    original tracts, and label file are then given to CreateMatrix.
    """

    mapping.connect(inputnode_within, 'resolution_network_file',
                    createnodes, 'resolution_network_file')
    mapping.connect(createnodes, 'node_network',
                    creatematrix, 'resolution_network_file')
    mapping.connect([(FreeSurferSource, mri_convert_AparcAseg, [(('aparc_aseg', select_aparc), 'in_file')])])

    mapping.connect([(b0Strip, inverse_AparcAseg,[('out_file','reference')])])
    mapping.connect([(convertxfm, inverse_AparcAseg,[('out_file','in_matrix_file')])])
    mapping.connect([(mri_convert_AparcAseg, inverse_AparcAseg,[('out_file','in_file')])])
    mapping.connect([(mri_convert_AparcAseg, roigen_structspace,[('out_file','aparc_aseg_file')])])
    mapping.connect([(roigen_structspace, createnodes,[("roi_file","roi_file")])])

    mapping.connect([(inverse_AparcAseg, roigen,[("out_file","aparc_aseg_file")])])
    mapping.connect([(roigen, creatematrix,[("roi_file","roi_file")])])
    mapping.connect([(camino2trackvis, creatematrix,[("trackvis","tract_file")])])
    mapping.connect([(inputnode_within, creatematrix,[("subject_id","out_matrix_file")])])
    mapping.connect([(inputnode_within, creatematrix,[("subject_id","out_matrix_mat_file")])])

    """
    The merge nodes defined earlier are used here to create lists of the files which are
    destined for the CFFConverter.
    """

    mapping.connect([(mris_convertLH, giftiSurfaces,[("converted","in1")])])
    mapping.connect([(mris_convertRH, giftiSurfaces,[("converted","in2")])])
    mapping.connect([(mris_convertLHwhite, giftiSurfaces,[("converted","in3")])])
    mapping.connect([(mris_convertRHwhite, giftiSurfaces,[("converted","in4")])])
    mapping.connect([(mris_convertLHinflated, giftiSurfaces,[("converted","in5")])])
    mapping.connect([(mris_convertRHinflated, giftiSurfaces,[("converted","in6")])])
    mapping.connect([(mris_convertLHsphere, giftiSurfaces,[("converted","in7")])])
    mapping.connect([(mris_convertRHsphere, giftiSurfaces,[("converted","in8")])])

    mapping.connect([(mris_convertLHlabels, giftiLabels,[("converted","in1")])])
    mapping.connect([(mris_convertRHlabels, giftiLabels,[("converted","in2")])])

    mapping.connect([(roigen, niftiVolumes,[("roi_file","in1")])])
    mapping.connect([(inputnode_within, niftiVolumes,[("dwi","in2")])])
    mapping.connect([(mri_convert_Brain, niftiVolumes,[("out_file","in3")])])

    mapping.connect([(creatematrix, fiberDataArrays,[("endpoint_file","in1")])])
    mapping.connect([(creatematrix, fiberDataArrays,[("endpoint_file_mm","in2")])])
    mapping.connect([(creatematrix, fiberDataArrays,[("fiber_length_file","in3")])])
    mapping.connect([(creatematrix, fiberDataArrays,[("fiber_label_file","in4")])])

    """
    This block actually connects the merged lists to the CFF converter. We pass the surfaces
    and volumes that are to be included, as well as the tracts and the network itself. The currently
    running pipeline (dmri_connectivity.py) is also scraped and included in the CFF file. This
    makes it easy for the user to examine the entire processing pathway used to generate the end
    product.
    """

    CFFConverter.inputs.script_files = op.abspath(inspect.getfile(inspect.currentframe()))
    mapping.connect([(giftiSurfaces, CFFConverter,[("out","gifti_surfaces")])])
    mapping.connect([(giftiLabels, CFFConverter,[("out","gifti_labels")])])
    mapping.connect([(creatematrix, CFFConverter,[("matrix_files","gpickled_networks")])])

    mapping.connect([(niftiVolumes, CFFConverter,[("out","nifti_volumes")])])
    mapping.connect([(fiberDataArrays, CFFConverter,[("out","data_files")])])
    mapping.connect([(camino2trackvis, CFFConverter,[("trackvis","tract_files")])])
    mapping.connect([(inputnode_within, CFFConverter,[("subject_id","title")])])

    """
    Finally, we create another higher-level workflow to connect our mapping workflow with the info and datagrabbing nodes
    declared at the beginning. Our tutorial can is now extensible to any arbitrary number of subjects by simply adding
    their names to the subject list and their data to the proper folders.
    """

    inputnode = pe.Node(interface=util.IdentityInterface(fields=["subject_id", "dwi", "bvecs", "bvals", "subjects_dir", "resolution_network_file"]), name="inputnode")

    outputnode = pe.Node(interface = util.IdentityInterface(fields=["fa",
                                                                "struct",
                                                                "trace",
                                                                "tracts",
                                                                "connectome",
                                                                "cmatrix",
                                                                "networks",
                                                                "rois",
                                                                "mean_fiber_length",
                                                                "fiber_length_std",
                                                                "tensors"]),
                                        name="outputnode")

    connectivity = pe.Workflow(name="connectivity")
    connectivity.base_output_dir=name

    connectivity.connect([(inputnode, mapping, [("dwi", "inputnode_within.dwi"),
                                              ("bvals", "inputnode_within.bvals"),
                                              ("bvecs", "inputnode_within.bvecs"),
                                              ("subject_id", "inputnode_within.subject_id"),
                                              ("subjects_dir", "inputnode_within.subjects_dir"),
                                              ("resolution_network_file", "inputnode_within.resolution_network_file")])
                                              ])

    connectivity.connect([(mapping, outputnode, [("camino2trackvis.trackvis", "tracts"),
        ("CFFConverter.connectome_file", "connectome"),
        ("CreateMatrix.matrix_mat_file", "cmatrix"),
        ("CreateMatrix.mean_fiber_length_matrix_mat_file", "mean_fiber_length"),
        ("CreateMatrix.fiber_length_std_matrix_mat_file", "fiber_length_std"),
        ("fa2nii.nifti_file", "fa"),
        ("CreateMatrix.matrix_files", "networks"),
        ("ROIGen.roi_file", "rois"),
        ("mri_convert_Brain.out_file", "struct"),
        ("trace2nii.nifti_file", "trace"),
        ("dtifit.tensor_fitted", "tensors")])
        ])

    return connectivity
예제 #13
0
def init_segs_to_native_wf(*, name="segs_to_native", segmentation="aseg"):
    """
    Get a segmentation from FreeSurfer conformed space into native T1w space.

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from smriprep.workflows.surfaces import init_segs_to_native_wf
            wf = init_segs_to_native_wf()

    Parameters
    ----------
    segmentation
        The name of a segmentation ('aseg' or 'aparc_aseg' or 'wmparc')

    Inputs
    ------
    in_file
        Anatomical, merged T1w image after INU correction
    subjects_dir
        FreeSurfer SUBJECTS_DIR
    subject_id
        FreeSurfer subject ID
    fsnative2t1w_xfm
        LTA-style affine matrix translating from FreeSurfer-conformed subject space to T1w

    Outputs
    -------
    out_file
        The selected segmentation, after resampling in native space

    """
    workflow = Workflow(name="%s_%s" % (name, segmentation))
    inputnode = pe.Node(
        niu.IdentityInterface(
            ["in_file", "subjects_dir", "subject_id", "fsnative2t1w_xfm"]
        ),
        name="inputnode",
    )
    outputnode = pe.Node(niu.IdentityInterface(["out_file"]), name="outputnode")
    # Extract the aseg and aparc+aseg outputs
    fssource = pe.Node(nio.FreeSurferSource(), name="fs_datasource")
    # Resample from T1.mgz to T1w.nii.gz, applying any offset in fsnative2t1w_xfm,
    # and convert to NIfTI while we're at it
    resample = pe.Node(
        fs.ApplyVolTransform(transformed_file="seg.nii.gz", interp="nearest"),
        name="resample",
    )

    if segmentation.startswith("aparc"):
        if segmentation == "aparc_aseg":

            def _sel(x):
                return [parc for parc in x if "aparc+" in parc][0]  # noqa

        elif segmentation == "aparc_a2009s":

            def _sel(x):
                return [parc for parc in x if "a2009s+" in parc][0]  # noqa

        elif segmentation == "aparc_dkt":

            def _sel(x):
                return [parc for parc in x if "DKTatlas+" in parc][0]  # noqa

        segmentation = (segmentation, _sel)

    # fmt:off
    workflow.connect([
        (inputnode, fssource, [
            ('subjects_dir', 'subjects_dir'),
            ('subject_id', 'subject_id')]),
        (inputnode, resample, [('in_file', 'target_file'),
                               ('fsnative2t1w_xfm', 'lta_file')]),
        (fssource, resample, [(segmentation, 'source_file')]),
        (resample, outputnode, [('transformed_file', 'out_file')]),
    ])
    # fmt:on
    return workflow
def create_connectivity_pipeline(name="connectivity",
                                 parcellation_name='scale500'):
    inputnode_within = pe.Node(util.IdentityInterface(fields=[
        "subject_id", "dwi", "bvecs", "bvals", "subjects_dir",
        "resolution_network_file"
    ]),
                               name="inputnode_within")

    FreeSurferSource = pe.Node(interface=nio.FreeSurferSource(),
                               name='fssource')
    FreeSurferSourceLH = pe.Node(interface=nio.FreeSurferSource(),
                                 name='fssourceLH')
    FreeSurferSourceLH.inputs.hemi = 'lh'

    FreeSurferSourceRH = pe.Node(interface=nio.FreeSurferSource(),
                                 name='fssourceRH')
    FreeSurferSourceRH.inputs.hemi = 'rh'
    """
    Creating the workflow's nodes
    =============================
    """
    """
    Conversion nodes
    ----------------
    """
    """
    A number of conversion operations are required to obtain NIFTI files from the FreesurferSource for each subject.
    Nodes are used to convert the following:
        * Original structural image to NIFTI
        * Pial, white, inflated, and spherical surfaces for both the left and right hemispheres are converted to GIFTI for visualization in ConnectomeViewer
        * Parcellated annotation files for the left and right hemispheres are also converted to GIFTI

    """

    mri_convert_Brain = pe.Node(interface=fs.MRIConvert(),
                                name='mri_convert_Brain')
    mri_convert_Brain.inputs.out_type = 'nii'
    mri_convert_ROI_scale500 = mri_convert_Brain.clone(
        'mri_convert_ROI_scale500')

    mris_convertLH = pe.Node(interface=fs.MRIsConvert(), name='mris_convertLH')
    mris_convertLH.inputs.out_datatype = 'gii'
    mris_convertRH = mris_convertLH.clone('mris_convertRH')
    mris_convertRHwhite = mris_convertLH.clone('mris_convertRHwhite')
    mris_convertLHwhite = mris_convertLH.clone('mris_convertLHwhite')
    mris_convertRHinflated = mris_convertLH.clone('mris_convertRHinflated')
    mris_convertLHinflated = mris_convertLH.clone('mris_convertLHinflated')
    mris_convertRHsphere = mris_convertLH.clone('mris_convertRHsphere')
    mris_convertLHsphere = mris_convertLH.clone('mris_convertLHsphere')
    mris_convertLHlabels = mris_convertLH.clone('mris_convertLHlabels')
    mris_convertRHlabels = mris_convertLH.clone('mris_convertRHlabels')
    """
    Diffusion processing nodes
    --------------------------

    .. seealso::

        dmri_mrtrix_dti.py
            Tutorial that focuses solely on the MRtrix diffusion processing

        http://www.brain.org.au/software/mrtrix/index.html
            MRtrix's online documentation
    """
    """
    b-values and b-vectors stored in FSL's format are converted into a single encoding file for MRTrix.
    """

    fsl2mrtrix = pe.Node(interface=mrtrix.FSL2MRTrix(), name='fsl2mrtrix')
    """
    Distortions induced by eddy currents are corrected prior to fitting the tensors.
    The first image is used as a reference for which to warp the others.
    """

    eddycorrect = create_eddy_correct_pipeline(name='eddycorrect')
    eddycorrect.inputs.inputnode.ref_num = 1
    """
    Tensors are fitted to each voxel in the diffusion-weighted image and from these three maps are created:
        * Major eigenvector in each voxel
        * Apparent diffusion coefficient
        * Fractional anisotropy
    """

    dwi2tensor = pe.Node(interface=mrtrix.DWI2Tensor(), name='dwi2tensor')
    tensor2vector = pe.Node(interface=mrtrix.Tensor2Vector(),
                            name='tensor2vector')
    tensor2adc = pe.Node(interface=mrtrix.Tensor2ApparentDiffusion(),
                         name='tensor2adc')
    tensor2fa = pe.Node(interface=mrtrix.Tensor2FractionalAnisotropy(),
                        name='tensor2fa')
    MRconvert_fa = pe.Node(interface=mrtrix.MRConvert(), name='MRconvert_fa')
    MRconvert_fa.inputs.extension = 'nii'
    """

    These nodes are used to create a rough brain mask from the b0 image.
    The b0 image is extracted from the original diffusion-weighted image,
    put through a simple thresholding routine, and smoothed using a 3x3 median filter.
    """

    MRconvert = pe.Node(interface=mrtrix.MRConvert(), name='MRconvert')
    MRconvert.inputs.extract_at_axis = 3
    MRconvert.inputs.extract_at_coordinate = [0]
    threshold_b0 = pe.Node(interface=mrtrix.Threshold(), name='threshold_b0')
    median3d = pe.Node(interface=mrtrix.MedianFilter3D(), name='median3d')
    """
    The brain mask is also used to help identify single-fiber voxels.
    This is done by passing the brain mask through two erosion steps,
    multiplying the remaining mask with the fractional anisotropy map, and
    thresholding the result to obtain some highly anisotropic within-brain voxels.
    """

    erode_mask_firstpass = pe.Node(interface=mrtrix.Erode(),
                                   name='erode_mask_firstpass')
    erode_mask_secondpass = pe.Node(interface=mrtrix.Erode(),
                                    name='erode_mask_secondpass')
    MRmultiply = pe.Node(interface=mrtrix.MRMultiply(), name='MRmultiply')
    MRmult_merge = pe.Node(interface=util.Merge(2), name='MRmultiply_merge')
    threshold_FA = pe.Node(interface=mrtrix.Threshold(), name='threshold_FA')
    threshold_FA.inputs.absolute_threshold_value = 0.7
    """
    For whole-brain tracking we also require a broad white-matter seed mask.
    This is created by generating a white matter mask, given a brainmask, and
    thresholding it at a reasonably high level.
    """

    bet = pe.Node(interface=fsl.BET(mask=True), name='bet_b0')
    gen_WM_mask = pe.Node(interface=mrtrix.GenerateWhiteMatterMask(),
                          name='gen_WM_mask')
    threshold_wmmask = pe.Node(interface=mrtrix.Threshold(),
                               name='threshold_wmmask')
    threshold_wmmask.inputs.absolute_threshold_value = 0.4
    """
    The spherical deconvolution step depends on the estimate of the response function
    in the highly anisotropic voxels we obtained above.

    .. warning::

        For damaged or pathological brains one should take care to lower the maximum harmonic order of these steps.

    """

    estimateresponse = pe.Node(interface=mrtrix.EstimateResponseForSH(),
                               name='estimateresponse')
    estimateresponse.inputs.maximum_harmonic_order = 6
    csdeconv = pe.Node(interface=mrtrix.ConstrainedSphericalDeconvolution(),
                       name='csdeconv')
    csdeconv.inputs.maximum_harmonic_order = 6
    """
    Finally, we track probabilistically using the orientation distribution functions obtained earlier.
    The tracts are then used to generate a tract-density image, and they are also converted to TrackVis format.
    """

    probCSDstreamtrack = pe.Node(
        interface=mrtrix.ProbabilisticSphericallyDeconvolutedStreamlineTrack(),
        name='probCSDstreamtrack')
    probCSDstreamtrack.inputs.inputmodel = 'SD_PROB'
    probCSDstreamtrack.inputs.desired_number_of_tracks = 150000
    tracks2prob = pe.Node(interface=mrtrix.Tracks2Prob(), name='tracks2prob')
    tracks2prob.inputs.colour = True
    MRconvert_tracks2prob = MRconvert_fa.clone(name='MRconvert_tracks2prob')
    tck2trk = pe.Node(interface=mrtrix.MRTrix2TrackVis(), name='tck2trk')
    """
    Structural segmentation nodes
    -----------------------------
    """
    """
    The following node identifies the transformation between the diffusion-weighted
    image and the structural image. This transformation is then applied to the tracts
    so that they are in the same space as the regions of interest.
    """

    coregister = pe.Node(interface=fsl.FLIRT(dof=6), name='coregister')
    coregister.inputs.cost = ('normmi')
    """
    Parcellation is performed given the aparc+aseg image from Freesurfer.
    The CMTK Parcellation step subdivides these regions to return a higher-resolution parcellation scheme.
    The parcellation used here is entitled "scale500" and returns 1015 regions.
    """

    parcellate = pe.Node(interface=cmtk.Parcellate(), name="Parcellate")
    parcellate.inputs.parcellation_name = parcellation_name
    """
    The CreateMatrix interface takes in the remapped aparc+aseg image as well as the label dictionary and fiber tracts
    and outputs a number of different files. The most important of which is the connectivity network itself, which is stored
    as a 'gpickle' and can be loaded using Python's NetworkX package (see CreateMatrix docstring). Also outputted are various
    NumPy arrays containing detailed tract information, such as the start and endpoint regions, and statistics on the mean and
    standard deviation for the fiber length of each connection. These matrices can be used in the ConnectomeViewer to plot the
    specific tracts that connect between user-selected regions.

    Here we choose the Lausanne2008 parcellation scheme, since we are incorporating the CMTK parcellation step.
    """

    creatematrix = pe.Node(interface=cmtk.CreateMatrix(), name="CreateMatrix")
    creatematrix.inputs.count_region_intersections = True
    """
    Next we define the endpoint of this tutorial, which is the CFFConverter node, as well as a few nodes which use
    the Nipype Merge utility. These are useful for passing lists of the files we want packaged in our CFF file.
    The inspect.getfile command is used to package this script into the resulting CFF file, so that it is easy to
    look back at the processing parameters that were used.
    """

    CFFConverter = pe.Node(interface=cmtk.CFFConverter(), name="CFFConverter")
    CFFConverter.inputs.script_files = op.abspath(
        inspect.getfile(inspect.currentframe()))
    giftiSurfaces = pe.Node(interface=util.Merge(8), name="GiftiSurfaces")
    giftiLabels = pe.Node(interface=util.Merge(2), name="GiftiLabels")
    niftiVolumes = pe.Node(interface=util.Merge(3), name="NiftiVolumes")
    fiberDataArrays = pe.Node(interface=util.Merge(4), name="FiberDataArrays")
    """
    We also create a node to calculate several network metrics on our resulting file, and another CFF converter
    which will be used to package these networks into a single file.
    """

    networkx = create_networkx_pipeline(name='networkx')
    cmats_to_csv = create_cmats_to_csv_pipeline(name='cmats_to_csv')
    nfibs_to_csv = pe.Node(interface=misc.Matlab2CSV(), name='nfibs_to_csv')
    merge_nfib_csvs = pe.Node(interface=misc.MergeCSVFiles(),
                              name='merge_nfib_csvs')
    merge_nfib_csvs.inputs.extra_column_heading = 'Subject'
    merge_nfib_csvs.inputs.out_file = 'fibers.csv'
    NxStatsCFFConverter = pe.Node(interface=cmtk.CFFConverter(),
                                  name="NxStatsCFFConverter")
    NxStatsCFFConverter.inputs.script_files = op.abspath(
        inspect.getfile(inspect.currentframe()))
    """
    Connecting the workflow
    =======================
    Here we connect our processing pipeline.
    """
    """
    Connecting the inputs, FreeSurfer nodes, and conversions
    --------------------------------------------------------
    """

    mapping = pe.Workflow(name='mapping')
    """
    First, we connect the input node to the FreeSurfer input nodes.
    """

    mapping.connect([(inputnode_within, FreeSurferSource, [("subjects_dir",
                                                            "subjects_dir")])])
    mapping.connect([(inputnode_within, FreeSurferSource, [("subject_id",
                                                            "subject_id")])])

    mapping.connect([(inputnode_within, FreeSurferSourceLH,
                      [("subjects_dir", "subjects_dir")])])
    mapping.connect([(inputnode_within, FreeSurferSourceLH, [("subject_id",
                                                              "subject_id")])])

    mapping.connect([(inputnode_within, FreeSurferSourceRH,
                      [("subjects_dir", "subjects_dir")])])
    mapping.connect([(inputnode_within, FreeSurferSourceRH, [("subject_id",
                                                              "subject_id")])])

    mapping.connect([(inputnode_within, parcellate, [("subjects_dir",
                                                      "subjects_dir")])])
    mapping.connect([(inputnode_within, parcellate, [("subject_id",
                                                      "subject_id")])])
    mapping.connect([(parcellate, mri_convert_ROI_scale500, [('roi_file',
                                                              'in_file')])])
    """
    Nifti conversion for subject's stripped brain image from Freesurfer:
    """

    mapping.connect([(FreeSurferSource, mri_convert_Brain, [('brain',
                                                             'in_file')])])
    """
    Surface conversions to GIFTI (pial, white, inflated, and sphere for both hemispheres)
    """

    mapping.connect([(FreeSurferSourceLH, mris_convertLH, [('pial', 'in_file')
                                                           ])])
    mapping.connect([(FreeSurferSourceRH, mris_convertRH, [('pial', 'in_file')
                                                           ])])
    mapping.connect([(FreeSurferSourceLH, mris_convertLHwhite, [('white',
                                                                 'in_file')])])
    mapping.connect([(FreeSurferSourceRH, mris_convertRHwhite, [('white',
                                                                 'in_file')])])
    mapping.connect([(FreeSurferSourceLH, mris_convertLHinflated,
                      [('inflated', 'in_file')])])
    mapping.connect([(FreeSurferSourceRH, mris_convertRHinflated,
                      [('inflated', 'in_file')])])
    mapping.connect([(FreeSurferSourceLH, mris_convertLHsphere,
                      [('sphere', 'in_file')])])
    mapping.connect([(FreeSurferSourceRH, mris_convertRHsphere,
                      [('sphere', 'in_file')])])
    """
    The annotation files are converted using the pial surface as a map via the MRIsConvert interface.
    One of the functions defined earlier is used to select the lh.aparc.annot and rh.aparc.annot files
    specifically (rather than e.g. rh.aparc.a2009s.annot) from the output list given by the FreeSurferSource.
    """

    mapping.connect([(FreeSurferSourceLH, mris_convertLHlabels,
                      [('pial', 'in_file')])])
    mapping.connect([(FreeSurferSourceRH, mris_convertRHlabels,
                      [('pial', 'in_file')])])
    mapping.connect([(FreeSurferSourceLH, mris_convertLHlabels,
                      [(('annot', select_aparc_annot), 'annot_file')])])
    mapping.connect([(FreeSurferSourceRH, mris_convertRHlabels,
                      [(('annot', select_aparc_annot), 'annot_file')])])
    """
    Diffusion Processing
    --------------------
    Now we connect the tensor computations:
    """

    mapping.connect([(inputnode_within, fsl2mrtrix, [("bvecs", "bvec_file"),
                                                     ("bvals", "bval_file")])])
    mapping.connect([(inputnode_within, eddycorrect, [("dwi",
                                                       "inputnode.in_file")])])
    mapping.connect([(eddycorrect, dwi2tensor, [("outputnode.eddy_corrected",
                                                 "in_file")])])
    mapping.connect([(fsl2mrtrix, dwi2tensor, [("encoding_file",
                                                "encoding_file")])])

    mapping.connect([
        (dwi2tensor, tensor2vector, [['tensor', 'in_file']]),
        (dwi2tensor, tensor2adc, [['tensor', 'in_file']]),
        (dwi2tensor, tensor2fa, [['tensor', 'in_file']]),
    ])
    mapping.connect([(tensor2fa, MRmult_merge, [("FA", "in1")])])
    mapping.connect([(tensor2fa, MRconvert_fa, [("FA", "in_file")])])
    """

    This block creates the rough brain mask to be multiplied, mulitplies it with the
    fractional anisotropy image, and thresholds it to get the single-fiber voxels.
    """

    mapping.connect([(eddycorrect, MRconvert, [("outputnode.eddy_corrected",
                                                "in_file")])])
    mapping.connect([(MRconvert, threshold_b0, [("converted", "in_file")])])
    mapping.connect([(threshold_b0, median3d, [("out_file", "in_file")])])
    mapping.connect([(median3d, erode_mask_firstpass, [("out_file", "in_file")
                                                       ])])
    mapping.connect([(erode_mask_firstpass, erode_mask_secondpass,
                      [("out_file", "in_file")])])
    mapping.connect([(erode_mask_secondpass, MRmult_merge, [("out_file", "in2")
                                                            ])])
    mapping.connect([(MRmult_merge, MRmultiply, [("out", "in_files")])])
    mapping.connect([(MRmultiply, threshold_FA, [("out_file", "in_file")])])
    """
    Here the thresholded white matter mask is created for seeding the tractography.
    """

    mapping.connect([(eddycorrect, bet, [("outputnode.eddy_corrected",
                                          "in_file")])])
    mapping.connect([(eddycorrect, gen_WM_mask, [("outputnode.eddy_corrected",
                                                  "in_file")])])
    mapping.connect([(bet, gen_WM_mask, [("mask_file", "binary_mask")])])
    mapping.connect([(fsl2mrtrix, gen_WM_mask, [("encoding_file",
                                                 "encoding_file")])])
    mapping.connect([(gen_WM_mask, threshold_wmmask, [("WMprobabilitymap",
                                                       "in_file")])])
    """
    Next we estimate the fiber response distribution.
    """

    mapping.connect([(eddycorrect, estimateresponse,
                      [("outputnode.eddy_corrected", "in_file")])])
    mapping.connect([(fsl2mrtrix, estimateresponse, [("encoding_file",
                                                      "encoding_file")])])
    mapping.connect([(threshold_FA, estimateresponse, [("out_file",
                                                        "mask_image")])])
    """
    Run constrained spherical deconvolution.
    """

    mapping.connect([(eddycorrect, csdeconv, [("outputnode.eddy_corrected",
                                               "in_file")])])
    mapping.connect([(gen_WM_mask, csdeconv, [("WMprobabilitymap",
                                               "mask_image")])])
    mapping.connect([(estimateresponse, csdeconv, [("response",
                                                    "response_file")])])
    mapping.connect([(fsl2mrtrix, csdeconv, [("encoding_file", "encoding_file")
                                             ])])
    """
    Connect the tractography and compute the tract density image.
    """

    mapping.connect([(threshold_wmmask, probCSDstreamtrack, [("out_file",
                                                              "seed_file")])])
    mapping.connect([(csdeconv, probCSDstreamtrack,
                      [("spherical_harmonics_image", "in_file")])])
    mapping.connect([(probCSDstreamtrack, tracks2prob, [("tracked", "in_file")
                                                        ])])
    mapping.connect([(eddycorrect, tracks2prob, [("outputnode.eddy_corrected",
                                                  "template_file")])])
    mapping.connect([(tracks2prob, MRconvert_tracks2prob, [("tract_image",
                                                            "in_file")])])
    """
    Structural Processing
    ---------------------
    First, we coregister the diffusion image to the structural image
    """

    mapping.connect([(eddycorrect, coregister, [("outputnode.eddy_corrected",
                                                 "in_file")])])
    mapping.connect([(mri_convert_Brain, coregister, [('out_file', 'reference')
                                                      ])])
    """
    The MRtrix-tracked fibers are converted to TrackVis format (with voxel and data dimensions grabbed from the DWI).
    The connectivity matrix is created with the transformed .trk fibers and the parcellation file.
    """

    mapping.connect([(eddycorrect, tck2trk, [("outputnode.eddy_corrected",
                                              "image_file")])])
    mapping.connect([(mri_convert_Brain, tck2trk,
                      [("out_file", "registration_image_file")])])
    mapping.connect([(coregister, tck2trk, [("out_matrix_file", "matrix_file")
                                            ])])
    mapping.connect([(probCSDstreamtrack, tck2trk, [("tracked", "in_file")])])
    mapping.connect([(tck2trk, creatematrix, [("out_file", "tract_file")])])
    mapping.connect(inputnode_within, 'resolution_network_file', creatematrix,
                    'resolution_network_file')
    mapping.connect([(inputnode_within, creatematrix, [("subject_id",
                                                        "out_matrix_file")])])
    mapping.connect([(inputnode_within, creatematrix,
                      [("subject_id", "out_matrix_mat_file")])])
    mapping.connect([(parcellate, creatematrix, [("roi_file", "roi_file")])])
    """
    The merge nodes defined earlier are used here to create lists of the files which are
    destined for the CFFConverter.
    """

    mapping.connect([(mris_convertLH, giftiSurfaces, [("converted", "in1")])])
    mapping.connect([(mris_convertRH, giftiSurfaces, [("converted", "in2")])])
    mapping.connect([(mris_convertLHwhite, giftiSurfaces, [("converted", "in3")
                                                           ])])
    mapping.connect([(mris_convertRHwhite, giftiSurfaces, [("converted", "in4")
                                                           ])])
    mapping.connect([(mris_convertLHinflated, giftiSurfaces, [("converted",
                                                               "in5")])])
    mapping.connect([(mris_convertRHinflated, giftiSurfaces, [("converted",
                                                               "in6")])])
    mapping.connect([(mris_convertLHsphere, giftiSurfaces, [("converted",
                                                             "in7")])])
    mapping.connect([(mris_convertRHsphere, giftiSurfaces, [("converted",
                                                             "in8")])])

    mapping.connect([(mris_convertLHlabels, giftiLabels, [("converted", "in1")
                                                          ])])
    mapping.connect([(mris_convertRHlabels, giftiLabels, [("converted", "in2")
                                                          ])])

    mapping.connect([(parcellate, niftiVolumes, [("roi_file", "in1")])])
    mapping.connect([(eddycorrect, niftiVolumes, [("outputnode.eddy_corrected",
                                                   "in2")])])
    mapping.connect([(mri_convert_Brain, niftiVolumes, [("out_file", "in3")])])

    mapping.connect([(creatematrix, fiberDataArrays, [("endpoint_file", "in1")
                                                      ])])
    mapping.connect([(creatematrix, fiberDataArrays, [("endpoint_file_mm",
                                                       "in2")])])
    mapping.connect([(creatematrix, fiberDataArrays, [("fiber_length_file",
                                                       "in3")])])
    mapping.connect([(creatematrix, fiberDataArrays, [("fiber_label_file",
                                                       "in4")])])
    """
    This block actually connects the merged lists to the CFF converter. We pass the surfaces
    and volumes that are to be included, as well as the tracts and the network itself. The currently
    running pipeline (dmri_connectivity_advanced.py) is also scraped and included in the CFF file. This
    makes it easy for the user to examine the entire processing pathway used to generate the end
    product.
    """

    mapping.connect([(giftiSurfaces, CFFConverter, [("out", "gifti_surfaces")])
                     ])
    mapping.connect([(giftiLabels, CFFConverter, [("out", "gifti_labels")])])
    mapping.connect([(creatematrix, CFFConverter, [("matrix_files",
                                                    "gpickled_networks")])])
    mapping.connect([(niftiVolumes, CFFConverter, [("out", "nifti_volumes")])])
    mapping.connect([(fiberDataArrays, CFFConverter, [("out", "data_files")])])
    mapping.connect([(creatematrix, CFFConverter, [("filtered_tractography",
                                                    "tract_files")])])
    mapping.connect([(inputnode_within, CFFConverter, [("subject_id", "title")
                                                       ])])
    """
    The graph theoretical metrics which have been generated are placed into another CFF file.
    """

    mapping.connect([(inputnode_within, networkx,
                      [("subject_id", "inputnode.extra_field")])])
    mapping.connect([(creatematrix, networkx, [("intersection_matrix_file",
                                                "inputnode.network_file")])])

    mapping.connect([(networkx, NxStatsCFFConverter,
                      [("outputnode.network_files", "gpickled_networks")])])
    mapping.connect([(giftiSurfaces, NxStatsCFFConverter,
                      [("out", "gifti_surfaces")])])
    mapping.connect([(giftiLabels, NxStatsCFFConverter, [("out",
                                                          "gifti_labels")])])
    mapping.connect([(niftiVolumes, NxStatsCFFConverter, [("out",
                                                           "nifti_volumes")])])
    mapping.connect([(fiberDataArrays, NxStatsCFFConverter, [("out",
                                                              "data_files")])])
    mapping.connect([(inputnode_within, NxStatsCFFConverter, [("subject_id",
                                                               "title")])])

    mapping.connect([(inputnode_within, cmats_to_csv,
                      [("subject_id", "inputnode.extra_field")])])
    mapping.connect([(creatematrix, cmats_to_csv, [
        ("matlab_matrix_files", "inputnode.matlab_matrix_files")
    ])])
    mapping.connect([(creatematrix, nfibs_to_csv, [("stats_file", "in_file")])
                     ])
    mapping.connect([(nfibs_to_csv, merge_nfib_csvs, [("csv_files", "in_files")
                                                      ])])
    mapping.connect([(inputnode_within, merge_nfib_csvs, [("subject_id",
                                                           "extra_field")])])
    """
    Create a higher-level workflow
    --------------------------------------
    Finally, we create another higher-level workflow to connect our mapping workflow with the info and datagrabbing nodes
    declared at the beginning. Our tutorial can is now extensible to any arbitrary number of subjects by simply adding
    their names to the subject list and their data to the proper folders.
    """

    inputnode = pe.Node(interface=util.IdentityInterface(
        fields=["subject_id", "dwi", "bvecs", "bvals", "subjects_dir"]),
                        name="inputnode")

    outputnode = pe.Node(interface=util.IdentityInterface(fields=[
        "fa", "struct", "tracts", "tracks2prob", "connectome", "nxstatscff",
        "nxmatlab", "nxcsv", "fiber_csv", "cmatrices_csv", "nxmergedcsv",
        "cmatrix", "networks", "filtered_tracts", "rois", "odfs", "tdi",
        "mean_fiber_length", "median_fiber_length", "fiber_length_std"
    ]),
                         name="outputnode")

    connectivity = pe.Workflow(name="connectivity")
    connectivity.base_output_dir = name
    connectivity.base_dir = name

    connectivity.connect([(inputnode, mapping, [
        ("dwi", "inputnode_within.dwi"), ("bvals", "inputnode_within.bvals"),
        ("bvecs", "inputnode_within.bvecs"),
        ("subject_id", "inputnode_within.subject_id"),
        ("subjects_dir", "inputnode_within.subjects_dir")
    ])])

    connectivity.connect([(mapping, outputnode, [
        ("tck2trk.out_file", "tracts"),
        ("CFFConverter.connectome_file", "connectome"),
        ("NxStatsCFFConverter.connectome_file", "nxstatscff"),
        ("CreateMatrix.matrix_mat_file", "cmatrix"),
        ("CreateMatrix.mean_fiber_length_matrix_mat_file",
         "mean_fiber_length"),
        ("CreateMatrix.median_fiber_length_matrix_mat_file",
         "median_fiber_length"),
        ("CreateMatrix.fiber_length_std_matrix_mat_file", "fiber_length_std"),
        ("CreateMatrix.matrix_files", "networks"),
        ("CreateMatrix.filtered_tractographies", "filtered_tracts"),
        ("merge_nfib_csvs.csv_file", "fiber_csv"),
        ("mri_convert_ROI_scale500.out_file", "rois"),
        ("csdeconv.spherical_harmonics_image", "odfs"),
        ("mri_convert_Brain.out_file", "struct"),
        ("MRconvert_fa.converted", "fa"),
        ("MRconvert_tracks2prob.converted", "tracks2prob")
    ])])

    connectivity.connect([(cmats_to_csv, outputnode, [("outputnode.csv_file",
                                                       "cmatrices_csv")])])
    connectivity.connect([(networkx, outputnode, [("outputnode.csv_files",
                                                   "nxcsv")])])
    return connectivity
예제 #15
0
def create_epi_t1_nonlinear_pipeline(name='epi_t1_nonlinear'):
    """Creates a pipeline that performs nonlinear EPI to T1 registration using 
    the antsRegistration tool. Beforehand, the T1 image has to be processed in 
    freesurfer and the EPI timeseries should be realigned.

    Example
    -------

    >>> nipype_epi_t1_nonlin = create_epi_t1_nonlinear_pipeline('nipype_epi_t1_nonlin')
    >>> nipype_epi_t1_nonlin.inputs.inputnode.fs_subject_id = '123456'
    >>> nipype_epi_t1_nonlin.inputs.inputnode.fs_subjects_dir = '/project/data/freesurfer'
    >>> nipype_epi_t1_nonlin.inputs.inputnode.realigned_epi = 'mcflirt.nii.gz'
    >>> nipype_epi_t1_nonlin.run()

    Inputs::

        inputnode.fs_subject_id    # subject id used in freesurfer
        inputnode.fs_subjects_dir  # path to freesurfer output
        inputnode.realigned_epi    # realigned EPI timeseries

    Outputs::

        outputnode.lin_epi2anat     # ITK format
        outputnode.lin_anat2epi     # ITK format
        outputnode.nonlin_epi2anat  # ANTs specific 5D deformation field
        outputnode.nonlin_anat2epi  # ANTs specific 5D deformation field

    """

    nonreg = Workflow(name='epi_t1_nonlinear')

    # input
    inputnode = Node(interface=util.IdentityInterface(
        fields=['fs_subject_id', 'fs_subjects_dir', 'realigned_epi']),
                     name='inputnode')

    # calculate the temporal mean image of the realigned timeseries
    tmean = Node(interface=fsl.maths.MeanImage(dimension='T',
                                               output_type='NIFTI_GZ'),
                 name='tmean')

    nonreg.connect(inputnode, 'realigned_epi', tmean, 'in_file')

    # import brain.mgz and ribbon.mgz from freesurfer directory
    fs_import = Node(interface=nio.FreeSurferSource(),
                     name='freesurfer_import')

    nonreg.connect(inputnode, 'fs_subjects_dir', fs_import, 'subjects_dir')
    nonreg.connect(inputnode, 'fs_subject_id', fs_import, 'subject_id')

    # convert brain.mgz to niigz
    mriconvert = Node(interface=fs.MRIConvert(out_type='niigz'),
                      name='mriconvert')

    nonreg.connect(fs_import, 'brain', mriconvert, 'in_file')

    # calculate rigid transformation of mean epi to t1 with bbregister
    bbregister = Node(interface=fs.BBRegister(init='fsl',
                                              contrast_type='t2',
                                              out_fsl_file=True),
                      name='bbregister')

    nonreg.connect(inputnode, 'fs_subjects_dir', bbregister, 'subjects_dir')
    nonreg.connect(inputnode, 'fs_subject_id', bbregister, 'subject_id')
    nonreg.connect(tmean, 'out_file', bbregister, 'source_file')

    # convert linear transformation to itk format compatible with ants
    itk = Node(interface=c3.C3dAffineTool(fsl2ras=True,
                                          itk_transform='epi2anat_affine.txt'),
               name='itk')

    nonreg.connect(tmean, 'out_file', itk, 'source_file')
    nonreg.connect(mriconvert, 'out_file', itk, 'reference_file')
    nonreg.connect(bbregister, 'out_fsl_file', itk, 'transform_file')

    # get aparc aseg mask
    # create brainmask from aparc+aseg
    def get_aparc_aseg(files):
        for name in files:
            if 'aparc+aseg' in name:
                return name

    aparc_aseg_mask = Node(fs.Binarize(min=0.1,
                                       dilate=10,
                                       erode=7,
                                       out_type='nii.gz',
                                       binary_file='aparc_aseg_mask.nii.gz'),
                           name='aparc_aseg_mask')

    # fill holes in mask
    fillholes = Node(fsl.maths.MathsCommand(args='-fillh'), name='fillholes')

    nonreg.connect([(fs_import, aparc_aseg_mask, [
        (('aparc_aseg', get_aparc_aseg), 'in_file')
    ]), (aparc_aseg_mask, fillholes, [('binary_file', 'in_file')])])

    #create bounding box mask and rigidly transform into anatomical (fs) space
    fov = Node(interface=fs.model.Binarize(min=0.0, out_type='nii.gz'),
               name='fov')

    nonreg.connect(tmean, 'out_file', fov, 'in_file')

    fov_trans = Node(interface=ants.resampling.ApplyTransforms(
        dimension=3, interpolation='NearestNeighbor'),
                     name='fov_trans')

    nonreg.connect(itk, ('itk_transform', filename_to_list), fov_trans,
                   'transforms')
    nonreg.connect(fov, 'binary_file', fov_trans, 'input_image')
    nonreg.connect(fillholes, 'out_file', fov_trans, 'reference_image')
    #nonreg.connect(ribbon, 'binary_file', fov_trans, 'reference_image')

    # intersect both masks
    intersect = Node(interface=fsl.maths.BinaryMaths(operation='mul'),
                     name='intersect')

    nonreg.connect(fillholes, 'out_file', intersect, 'in_file')
    #nonreg.connect(ribbon, 'binary_file', intersect, 'in_file')
    nonreg.connect(fov_trans, 'output_image', intersect, 'operand_file')

    # inversly transform mask and mask original epi
    mask_trans = Node(interface=ants.resampling.ApplyTransforms(
        dimension=3,
        interpolation='NearestNeighbor',
        invert_transform_flags=[True]),
                      name='mask_trans')

    nonreg.connect(itk, ('itk_transform', filename_to_list), mask_trans,
                   'transforms')
    nonreg.connect(intersect, 'out_file', mask_trans, 'input_image')
    nonreg.connect(tmean, 'out_file', mask_trans, 'reference_image')

    maskepi = Node(interface=fs.utils.ApplyMask(), name='maskepi')

    nonreg.connect(mask_trans, 'output_image', maskepi, 'mask_file')
    nonreg.connect(tmean, 'out_file', maskepi, 'in_file')

    # mask anatomical image (brain)
    maskanat = Node(interface=fs.utils.ApplyMask(), name='maskanat')

    nonreg.connect(intersect, 'out_file', maskanat, 'mask_file')
    nonreg.connect(mriconvert, 'out_file', maskanat, 'in_file')

    # invert masked anatomical image
    anat_min_max = Node(interface=fsl.utils.ImageStats(op_string='-R'),
                        name='anat_min_max')
    epi_min_max = Node(interface=fsl.utils.ImageStats(op_string='-r'),
                       name='epi_min_max')

    nonreg.connect(maskanat, 'out_file', anat_min_max, 'in_file')
    nonreg.connect(tmean, 'out_file', epi_min_max, 'in_file')

    def calc_inversion(anat_min_max, epi_min_max):
        mul = -(epi_min_max[1] - epi_min_max[0]) / (anat_min_max[1] -
                                                    anat_min_max[0])
        add = abs(anat_min_max[1] * mul) + epi_min_max[0]
        return mul, add

    calcinv = Node(interface=Function(
        input_names=['anat_min_max', 'epi_min_max'],
        output_names=['mul', 'add'],
        function=calc_inversion),
                   name='calcinv')

    nonreg.connect(anat_min_max, 'out_stat', calcinv, 'anat_min_max')
    nonreg.connect(epi_min_max, 'out_stat', calcinv, 'epi_min_max')

    mulinv = Node(interface=fsl.maths.BinaryMaths(operation='mul'),
                  name='mulinv')
    addinv = Node(interface=fsl.maths.BinaryMaths(operation='add'),
                  name='addinv')

    nonreg.connect(maskanat, 'out_file', mulinv, 'in_file')
    nonreg.connect(calcinv, 'mul', mulinv, 'operand_value')
    nonreg.connect(mulinv, 'out_file', addinv, 'in_file')
    nonreg.connect(calcinv, 'add', addinv, 'operand_value')

    # nonlinear transformation of masked anat to masked epi with ants
    antsreg = Node(interface=ants.registration.Registration(
        dimension=3,
        invert_initial_moving_transform=True,
        metric=['CC'],
        metric_weight=[1.0],
        radius_or_number_of_bins=[4],
        sampling_strategy=['None'],
        transforms=['SyN'],
        args='-g .1x1x.1',
        transform_parameters=[(0.10, 3, 0)],
        number_of_iterations=[[10, 5]],
        convergence_threshold=[1e-06],
        convergence_window_size=[10],
        shrink_factors=[[2, 1]],
        smoothing_sigmas=[[1, 0.5]],
        sigma_units=['vox'],
        use_estimate_learning_rate_once=[True],
        use_histogram_matching=[True],
        collapse_output_transforms=True,
        output_inverse_warped_image=True,
        output_warped_image=True),
                   name='antsreg')

    nonreg.connect(itk, 'itk_transform', antsreg, 'initial_moving_transform')
    nonreg.connect(maskepi, 'out_file', antsreg, 'fixed_image')
    nonreg.connect(addinv, 'out_file', antsreg, 'moving_image')

    # output

    def second_element(file_list):
        return file_list[1]

    def first_element(file_list):
        return file_list[0]

    outputnode = Node(interface=util.IdentityInterface(fields=[
        'lin_epi2anat', 'lin_anat2epi', 'nonlin_epi2anat', 'nonlin_anat2epi'
    ]),
                      name='outputnode')

    nonreg.connect(itk, 'itk_transform', outputnode, 'lin_epi2anat')
    nonreg.connect(antsreg, ('forward_transforms', first_element), outputnode,
                   'lin_anat2epi')
    nonreg.connect(antsreg, ('forward_transforms', second_element), outputnode,
                   'nonlin_anat2epi')
    nonreg.connect(antsreg, ('reverse_transforms', second_element), outputnode,
                   'nonlin_epi2anat')

    return nonreg
예제 #16
0
def create_workflow(func_runs,
                    subject_id,
                    subjects_dir,
                    fwhm,
                    slice_times,
                    highpass_frequency,
                    lowpass_frequency,
                    TR,
                    sink_directory,
                    use_fsl_bp,
                    num_components,
                    whichvol,
                    name='wmaze'):
    
    wf = pe.Workflow(name=name)

    datasource = pe.Node(nio.DataGrabber(infields=['subject_id', 'run'],
                                         outfields=['func']),
                         name='datasource')
    datasource.inputs.subject_id = subject_id
    datasource.inputs.run = func_runs
    datasource.inputs.template = '/home/data/madlab/data/mri/wmaze/%s/bold/bold_%03d/bold.nii.gz'
    datasource.inputs.sort_filelist = True
    
    # Rename files in case they are named identically
    name_unique = pe.MapNode(util.Rename(format_string='wmaze_%(run)02d'),
                             iterfield = ['in_file', 'run'],
                             name='rename')
    name_unique.inputs.keep_ext = True
    name_unique.inputs.run = func_runs
    wf.connect(datasource, 'func', name_unique, 'in_file')

    # Define the outputs for the preprocessing workflow
    output_fields = ['reference',
                     'motion_parameters',
                     'motion_parameters_plusDerivs',
                     'motionandoutlier_noise_file',
                     'noise_components',
                     'realigned_files',
                     'motion_plots',
                     'mask_file',
                     'smoothed_files',
                     'bandpassed_files',
                     'reg_file',
                     'reg_cost',
                     'reg_fsl_file',
                     'artnorm_files',
                     'artoutlier_files',
                     'artdisplacement_files',
                     'tsnr_file']
        
    outputnode = pe.Node(util.IdentityInterface(fields=output_fields),
                         name='outputspec')

    # Convert functional images to float representation
    img2float = pe.MapNode(fsl.ImageMaths(out_data_type='float',
                                        op_string = '',
                                        suffix='_dtype'),
                           iterfield=['in_file'],
                           name='img2float')
    wf.connect(name_unique, 'out_file', img2float, 'in_file')

    # Run AFNI's despike. This is always run, however, whether this is fed to
    # realign depends on the input configuration
    despiker = pe.MapNode(afni.Despike(outputtype='NIFTI_GZ'),
                          iterfield=['in_file'],
                          name='despike')
    num_threads = 4
    despiker.inputs.environ = {'OMP_NUM_THREADS': '%d' % num_threads}
    despiker.plugin_args = {'bsub_args': '-n %d' % num_threads}
    despiker.plugin_args = {'bsub_args': '-R "span[hosts=1]"'}
    wf.connect(img2float, 'out_file', despiker, 'in_file')

    # Extract the first volume of the first run as the reference 
    extractref = pe.Node(fsl.ExtractROI(t_size=1),
                         iterfield=['in_file'],
                         name = "extractref")
    wf.connect(despiker, ('out_file', pickfirst), extractref, 'in_file')
    wf.connect(despiker, ('out_file', pickvol, 0, whichvol), extractref, 't_min')
    wf.connect(extractref, 'roi_file', outputnode, 'reference')

    if slice_times is not None:
        # Simultaneous motion and slice timing correction with Nipy algorithm
        motion_correct = pe.Node(nipy.SpaceTimeRealigner(), name='motion_correct')
        motion_correct.inputs.tr = TR
        motion_correct.inputs.slice_times = slice_times
        motion_correct.inputs.slice_info = 2
        motion_correct.plugin_args = {'bsub_args': '-n %s' %os.environ['MKL_NUM_THREADS']}
        motion_correct.plugin_args = {'bsub_args': '-R "span[hosts=1]"'}
        wf.connect(despiker, 'out_file', motion_correct, 'in_file')
        wf.connect(motion_correct, 'par_file', outputnode, 'motion_parameters')
        wf.connect(motion_correct, 'out_file', outputnode, 'realigned_files')
    else:
        # Motion correct functional runs to the reference (1st volume of 1st run)
        motion_correct =  pe.MapNode(fsl.MCFLIRT(save_mats = True,
                                                 save_plots = True,
                                                 interpolation = 'sinc'),
                                     name = 'motion_correct',
                                     iterfield = ['in_file'])
        wf.connect(despiker, 'out_file', motion_correct, 'in_file')
        wf.connect(extractref, 'roi_file', motion_correct, 'ref_file')
        wf.connect(motion_correct, 'par_file', outputnode, 'motion_parameters')
        wf.connect(motion_correct, 'out_file', outputnode, 'realigned_files')

    # Compute TSNR on realigned data regressing polynomials upto order 2
    tsnr = pe.MapNode(TSNR(regress_poly=2), iterfield=['in_file'], name='tsnr')
    wf.connect(motion_correct, 'out_file', tsnr, 'in_file')
    wf.connect(tsnr, 'tsnr_file', outputnode, 'tsnr_file')

    # Plot the estimated motion parameters
    plot_motion = pe.MapNode(fsl.PlotMotionParams(in_source='fsl'),
                             name='plot_motion',
                             iterfield=['in_file'])
    plot_motion.iterables = ('plot_type', ['rotations', 'translations'])
    wf.connect(motion_correct, 'par_file', plot_motion, 'in_file')
    wf.connect(plot_motion, 'out_file', outputnode, 'motion_plots')

    # Register a source file to fs space and create a brain mask in source space
    fssource = pe.Node(nio.FreeSurferSource(),
                       name ='fssource')
    fssource.inputs.subject_id = subject_id
    fssource.inputs.subjects_dir = subjects_dir

    # Extract aparc+aseg brain mask and binarize
    fs_threshold = pe.Node(fs.Binarize(min=0.5, out_type='nii'),
                           name ='fs_threshold')
    wf.connect(fssource, ('aparc_aseg', get_aparc_aseg), fs_threshold, 'in_file')

    # Calculate the transformation matrix from EPI space to FreeSurfer space
    # using the BBRegister command
    fs_register = pe.MapNode(fs.BBRegister(init='fsl'),
                             iterfield=['source_file'],
                             name ='fs_register')
    fs_register.inputs.contrast_type = 't2'
    fs_register.inputs.out_fsl_file = True
    fs_register.inputs.subject_id = subject_id
    fs_register.inputs.subjects_dir = subjects_dir
    wf.connect(extractref, 'roi_file', fs_register, 'source_file')
    wf.connect(fs_register, 'out_reg_file', outputnode, 'reg_file')
    wf.connect(fs_register, 'min_cost_file', outputnode, 'reg_cost')
    wf.connect(fs_register, 'out_fsl_file', outputnode, 'reg_fsl_file')

    # Extract wm+csf, brain masks by eroding freesurfer lables
    wmcsf = pe.MapNode(fs.Binarize(), 
                       iterfield=['match', 'binary_file', 'erode'], name='wmcsfmask')
    #wmcsf.inputs.wm_ven_csf = True
    wmcsf.inputs.match = [[2, 41], [4, 5, 14, 15, 24, 31, 43, 44, 63]]
    wmcsf.inputs.binary_file = ['wm.nii.gz', 'csf.nii.gz']
    wmcsf.inputs.erode = [2, 2] #int(np.ceil(slice_thickness))
    wf.connect(fssource, ('aparc_aseg', get_aparc_aseg), wmcsf, 'in_file')

    # Now transform the wm and csf masks to 1st volume of 1st run
    wmcsftransform = pe.MapNode(fs.ApplyVolTransform(inverse=True,
                                                     interp='nearest'),
                                iterfield=['target_file'],
                                name='wmcsftransform')
    wmcsftransform.inputs.subjects_dir = subjects_dir
    wf.connect(extractref, 'roi_file', wmcsftransform, 'source_file')
    wf.connect(fs_register, ('out_reg_file', pickfirst), wmcsftransform, 'reg_file')
    wf.connect(wmcsf, 'binary_file', wmcsftransform, 'target_file')

    # Transform the binarized aparc+aseg file to the 1st volume of 1st run space
    fs_voltransform = pe.MapNode(fs.ApplyVolTransform(inverse=True),
                                 iterfield = ['source_file', 'reg_file'],
                                 name='fs_transform')
    fs_voltransform.inputs.subjects_dir = subjects_dir
    wf.connect(extractref, 'roi_file', fs_voltransform, 'source_file')
    wf.connect(fs_register, 'out_reg_file', fs_voltransform, 'reg_file')
    wf.connect(fs_threshold, 'binary_file', fs_voltransform, 'target_file')

    # Dilate the binarized mask by 1 voxel that is now in the EPI space
    fs_threshold2 = pe.MapNode(fs.Binarize(min=0.5, out_type='nii'),
                               iterfield=['in_file'],
                               name='fs_threshold2')
    fs_threshold2.inputs.dilate = 1
    wf.connect(fs_voltransform, 'transformed_file', fs_threshold2, 'in_file')
    wf.connect(fs_threshold2, 'binary_file', outputnode, 'mask_file')
    
    # Use RapidART to detect motion/intensity outliers
    art = pe.MapNode(ra.ArtifactDetect(use_differences = [True, False],
                                       use_norm = True,
                                       zintensity_threshold = 3,
                                       norm_threshold = 1,
                                       bound_by_brainmask=True,
                                       mask_type = "file"),
                     iterfield=["realignment_parameters","realigned_files"],
                     name="art")
    if slice_times is not None:
        art.inputs.parameter_source = "NiPy"
    else:
        art.inputs.parameter_source = "FSL"
    wf.connect(motion_correct, 'par_file', art, 'realignment_parameters')
    wf.connect(motion_correct, 'out_file', art, 'realigned_files')
    wf.connect(fs_threshold2, ('binary_file', pickfirst), art, 'mask_file')
    wf.connect(art, 'norm_files', outputnode, 'artnorm_files')
    wf.connect(art, 'outlier_files', outputnode, 'artoutlier_files')
    wf.connect(art, 'displacement_files', outputnode, 'artdisplacement_files')

    # Compute motion regressors (save file with 1st and 2nd derivatives)
    motreg = pe.Node(util.Function(input_names=['motion_params', 'order',
                                                'derivatives'],
                                   output_names=['out_files'],
                                   function=motion_regressors,
                                   imports=imports),
                     name='getmotionregress')
    wf.connect(motion_correct, 'par_file', motreg, 'motion_params')
    wf.connect(motreg, 'out_files', outputnode, 'motion_parameters_plusDerivs')

    # Create a filter text file to remove motion (+ derivatives), art confounds,
    # and 1st, 2nd, and 3rd order legendre polynomials.
    createfilter1 = pe.Node(util.Function(input_names=['motion_params', 'comp_norm',
                                                       'outliers', 'detrend_poly'],
                                          output_names=['out_files'],
                                          function=build_filter1,
                                          imports=imports),
                            name='makemotionbasedfilter')
    createfilter1.inputs.detrend_poly = 3
    wf.connect(motreg, 'out_files', createfilter1, 'motion_params')
    wf.connect(art, 'norm_files', createfilter1, 'comp_norm')
    wf.connect(art, 'outlier_files', createfilter1, 'outliers')
    wf.connect(createfilter1, 'out_files', outputnode, 'motionandoutlier_noise_file')

    # Create a filter to remove noise components based on white matter and CSF
    createfilter2 = pe.MapNode(util.Function(input_names=['realigned_file', 'mask_file',
                                                          'num_components',
                                                          'extra_regressors'],
                                             output_names=['out_files'],
                                             function=extract_noise_components,
                                             imports=imports),
                               iterfield=['realigned_file', 'extra_regressors'],
                               name='makecompcorrfilter')
    createfilter2.inputs.num_components = num_components
    wf.connect(createfilter1, 'out_files', createfilter2, 'extra_regressors')
    wf.connect(motion_correct, 'out_file', createfilter2, 'realigned_file')
    wf.connect(wmcsftransform, 'transformed_file', createfilter2, 'mask_file')
    wf.connect(createfilter2, 'out_files', outputnode, 'noise_components')

    # Mask the functional runs with the extracted mask
    maskfunc = pe.MapNode(fsl.ImageMaths(suffix='_bet',
                                         op_string='-mas'),
                          iterfield=['in_file'],
                          name = 'maskfunc')
    wf.connect(motion_correct, 'out_file', maskfunc, 'in_file')
    wf.connect(fs_threshold2, ('binary_file', pickfirst), maskfunc, 'in_file2')
    
    # Smooth each run using SUSAn with the brightness threshold set to 75%
    # of the median value for each run and a mask constituting the mean functional
    smooth_median = pe.MapNode(fsl.ImageStats(op_string='-k %s -p 50'),
                               iterfield = ['in_file'],
                               name='smooth_median')
    wf.connect(maskfunc, 'out_file', smooth_median, 'in_file')
    wf.connect(fs_threshold2, ('binary_file', pickfirst), smooth_median, 'mask_file')
    
    smooth_meanfunc = pe.MapNode(fsl.ImageMaths(op_string='-Tmean',
                                                suffix='_mean'),
                                 iterfield=['in_file'],
                                 name='smooth_meanfunc')
    wf.connect(maskfunc, 'out_file', smooth_meanfunc, 'in_file')

    smooth_merge = pe.Node(util.Merge(2, axis='hstack'),
                           name='smooth_merge')
    wf.connect(smooth_meanfunc, 'out_file', smooth_merge, 'in1')
    wf.connect(smooth_median, 'out_stat', smooth_merge, 'in2')

    smooth = pe.MapNode(fsl.SUSAN(),
                        iterfield=['in_file', 'brightness_threshold', 'usans'],
                        name='smooth')
    smooth.inputs.fwhm=fwhm
    wf.connect(maskfunc, 'out_file', smooth, 'in_file')
    wf.connect(smooth_median, ('out_stat', getbtthresh), smooth, 'brightness_threshold')
    wf.connect(smooth_merge, ('out', getusans), smooth, 'usans')
    
    # Mask the smoothed data with the dilated mask
    maskfunc2 = pe.MapNode(fsl.ImageMaths(suffix='_mask',
                                          op_string='-mas'),
                           iterfield=['in_file'],
                           name='maskfunc2')
    wf.connect(smooth, 'smoothed_file', maskfunc2, 'in_file')
    wf.connect(fs_threshold2, ('binary_file', pickfirst), maskfunc2, 'in_file2')
    wf.connect(maskfunc2, 'out_file', outputnode, 'smoothed_files')

    # Band-pass filter the timeseries
    if use_fsl_bp == 'True':
        determine_bp_sigmas = pe.Node(util.Function(input_names=['tr',
                                                                 'highpass_freq',
                                                                 'lowpass_freq'],
                                                    output_names = ['out_sigmas'],
                                                    function=calc_fslbp_sigmas),
                                      name='determine_bp_sigmas')
        determine_bp_sigmas.inputs.tr = float(TR)
        determine_bp_sigmas.inputs.highpass_freq = float(highpass_frequency)
        determine_bp_sigmas.inputs.lowpass_freq = float(lowpass_frequency)

        bandpass = pe.MapNode(fsl.ImageMaths(suffix='_tempfilt'),
                              iterfield=["in_file"],
                              name="bandpass")
        wf.connect(determine_bp_sigmas, ('out_sigmas', highpass_operand), bandpass, 'op_string')
        wf.connect(maskfunc2, 'out_file', bandpass, 'in_file')
        wf.connect(bandpass, 'out_file', outputnode, 'bandpassed_files')
    else:
        bandpass = pe.Node(util.Function(input_names=['files',
                                                      'lowpass_freq',
                                                      'highpass_freq',
                                                      'fs'],
                                         output_names=['out_files'],
                                         function=bandpass_filter,
                                         imports=imports),
                           name='bandpass')
        bandpass.inputs.fs = 1./TR
        if highpass_frequency < 0:
            bandpass.inputs.highpass_freq = -1
        else:
            bandpass.inputs.highpass_freq = highpass_frequency
        if lowpass_frequency < 0:
            bandpass.inputs.lowpass_freq = -1
        else:
            bandpass.inputs.lowpass_freq = lowpass_frequency
        wf.connect(maskfunc2, 'out_file', bandpass, 'files')
        wf.connect(bandpass, 'out_files', outputnode, 'bandpassed_files')

    # Save the relevant data into an output directory
    datasink = pe.Node(nio.DataSink(), name="datasink")
    datasink.inputs.base_directory = sink_directory
    datasink.inputs.container = subject_id
    wf.connect(outputnode, 'reference', datasink, 'ref')
    wf.connect(outputnode, 'motion_parameters', datasink, 'motion')
    wf.connect(outputnode, 'realigned_files', datasink, 'func.realigned')
    wf.connect(outputnode, 'motion_plots', datasink, 'motion.@plots')
    wf.connect(outputnode, 'mask_file', datasink, 'ref.@mask')
    wf.connect(outputnode, 'smoothed_files', datasink, 'func.smoothed_fullspectrum')
    wf.connect(outputnode, 'bandpassed_files', datasink, 'func.smoothed_bandpassed')
    wf.connect(outputnode, 'reg_file', datasink, 'bbreg.@reg')
    wf.connect(outputnode, 'reg_cost', datasink, 'bbreg.@cost')
    wf.connect(outputnode, 'reg_fsl_file', datasink, 'bbreg.@regfsl')
    wf.connect(outputnode, 'artnorm_files', datasink, 'art.@norm_files')
    wf.connect(outputnode, 'artoutlier_files', datasink, 'art.@outlier_files')
    wf.connect(outputnode, 'artdisplacement_files', datasink, 'art.@displacement_files')
    wf.connect(outputnode, 'motion_parameters_plusDerivs', datasink, 'noise.@motionplusDerivs')
    wf.connect(outputnode, 'motionandoutlier_noise_file', datasink, 'noise.@motionplusoutliers')
    wf.connect(outputnode, 'noise_components', datasink, 'compcor')
    wf.connect(outputnode, 'tsnr_file', datasink, 'tsnr')    

    return wf
예제 #17
0
def create_confound_removal_workflow(workflow_name="confound_removal"):

    inputnode = pe.Node(util.IdentityInterface(
        fields=["subject_id", "timeseries", "reg_file", "motion_parameters"]),
                        name="inputs")

    # Get the Freesurfer aseg volume from the Subjects Directory
    getaseg = pe.Node(io.FreeSurferSource(subjects_dir=fs.Info.subjectsdir()),
                      name="getaseg")

    # Binarize the Aseg to use as a whole brain mask
    asegmask = pe.Node(fs.Binarize(min=0.5, dilate=2), name="asegmask")

    # Extract and erode a mask of the deep cerebral white matter
    extractwm = pe.Node(fs.Binarize(match=[2, 41], erode=3), name="extractwm")

    # Extract and erode a mask of the ventricles and CSF
    extractcsf = pe.Node(fs.Binarize(match=[4, 5, 14, 15, 24, 31, 43, 44, 63],
                                     erode=1),
                         name="extractcsf")

    # Mean the timeseries across the fourth dimension
    meanfunc = pe.MapNode(fsl.MeanImage(),
                          iterfield=["in_file"],
                          name="meanfunc")

    # Invert the anatomical coregistration and resample the masks
    regwm = pe.MapNode(fs.ApplyVolTransform(inverse=True, interp="nearest"),
                       iterfield=["source_file", "reg_file"],
                       name="regwm")

    regcsf = pe.MapNode(fs.ApplyVolTransform(inverse=True, interp="nearest"),
                        iterfield=["source_file", "reg_file"],
                        name="regcsf")

    regbrain = pe.MapNode(fs.ApplyVolTransform(inverse=True, interp="nearest"),
                          iterfield=["source_file", "reg_file"],
                          name="regbrain")

    # Convert to Nifti for FSL tools
    convertwm = pe.MapNode(fs.MRIConvert(out_type="niigz"),
                           iterfield=["in_file"],
                           name="convertwm")

    convertcsf = pe.MapNode(fs.MRIConvert(out_type="niigz"),
                            iterfield=["in_file"],
                            name="convertcsf")

    convertbrain = pe.MapNode(fs.MRIConvert(out_type="niigz"),
                              iterfield=["in_file"],
                              name="convertbrain")

    # Add the mask images together for a report image
    addconfmasks = pe.MapNode(fsl.ImageMaths(suffix="conf",
                                             op_string="-mul 2 -add",
                                             out_data_type="char"),
                              iterfield=["in_file", "in_file2"],
                              name="addconfmasks")

    # Overlay and slice the confound mask overlaied on mean func for reporting
    confoverlay = pe.MapNode(fsl.Overlay(auto_thresh_bg=True,
                                         stat_thresh=(.7, 2)),
                             iterfield=["background_image", "stat_image"],
                             name="confoverlay")

    confslice = pe.MapNode(fsl.Slicer(image_width=800, label_slices=False),
                           iterfield=["in_file"],
                           name="confslice")
    confslice.inputs.sample_axial = 2

    # Extract the mean signal from white matter and CSF masks
    wmtcourse = pe.MapNode(fs.SegStats(exclude_id=0, avgwf_txt_file=True),
                           iterfield=["segmentation_file", "in_file"],
                           name="wmtcourse")

    csftcourse = pe.MapNode(fs.SegStats(exclude_id=0, avgwf_txt_file=True),
                            iterfield=["segmentation_file", "in_file"],
                            name="csftcourse")

    # Extract the mean signal from over the whole brain
    globaltcourse = pe.MapNode(fs.SegStats(exclude_id=0, avgwf_txt_file=True),
                               iterfield=["segmentation_file", "in_file"],
                               name="globaltcourse")

    # Build the confound design matrix
    conf_inputs = [
        "motion_params", "global_waveform", "wm_waveform", "csf_waveform"
    ]
    confmatrix = pe.MapNode(util.Function(input_names=conf_inputs,
                                          output_names=["confound_matrix"],
                                          function=make_confound_matrix),
                            iterfield=conf_inputs,
                            name="confmatrix")

    # Regress the confounds out of the timeseries
    confregress = pe.MapNode(fsl.FilterRegressor(filter_all=True),
                             iterfield=["in_file", "design_file", "mask"],
                             name="confregress")

    # Rename the confound mask png
    renamepng = pe.MapNode(util.Rename(format_string="confound_sources.png"),
                           iterfield=["in_file"],
                           name="renamepng")

    # Define the outputs
    outputnode = pe.Node(
        util.IdentityInterface(fields=["timeseries", "confound_sources"]),
        name="outputs")

    # Define and connect the confound workflow
    confound = pe.Workflow(name=workflow_name)

    confound.connect([
        (inputnode, meanfunc, [("timeseries", "in_file")]),
        (inputnode, getaseg, [("subject_id", "subject_id")]),
        (getaseg, extractwm, [("aseg", "in_file")]),
        (getaseg, extractcsf, [("aseg", "in_file")]),
        (getaseg, asegmask, [("aseg", "in_file")]),
        (extractwm, regwm, [("binary_file", "target_file")]),
        (extractcsf, regcsf, [("binary_file", "target_file")]),
        (asegmask, regbrain, [("binary_file", "target_file")]),
        (meanfunc, regwm, [("out_file", "source_file")]),
        (meanfunc, regcsf, [("out_file", "source_file")]),
        (meanfunc, regbrain, [("out_file", "source_file")]),
        (inputnode, regwm, [("reg_file", "reg_file")]),
        (inputnode, regcsf, [("reg_file", "reg_file")]),
        (inputnode, regbrain, [("reg_file", "reg_file")]),
        (regwm, convertwm, [("transformed_file", "in_file")]),
        (regcsf, convertcsf, [("transformed_file", "in_file")]),
        (regbrain, convertbrain, [("transformed_file", "in_file")]),
        (convertwm, addconfmasks, [("out_file", "in_file")]),
        (convertcsf, addconfmasks, [("out_file", "in_file2")]),
        (addconfmasks, confoverlay, [("out_file", "stat_image")]),
        (meanfunc, confoverlay, [("out_file", "background_image")]),
        (confoverlay, confslice, [("out_file", "in_file")]),
        (confslice, renamepng, [("out_file", "in_file")]),
        (regwm, wmtcourse, [("transformed_file", "segmentation_file")]),
        (inputnode, wmtcourse, [("timeseries", "in_file")]),
        (regcsf, csftcourse, [("transformed_file", "segmentation_file")]),
        (inputnode, csftcourse, [("timeseries", "in_file")]),
        (regbrain, globaltcourse, [("transformed_file", "segmentation_file")]),
        (inputnode, globaltcourse, [("timeseries", "in_file")]),
        (inputnode, confmatrix, [("motion_parameters", "motion_params")]),
        (wmtcourse, confmatrix, [("avgwf_txt_file", "wm_waveform")]),
        (csftcourse, confmatrix, [("avgwf_txt_file", "csf_waveform")]),
        (globaltcourse, confmatrix, [("avgwf_txt_file", "global_waveform")]),
        (confmatrix, confregress, [("confound_matrix", "design_file")]),
        (inputnode, confregress, [("timeseries", "in_file")]),
        (convertbrain, confregress, [("out_file", "mask")]),
        (confregress, outputnode, [("out_file", "timeseries")]),
        (renamepng, outputnode, [("out_file", "confound_sources")]),
    ])

    return confound
예제 #18
0
def create_bbregister_workflow(name="bbregister", contrast_type="t2"):

    # Define the workflow inputs
    inputnode = pe.Node(
        util.IdentityInterface(fields=["subject_id", "source_file"]),
        name="inputs")

    # Estimate the registration to Freesurfer conformed space
    func2anat = pe.MapNode(fs.BBRegister(contrast_type=contrast_type,
                                         init="fsl",
                                         epi_mask=True,
                                         registered_file=True,
                                         out_fsl_file=True),
                           iterfield=["source_file"],
                           name="func2anat")

    # Set up a node to grab the target from the subjects directory
    fssource = pe.Node(io.FreeSurferSource(subjects_dir=fs.Info.subjectsdir()),
                       name="fssource")
    # Always overwrite the grab; shouldn't cascade unless the underlying image changes
    fssource.overwrite = True

    # Convert the target to nifti
    convert = pe.Node(fs.MRIConvert(out_type="niigz"), name="convertbrain")

    # Swap dimensions so stuff looks nice in the report
    flipbrain = pe.Node(fsl.SwapDimensions(new_dims=("RL", "PA", "IS")),
                        name="flipbrain")

    flipfunc = pe.MapNode(fsl.SwapDimensions(new_dims=("RL", "PA", "IS")),
                          iterfield=["in_file"],
                          name="flipfunc")

    # Slice up the registration
    func2anatpng = pe.MapNode(fsl.Slicer(middle_slices=True,
                                         show_orientation=False,
                                         scaling=.6,
                                         label_slices=False),
                              iterfield=["in_file"],
                              name="func2anatpng")

    # Rename some files
    pngname = pe.MapNode(util.Rename(format_string="func2anat.png"),
                         iterfield=["in_file"],
                         name="pngname")

    costname = pe.MapNode(util.Rename(format_string="func2anat_cost.dat"),
                          iterfield=["in_file"],
                          name="costname")

    tkregname = pe.MapNode(util.Rename(format_string="func2anat_tkreg.dat"),
                           iterfield=["in_file"],
                           name="tkregname")

    flirtname = pe.MapNode(util.Rename(format_string="func2anat_flirt.mat"),
                           iterfield=["in_file"],
                           name="flirtname")

    # Merge the slicer png and cost file into a report list
    report = pe.Node(util.Merge(2, axis="hstack"), name="report")

    # Define the workflow outputs
    outputnode = pe.Node(
        util.IdentityInterface(fields=["tkreg_mat", "flirt_mat", "report"]),
        name="outputs")

    bbregister = pe.Workflow(name=name)

    # Connect the registration
    bbregister.connect([
        (inputnode, func2anat, [("subject_id", "subject_id"),
                                ("source_file", "source_file")]),
        (inputnode, fssource, [("subject_id", "subject_id")]),
        (func2anat, flipfunc, [("registered_file", "in_file")]),
        (flipfunc, func2anatpng, [("out_file", "in_file")]),
        (fssource, convert, [("brain", "in_file")]),
        (convert, flipbrain, [("out_file", "in_file")]),
        (flipbrain, func2anatpng, [("out_file", "image_edges")]),
        (func2anatpng, pngname, [("out_file", "in_file")]),
        (func2anat, tkregname, [("out_reg_file", "in_file")]),
        (func2anat, flirtname, [("out_fsl_file", "in_file")]),
        (func2anat, costname, [("min_cost_file", "in_file")]),
        (costname, report, [("out_file", "in1")]),
        (pngname, report, [("out_file", "in2")]),
        (tkregname, outputnode, [("out_file", "tkreg_mat")]),
        (flirtname, outputnode, [("out_file", "flirt_mat")]),
        (report, outputnode, [("out", "report")]),
    ])

    return bbregister
예제 #19
0
art.inputs.mask_type = 'file'
art.inputs.parameter_source = 'SPM'
"""
Use :class:`nipype.interfaces.freesurfer.BBRegister` to coregister the mean
functional image generated by realign to the subjects' surfaces.
"""

surfregister = pe.Node(interface=fs.BBRegister(), name='surfregister')
surfregister.inputs.init = 'fsl'
surfregister.inputs.contrast_type = 't2'
"""
Use :class:`nipype.interfaces.io.FreeSurferSource` to retrieve various image
files that are automatically generated by the recon-all process.
"""

FreeSurferSource = pe.Node(interface=nio.FreeSurferSource(), name='fssource')
"""
Use :class:`nipype.interfaces.freesurfer.ApplyVolTransform` to convert the
brainmask generated by freesurfer into the realigned functional space.
"""

ApplyVolTransform = pe.Node(interface=fs.ApplyVolTransform(), name='applyreg')
ApplyVolTransform.inputs.inverse = True
"""
Use :class:`nipype.interfaces.freesurfer.Binarize` to extract a binary brain
mask.
"""

Threshold = pe.Node(interface=fs.Binarize(), name='threshold')
Threshold.inputs.min = 10
Threshold.inputs.out_type = 'nii'
예제 #20
0
def create_tessellation_flow(name='tessellate', out_format='stl'):
    """Tessellates the input subject's aseg.mgz volume and returns
    the surfaces for each region in stereolithic (.stl) format

    Example
    -------
    >>> from nipype.workflows.smri.freesurfer import create_tessellation_flow
    >>> tessflow = create_tessellation_flow()
    >>> tessflow.inputs.inputspec.subject_id = 'subj1'
    >>> tessflow.inputs.inputspec.subjects_dir = '.'
    >>> tessflow.inputs.inputspec.lookup_file = 'FreeSurferColorLUT.txt' # doctest: +SKIP
    >>> tessflow.run()  # doctest: +SKIP


    Inputs::

           inputspec.subject_id : freesurfer subject id
           inputspec.subjects_dir : freesurfer subjects directory
           inputspec.lookup_file : lookup file from freesurfer directory

    Outputs::

           outputspec.meshes : output region meshes in (by default) stereolithographic (.stl) format
    """
    """
    Initialize the workflow
    """

    tessflow = pe.Workflow(name=name)
    """
    Define the inputs to the workflow.
    """

    inputnode = pe.Node(niu.IdentityInterface(
        fields=['subject_id', 'subjects_dir', 'lookup_file']),
                        name='inputspec')
    """
    Define all the nodes of the workflow:

      fssource: used to retrieve aseg.mgz
      mri_convert : converts aseg.mgz to aseg.nii
      tessellate : tessellates regions in aseg.mgz
      surfconvert : converts regions to stereolithographic (.stl) format
      smoother: smooths the tessellated regions

    """

    fssource = pe.Node(nio.FreeSurferSource(), name='fssource')
    volconvert = pe.Node(fs.MRIConvert(out_type='nii'), name='volconvert')
    tessellate = pe.MapNode(fs.MRIMarchingCubes(),
                            iterfield=['label_value', 'out_file'],
                            name='tessellate')
    surfconvert = pe.MapNode(fs.MRIsConvert(out_datatype='stl'),
                             iterfield=['in_file'],
                             name='surfconvert')
    smoother = pe.MapNode(mf.MeshFix(),
                          iterfield=['in_file1'],
                          name='smoother')
    if out_format == 'gii':
        stl_to_gifti = pe.MapNode(fs.MRIsConvert(out_datatype=out_format),
                                  iterfield=['in_file'],
                                  name='stl_to_gifti')
    smoother.inputs.save_as_stl = True
    smoother.inputs.laplacian_smoothing_steps = 1

    region_list_from_volume_interface = Function(
        input_names=["in_file"],
        output_names=["region_list"],
        function=region_list_from_volume)

    id_list_from_lookup_table_interface = Function(
        input_names=["lookup_file", "region_list"],
        output_names=["id_list"],
        function=id_list_from_lookup_table)

    region_list_from_volume_node = pe.Node(
        interface=region_list_from_volume_interface,
        name='region_list_from_volume_node')
    id_list_from_lookup_table_node = pe.Node(
        interface=id_list_from_lookup_table_interface,
        name='id_list_from_lookup_table_node')
    """
    Connect the nodes
    """

    tessflow.connect([
        (inputnode, fssource, [('subject_id', 'subject_id'),
                               ('subjects_dir', 'subjects_dir')]),
        (fssource, volconvert, [('aseg', 'in_file')]),
        (volconvert, region_list_from_volume_node, [('out_file', 'in_file')]),
        (region_list_from_volume_node, tessellate, [('region_list',
                                                     'label_value')]),
        (region_list_from_volume_node, id_list_from_lookup_table_node,
         [('region_list', 'region_list')]),
        (inputnode, id_list_from_lookup_table_node, [('lookup_file',
                                                      'lookup_file')]),
        (id_list_from_lookup_table_node, tessellate, [('id_list', 'out_file')
                                                      ]),
        (fssource, tessellate, [('aseg', 'in_file')]),
        (tessellate, surfconvert, [('surface', 'in_file')]),
        (surfconvert, smoother, [('converted', 'in_file1')]),
    ])
    """
    Setup an outputnode that defines relevant inputs of the workflow.
    """

    outputnode = pe.Node(niu.IdentityInterface(fields=["meshes"]),
                         name="outputspec")

    if out_format == 'gii':
        tessflow.connect([
            (smoother, stl_to_gifti, [("mesh_file", "in_file")]),
        ])
        tessflow.connect([
            (stl_to_gifti, outputnode, [("converted", "meshes")]),
        ])
    else:
        tessflow.connect([
            (smoother, outputnode, [("mesh_file", "meshes")]),
        ])
    return tessflow
예제 #21
0
def create_coreg_pipeline(name='coreg'):

    # fsl output type
    fsl.FSLCommand.set_default_output_type('NIFTI_GZ')

    # initiate workflow
    coreg = Workflow(name='coreg')

    #inputnode
    inputnode = Node(util.IdentityInterface(fields=[
        'epi_median',
        'fs_subjects_dir',
        'fs_subject_id',
        'uni_highres',
    ]),
                     name='inputnode')

    # outputnode
    outputnode = Node(util.IdentityInterface(fields=[
        'uni_lowres', 'epi2lowres', 'epi2lowres_mat', 'epi2lowres_dat',
        'highres2lowres', 'highres2lowres_mat', 'highres2lowres_dat',
        'epi2highres_lin', 'epi2highres_lin_mat', 'epi2highres_lin_itk'
    ]),
                      name='outputnode')

    # convert mgz head file for reference
    fs_import = Node(interface=nio.FreeSurferSource(), name='fs_import')

    brain_convert = Node(fs.MRIConvert(out_type='niigz',
                                       out_file='uni_lowres.nii.gz'),
                         name='brain_convert')

    coreg.connect([(inputnode, fs_import, [('fs_subjects_dir', 'subjects_dir'),
                                           ('fs_subject_id', 'subject_id')]),
                   (fs_import, brain_convert, [('brain', 'in_file')]),
                   (brain_convert, outputnode, [('out_file', 'uni_lowres')])])

    # linear registration epi median to lowres mp2rage with bbregister
    bbregister_epi = Node(fs.BBRegister(contrast_type='t2',
                                        out_fsl_file='epi2lowres.mat',
                                        out_reg_file='epi2lowres.dat',
                                        registered_file='epi2lowres.nii.gz',
                                        init='fsl',
                                        epi_mask=True),
                          name='bbregister_epi')

    coreg.connect([
        (inputnode, bbregister_epi, [('fs_subjects_dir', 'subjects_dir'),
                                     ('fs_subject_id', 'subject_id'),
                                     ('epi_median', 'source_file')]),
        (bbregister_epi, outputnode, [('out_fsl_file', 'epi2lowres_mat'),
                                      ('out_reg_file', 'epi2lowres_dat'),
                                      ('registered_file', 'epi2lowres')])
    ])

    # linear register highres mp2rage to lowres mp2rage
    bbregister_anat = Node(fs.BBRegister(
        contrast_type='t1',
        out_fsl_file='highres2lowres.mat',
        out_reg_file='highres2lowres.dat',
        registered_file='highres2lowres.nii.gz',
        init='fsl'),
                           name='bbregister_anat')

    coreg.connect([
        (inputnode, bbregister_anat, [('fs_subjects_dir', 'subjects_dir'),
                                      ('fs_subject_id', 'subject_id'),
                                      ('uni_highres', 'source_file')]),
        (bbregister_anat, outputnode, [('out_fsl_file', 'highres2lowres_mat'),
                                       ('out_reg_file', 'highres2lowres_dat'),
                                       ('registered_file', 'highres2lowres')])
    ])

    # invert highres2lowres transform
    invert = Node(fsl.ConvertXFM(invert_xfm=True), name='invert')
    coreg.connect([(bbregister_anat, invert, [('out_fsl_file', 'in_file')])])

    # concatenate epi2highres transforms
    concat = Node(fsl.ConvertXFM(concat_xfm=True,
                                 out_file='epi2highres_lin.mat'),
                  name='concat')
    coreg.connect([(bbregister_epi, concat, [('out_fsl_file', 'in_file')]),
                   (invert, concat, [('out_file', 'in_file2')]),
                   (concat, outputnode, [('out_file', 'epi2higres_lin_mat')])])

    # convert epi2highres transform into itk format
    itk = Node(interface=c3.C3dAffineTool(fsl2ras=True,
                                          itk_transform='epi2highres_lin.txt'),
               name='itk')

    coreg.connect([(inputnode, itk, [('epi_median', 'source_file'),
                                     ('uni_highres', 'reference_file')]),
                   (concat, itk, [('out_file', 'transform_file')]),
                   (itk, outputnode, [('itk_transform', 'epi2highres_lin_itk')
                                      ])])

    # transform epi to highres
    epi2highres = Node(ants.ApplyTransforms(
        dimension=3,
        output_image='epi2highres_lin.nii.gz',
        interpolation='BSpline',
    ),
                       name='epi2highres')

    coreg.connect([
        (inputnode, epi2highres, [('uni_highres', 'reference_image'),
                                  ('epi_median', 'input_image')]),
        (itk, epi2highres, [('itk_transform', 'transforms')]),
        (epi2highres, outputnode, [('output_image', 'epi2highres_lin')])
    ])

    return coreg
예제 #22
0
def init_gifti_surface_wf(name='gifti_surface_wf'):
    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(['subjects_dir', 'subject_id']),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(['surfaces']),
                         name='outputnode')

    get_surfaces = pe.Node(nio.FreeSurferSource(), name='get_surfaces')

    midthickness = pe.MapNode(MakeMidthickness(thickness=True,
                                               distance=0.5,
                                               out_name='midthickness'),
                              iterfield='in_file',
                              name='midthickness')

    save_midthickness = pe.Node(nio.DataSink(parameterization=False),
                                name='save_midthickness')

    surface_list = pe.Node(niu.Merge(4, ravel_inputs=True),
                           name='surface_list',
                           run_without_submitting=True)
    fs_2_gii = pe.MapNode(fs.MRIsConvert(out_datatype='gii'),
                          iterfield='in_file',
                          name='fs_2_gii')

    def normalize_surfs(in_file):
        """ Re-center GIFTI coordinates to fit align to native T1 space

        For midthickness surfaces, add MidThickness metadata

        Coordinate update based on:
        https://github.com/Washington-University/workbench/blob/1b79e56/src/Algorithms/AlgorithmSurfaceApplyAffine.cxx#L73-L91
        and
        https://github.com/Washington-University/Pipelines/blob/ae69b9a/PostFreeSurfer/scripts/FreeSurfer2CaretConvertAndRegisterNonlinear.sh#L147
        """
        import os
        import numpy as np
        import nibabel as nib
        img = nib.load(in_file)
        pointset = img.get_arrays_from_intent('NIFTI_INTENT_POINTSET')[0]
        coords = pointset.data
        c_ras_keys = ('VolGeomC_R', 'VolGeomC_A', 'VolGeomC_S')
        ras = np.array([float(pointset.metadata[key]) for key in c_ras_keys])
        # Apply C_RAS translation to coordinates
        pointset.data = (coords + ras).astype(coords.dtype)

        secondary = nib.gifti.GiftiNVPairs('AnatomicalStructureSecondary',
                                           'MidThickness')
        geom_type = nib.gifti.GiftiNVPairs('GeometricType', 'Anatomical')
        has_ass = has_geo = False
        for nvpair in pointset.meta.data:
            # Remove C_RAS translation from metadata to avoid double-dipping in FreeSurfer
            if nvpair.name in c_ras_keys:
                nvpair.value = '0.000000'
            # Check for missing metadata
            elif nvpair.name == secondary.name:
                has_ass = True
            elif nvpair.name == geom_type.name:
                has_geo = True
        fname = os.path.basename(in_file)
        # Update metadata for MidThickness/graymid surfaces
        if 'midthickness' in fname.lower() or 'graymid' in fname.lower():
            if not has_ass:
                pointset.meta.data.insert(1, secondary)
            if not has_geo:
                pointset.meta.data.insert(2, geom_type)
        img.to_filename(fname)
        return os.path.abspath(fname)

    fix_surfs = pe.MapNode(niu.Function(function=normalize_surfs),
                           iterfield='in_file',
                           name='fix_surfs')

    workflow.connect([
        (inputnode, get_surfaces, [('subjects_dir', 'subjects_dir'),
                                   ('subject_id', 'subject_id')]),
        (inputnode, save_midthickness, [('subjects_dir', 'base_directory'),
                                        ('subject_id', 'container')]),
        # Generate midthickness surfaces and save to FreeSurfer derivatives
        (get_surfaces, midthickness, [('smoothwm', 'in_file'),
                                      ('graymid', 'graymid')]),
        (midthickness, save_midthickness, [('out_file', 'surf.@graymid')]),
        # Produce valid GIFTI surface files (dense mesh)
        (get_surfaces, surface_list, [('smoothwm', 'in1'), ('pial', 'in2'),
                                      ('inflated', 'in3')]),
        (save_midthickness, surface_list, [('out_file', 'in4')]),
        (surface_list, fs_2_gii, [('out', 'in_file')]),
        (fs_2_gii, fix_surfs, [('converted', 'in_file')]),
        (fix_surfs, outputnode, [('out', 'surfaces')]),
    ])

    return workflow
예제 #23
0
def test_freesurfersource_incorrectdir():
    fss = nio.FreeSurferSource()
    with pytest.raises(TraitError) as err:
        fss.inputs.subjects_dir = 'path/to/no/existing/directory'
예제 #24
0
def damaged_brain_dti_processing(name="dwi_preproc", use_FAST_masks=True):
    '''
    Uses both Freesurfer and FAST to mask the white matter
    because neither works sufficiently well in patients
    '''

    '''
    Define inputs and outputs of the workflow
    '''
    inputnode = pe.Node(
        interface=util.IdentityInterface(fields=["subjects_dir",
                                                 "subject_id",
                                                 "dwi",
                                                 "bvecs",
                                                 "bvals"]),
        name="inputnode")

    outputnode = pe.Node(
        interface=util.IdentityInterface(fields=["single_fiber_mask",
                                                 "fa",
                                                 "rgb_fa",
                                                 "md",
                                                 "mode",
                                                 "t1",
                                                 "t1_brain",
                                                 "wm_mask",
                                                 "term_mask",
                                                 "aparc_aseg",
                                                 "tissue_class_files",
                                                 "gm_prob",
                                                 "wm_prob",
                                                 "csf_prob"]),
        name="outputnode")

    '''
    Define the nodes
    '''
    nonlinfit_interface = util.Function(
        input_names=["dwi", "bvecs", "bvals", "base_name"],
        output_names=["tensor", "FA", "MD", "evecs", "evals",
                      "rgb_fa", "norm", "mode", "binary_mask", "b0_masked"],
        function=nonlinfit_fn)

    nonlinfit_node = pe.Node(
        interface=nonlinfit_interface, name="nonlinfit_node")

    erode_mask_firstpass = pe.Node(interface=mrtrix.Erode(),
                                   name='erode_mask_firstpass')
    erode_mask_firstpass.inputs.out_filename = "b0_mask_median3D_erode.nii.gz"

    erode_mask_secondpass = pe.Node(interface=mrtrix.Erode(),
                                    name='erode_mask_secondpass')

    erode_mask_secondpass.inputs.out_filename = "b0_mask_median3D_erode_secondpass.nii.gz"

    threshold_FA = pe.Node(interface=fsl.ImageMaths(), name='threshold_FA')
    threshold_FA.inputs.op_string = "-thr 0.8 -uthr 0.99"

    threshold_mode = pe.Node(interface=fsl.ImageMaths(), name='threshold_mode')
    threshold_mode.inputs.op_string = "-thr 0.9 -fmedian -fmedian"


    fast_seg_T1 = pe.Node(interface=fsl.FAST(), name='fast_seg_T1')
    fast_seg_T1.inputs.segments = True
    fast_seg_T1.inputs.probability_maps = True

    if not use_FAST_masks:
        fix_wm_mask = pe.Node(interface=fsl.MultiImageMaths(), name='fix_wm_mask')
        fix_wm_mask.inputs.op_string = "-mul %s"

    if use_FAST_masks:
        make_termination_mask = pe.Node(
            interface=fsl.MultiImageMaths(), name='make_termination_mask')
        make_termination_mask.inputs.op_string = "-add %s -bin"
    else:
        make_termination_mask = pe.Node(
            interface=fsl.ImageMaths(), name='make_termination_mask')
        make_termination_mask.inputs.op_string = "-bin"

        fix_termination_mask = pe.Node(
            interface=fsl.MultiImageMaths(), name='fix_termination_mask')
        fix_termination_mask.inputs.op_string = "-binv -mul %s"


    wm_mask_interface = util.Function(input_names=["in_file", "out_filename"],
                                      output_names=["out_file"],
                                      function=wm_labels_only)

    make_wm_mask = pe.Node(interface=wm_mask_interface, name='make_wm_mask')

    MRmultiply = pe.Node(interface=mrtrix.MRMultiply(), name='MRmultiply')
    MRmultiply.inputs.out_filename = "Eroded_FA.nii.gz"

    MultFAbyMode = pe.Node(interface=mrtrix.MRMultiply(), name='MultFAbyMode')

    MRmult_merge = pe.Node(interface=util.Merge(2), name='MRmultiply_merge')

    MultFAbyMode_merge = pe.Node(
        interface=util.Merge(2), name='MultFAbyMode_merge')

    median3d = pe.Node(interface=mrtrix.MedianFilter3D(), name='median3D')

    FreeSurferSource = pe.Node(
        interface=nio.FreeSurferSource(), name='fssource')

    mri_convert_Brain = pe.Node(
        interface=fs.MRIConvert(), name='mri_convert_Brain')
    mri_convert_Brain.inputs.out_type = 'nii'
    mri_convert_Brain.inputs.no_change = True

    mri_convert_Ribbon = mri_convert_Brain.clone("mri_convert_Ribbon")
    mri_convert_ROIs = mri_convert_Brain.clone("mri_convert_ROIs")
    mri_convert_T1 = mri_convert_Brain.clone("mri_convert_T1")

    '''
    Connect the workflow
    '''
    workflow = pe.Workflow(name=name)
    workflow.base_dir = name

    '''
    Structural processing to create seed and termination masks
    '''
    workflow.connect(
        [(inputnode, FreeSurferSource, [("subjects_dir", "subjects_dir")])])
    workflow.connect(
        [(inputnode, FreeSurferSource, [("subject_id", "subject_id")])])
    workflow.connect(
        [(FreeSurferSource, mri_convert_T1, [('T1', 'in_file')])])
    workflow.connect(
        [(FreeSurferSource, mri_convert_Brain, [('brain', 'in_file')])])

    workflow.connect(
        [(inputnode, mri_convert_T1, [(('subject_id', add_subj_name_to_T1), 'out_file')])])
    workflow.connect(
        [(inputnode, mri_convert_Brain, [(('subject_id', add_subj_name_to_T1brain), 'out_file')])])
    workflow.connect(
        [(mri_convert_Brain, fast_seg_T1, [('out_file', 'in_files')])])
    workflow.connect(
        [(inputnode, fast_seg_T1, [("subject_id", "out_basename")])])

    workflow.connect(
        [(FreeSurferSource, mri_convert_ROIs, [(('aparc_aseg', select_aparc), 'in_file')])])
    workflow.connect(
        [(inputnode, mri_convert_ROIs, [(('subject_id', add_subj_name_to_aparc), 'out_file')])])

    if use_FAST_masks:
        workflow.connect(
            [(fast_seg_T1, outputnode, [(('tissue_class_files', select_WM), 'wm_mask')])])
        workflow.connect(
            [(fast_seg_T1, make_termination_mask, [(('tissue_class_files', select_GM), 'in_file')])])
        workflow.connect(
            [(fast_seg_T1, make_termination_mask, [(('tissue_class_files', select_WM), 'operand_files')])])
        workflow.connect(
            [(inputnode, make_termination_mask, [(('subject_id', add_subj_name_to_termmask), 'out_file')])])
        workflow.connect(
            [(make_termination_mask, outputnode, [("out_file", "term_mask")])])

    else:
        workflow.connect(
            [(mri_convert_ROIs, make_wm_mask, [('out_file', 'in_file')])])
        workflow.connect(
            [(make_wm_mask, fix_wm_mask, [('out_file', 'operand_files')])])
        workflow.connect(
            [(fast_seg_T1, fix_wm_mask, [(('tissue_class_files', select_WM), 'in_file')])])
        workflow.connect(
            [(FreeSurferSource, mri_convert_Ribbon, [(('ribbon', select_ribbon), 'in_file')])])
        workflow.connect(
            [(mri_convert_Ribbon, make_termination_mask, [('out_file', 'in_file')])])
        workflow.connect(
            [(make_termination_mask, fix_termination_mask, [('out_file', 'operand_files')])])
        workflow.connect(
            [(fast_seg_T1, fix_termination_mask, [(('tissue_class_files', select_CSF), 'in_file')])])

    '''
    Diffusion processing
    '''
    workflow.connect(inputnode, 'subject_id', nonlinfit_node, 'base_name')
    workflow.connect(inputnode, 'dwi', nonlinfit_node, 'dwi')
    workflow.connect(inputnode, 'bvecs', nonlinfit_node, 'bvecs')
    workflow.connect(inputnode, 'bvals', nonlinfit_node, 'bvals')

    workflow.connect(
        [(nonlinfit_node, median3d, [("binary_mask", "in_file")])])
    workflow.connect(
        [(median3d, erode_mask_firstpass, [("out_file", "in_file")])])
    workflow.connect(
        [(erode_mask_firstpass, erode_mask_secondpass, [("out_file", "in_file")])])
    workflow.connect([(nonlinfit_node, MRmult_merge, [("FA", "in1")])])
    workflow.connect(
        [(erode_mask_secondpass, MRmult_merge, [("out_file", "in2")])])
    workflow.connect([(MRmult_merge, MRmultiply, [("out", "in_files")])])
    workflow.connect([(MRmultiply, threshold_FA, [("out_file", "in_file")])])

    '''
    Create a single fiber mask
    '''
    workflow.connect([(nonlinfit_node, threshold_mode, [("mode", "in_file")])])
    workflow.connect(
        [(threshold_mode, MultFAbyMode_merge, [("out_file", "in1")])])
    workflow.connect(
        [(threshold_FA, MultFAbyMode_merge, [("out_file", "in2")])])
    workflow.connect(
        [(MultFAbyMode_merge, MultFAbyMode, [("out", "in_files")])])

    '''
    Fix output names with subject ID
    '''
    workflow.connect(
        [(inputnode, MultFAbyMode, [(('subject_id', add_subj_name_to_sfmask), 'out_filename')])])
    if not use_FAST_masks:
        workflow.connect(
            [(inputnode, make_wm_mask, [(('subject_id', add_subj_name_to_wmmask), 'out_filename')])])
        workflow.connect(
            [(inputnode, fix_wm_mask, [(('subject_id', add_subj_name_to_wmmask), 'out_file')])])
        workflow.connect(
            [(inputnode, fix_termination_mask, [(('subject_id', add_subj_name_to_termmask), 'out_file')])])


    '''
    Connect outputnode
    '''
    workflow.connect(
        [(fast_seg_T1, outputnode, [("tissue_class_files", "tissue_class_files")])])

    workflow.connect(
        [(fast_seg_T1, outputnode, [(('probability_maps', select_GM), 'gm_prob')])])
    workflow.connect(
        [(fast_seg_T1, outputnode, [(('probability_maps', select_WM), 'wm_prob')])])
    workflow.connect(
        [(fast_seg_T1, outputnode, [(('probability_maps', select_CSF), 'csf_prob')])])


    workflow.connect([
        (mri_convert_ROIs, outputnode, [("out_file", "aparc_aseg")]),
        (nonlinfit_node, outputnode, [("FA", "fa")]),
        (nonlinfit_node, outputnode, [("rgb_fa", "rgb_fa")]),
        (nonlinfit_node, outputnode, [("MD", "md")]),
        (nonlinfit_node, outputnode, [("mode", "mode")]),
        (MultFAbyMode, outputnode, [("out_file", "single_fiber_mask")]),
        (mri_convert_Brain, outputnode, [("out_file", "t1_brain")]),
        (mri_convert_T1, outputnode, [("out_file", "t1")]),
    ])

    if not use_FAST_masks:
        workflow.connect(
            [(fix_wm_mask, outputnode, [("out_file", "wm_mask")])])
        workflow.connect(
            [(fix_termination_mask, outputnode, [("out_file", "term_mask")])])

    return workflow
예제 #25
0
def create_getmask_flow(name='getmask', dilate_mask=True):
    """Registers a source file to freesurfer space and create a brain mask in
source space

Requires fsl tools for initializing registration

Parameters
----------

name : string
name of workflow
dilate_mask : boolean
indicates whether to dilate mask or not

Example
-------

>>> getmask = create_getmask_flow()
>>> getmask.inputs.inputspec.source_file = 'mean.nii'
>>> getmask.inputs.inputspec.subject_id = 's1'
>>> getmask.inputs.inputspec.subjects_dir = '.'
>>> getmask.inputs.inputspec.contrast_type = 't2'


Inputs::

inputspec.source_file : reference image for mask generation
inputspec.subject_id : freesurfer subject id
inputspec.subjects_dir : freesurfer subjects directory
inputspec.contrast_type : MR contrast of reference image

Outputs::

outputspec.mask_file : binary mask file in reference image space
outputspec.reg_file : registration file that maps reference image to
freesurfer space
outputspec.reg_cost : cost of registration (useful for detecting misalignment)
"""
    import nipype.pipeline.engine as pe
    import nipype.interfaces.utility as niu
    import nipype.interfaces.freesurfer as fs
    import nipype.interfaces.io as nio
    """
Initialize the workflow
"""

    getmask = pe.Workflow(name=name)

    """
Define the inputs to the workflow.
"""

    inputnode = pe.Node(niu.IdentityInterface(fields=['source_file',
                                                      'subject_id',
                                                      'subjects_dir',
                                                      'contrast_type']),
        name='inputspec')

    """
Define all the nodes of the workflow:

fssource: used to retrieve aseg.mgz
threshold : binarize aseg
register : coregister source file to freesurfer space
voltransform: convert binarized aseg to source file space

"""

    fssource = pe.Node(nio.FreeSurferSource(),
        name = 'fssource')
    threshold = pe.Node(fs.Binarize(min=0.5, out_type='nii'),
        name='threshold')
    register = pe.MapNode(fs.BBRegister(init='fsl'),
        iterfield=['source_file'],
        name='register')
    voltransform = pe.MapNode(fs.ApplyVolTransform(inverse=True),
        iterfield=['source_file', 'reg_file'],
        name='transform')

    """
Connect the nodes
"""

    getmask.connect([
        (inputnode, fssource, [('subject_id','subject_id'),
            ('subjects_dir','subjects_dir')]),
        (inputnode, register, [('source_file', 'source_file'),
            ('subject_id', 'subject_id'),
            ('subjects_dir', 'subjects_dir'),
            ('contrast_type', 'contrast_type')]),
        (inputnode, voltransform, [('subjects_dir', 'subjects_dir'),
            ('source_file', 'source_file')]),
        (fssource, threshold, [(('aparc_aseg', get_aparc_aseg), 'in_file')]),
        (register, voltransform, [('out_reg_file','reg_file')]),
        (threshold, voltransform, [('binary_file','target_file')])
    ])


    """
Add remaining nodes and connections

dilate : dilate the transformed file in source space
threshold2 : binarize transformed file
"""

    threshold2 = pe.MapNode(fs.Binarize(min=0.5, out_type='nii'),
        iterfield=['in_file'],
        name='threshold2')
    if dilate_mask:
        threshold2.inputs.dilate = 1
    getmask.connect([
        (voltransform, threshold2, [('transformed_file', 'in_file')])
    ])

    """
Setup an outputnode that defines relevant inputs of the workflow.
"""

    outputnode = pe.Node(niu.IdentityInterface(fields=["mask_file",
                                                       "reg_file",
                                                       "reg_cost"
    ]),
        name="outputspec")
    getmask.connect([
        (register, outputnode, [("out_reg_file", "reg_file")]),
        (register, outputnode, [("min_cost_file", "reg_cost")]),
        (threshold2, outputnode, [("binary_file", "mask_file")]),
    ])
    return getmask
예제 #26
0
# Calculate the transformation matrix from EPI space to FreeSurfer space
# using the BBRegister command
coregister = pe.Node(fs.BBRegister(subjects_dir=subjects_dir,
                                   contrast_type='t2',
                                   init='fsl',
                                   out_fsl_file=True),
                     name='coregister')
preproc_wf.connect(subj_iterable, 'subject_id', coregister, 'subject_id')
preproc_wf.connect(motion_correct, ('out_file', pickfirst), coregister,
                   'source_file')
preproc_wf.connect(coregister, 'out_reg_file', outputspec, 'reg_file')
preproc_wf.connect(coregister, 'out_fsl_file', outputspec, 'fsl_reg_file')
preproc_wf.connect(coregister, 'min_cost_file', outputspec, 'reg_cost')

# Register a source file to fs space
fssource = pe.Node(nio.FreeSurferSource(subjects_dir=subjects_dir),
                   name='fssource')
preproc_wf.connect(subj_iterable, 'subject_id', fssource, 'subject_id')

# Extract aparc+aseg brain mask and binarize
fs_threshold = pe.Node(fs.Binarize(min=0.5, out_type='nii'),
                       name='fs_threshold')
preproc_wf.connect(fssource, ('aparc_aseg', get_aparc_aseg), fs_threshold,
                   'in_file')

# Transform the binarized aparc+aseg file to the 1st volume of 1st run space
fs_voltransform = pe.MapNode(fs.ApplyVolTransform(inverse=True,
                                                  subjects_dir=subjects_dir),
                             iterfield=['source_file', 'reg_file'],
                             name='fs_transform')
preproc_wf.connect(extractref, 'roi_file', fs_voltransform, 'source_file')
예제 #27
0
파일: surfaces.py 프로젝트: jerdra/smriprep
def init_segs_to_native_wf(name='segs_to_native', segmentation='aseg'):
    """
    Get a segmentation from FreeSurfer conformed space into native T1w space.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from smriprep.workflows.surfaces import init_segs_to_native_wf
        wf = init_segs_to_native_wf()


    **Parameters**
        segmentation
            The name of a segmentation ('aseg' or 'aparc_aseg' or 'wmparc')

    **Inputs**

        in_file
            Anatomical, merged T1w image after INU correction
        subjects_dir
            FreeSurfer SUBJECTS_DIR
        subject_id
            FreeSurfer subject ID


    **Outputs**

        out_file
            The selected segmentation, after resampling in native space
    """
    workflow = Workflow(name='%s_%s' % (name, segmentation))
    inputnode = pe.Node(niu.IdentityInterface(
        ['in_file', 'subjects_dir', 'subject_id']),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(['out_file']),
                         name='outputnode')
    # Extract the aseg and aparc+aseg outputs
    fssource = pe.Node(nio.FreeSurferSource(), name='fs_datasource')
    tonative = pe.Node(fs.Label2Vol(), name='tonative')
    tonii = pe.Node(fs.MRIConvert(out_type='niigz', resample_type='nearest'),
                    name='tonii')

    if segmentation.startswith('aparc'):
        if segmentation == 'aparc_aseg':

            def _sel(x):
                return [parc for parc in x if 'aparc+' in parc][0]
        elif segmentation == 'aparc_a2009s':

            def _sel(x):
                return [parc for parc in x if 'a2009s+' in parc][0]
        elif segmentation == 'aparc_dkt':

            def _sel(x):
                return [parc for parc in x if 'DKTatlas+' in parc][0]

        segmentation = (segmentation, _sel)

    workflow.connect([
        (inputnode, fssource, [('subjects_dir', 'subjects_dir'),
                               ('subject_id', 'subject_id')]),
        (inputnode, tonii, [('in_file', 'reslice_like')]),
        (fssource, tonative, [(segmentation, 'seg_file'),
                              ('rawavg', 'template_file'),
                              ('aseg', 'reg_header')]),
        (tonative, tonii, [('vol_label_file', 'in_file')]),
        (tonii, outputnode, [('out_file', 'out_file')]),
    ])
    return workflow
예제 #28
0
def test_freesurfersource():
    fss = nio.FreeSurferSource()
    yield assert_equal, fss.inputs.hemi, 'both'
    yield assert_equal, fss.inputs.subject_id, Undefined
    yield assert_equal, fss.inputs.subjects_dir, Undefined
예제 #29
0
sp_blur.inputs.automask = True
sp_blur.inputs.outputtype = 'NIFTI_GZ'
psb6351_wf.connect(tshifter, 'out_file', sp_blur, 'in_file')

#### Temporal Smoothing 
tmp_smooth = pe.MapNode(afni.TSmooth(),
                        iterfield=['in_file'],
                        name = 'tmp_smooth')
tmp_smooth.inputs.adaptive = 5
tmp_smooth.inputs.lin = True
tmp_smooth.inputs.outputtype = 'NIFTI_GZ'
psb6351_wf.connect(sp_blur, 'out_file', tmp_smooth, 'in_file')

# Register a source file to fs space and create a brain mask in source space
# The node below creates the Freesurfer source
fssource = pe.Node(nio.FreeSurferSource(),
                   name ='fssource')
fssource.inputs.subject_id = f'sub-{sids[0]}'
fssource.inputs.subjects_dir = fs_dir

# Extract aparc+aseg brain mask, binarize, and dilate by 1 voxel
fs_threshold = pe.Node(fs.Binarize(min=0.5, out_type='nii'),
                       name ='fs_threshold')
fs_threshold.inputs.dilate = 1
psb6351_wf.connect(fssource, ('aparc_aseg', get_aparc_aseg), fs_threshold, 'in_file')

# Transform the binarized aparc+aseg file to the EPI space
# use a nearest neighbor interpolation
fs_voltransform = pe.Node(fs.ApplyVolTransform(inverse=True),
                          name='fs_transform')
fs_voltransform.inputs.subjects_dir = fs_dir
예제 #30
0
def create_precoth_pipeline_step1(name="precoth_step1", reg_pet_T1=True, auto_reorient=True):
    inputnode = pe.Node(
        interface=util.IdentityInterface(fields=["subjects_dir",
                                                 "subject_id",
                                                 "dwi",
                                                 "bvecs",
                                                 "bvals",
                                                 "fdgpet"]),
        name="inputnode")

    nonlinfit_interface = util.Function(input_names=["dwi", "bvecs", "bvals", "base_name"],
    output_names=["tensor", "FA", "MD", "evecs", "evals", "rgb_fa", "norm", "mode", "binary_mask", "b0_masked"], function=nonlinfit_fn)

    nonlinfit_node = pe.Node(interface=nonlinfit_interface, name="nonlinfit_node")
    erode_mask_firstpass = pe.Node(interface=mrtrix.Erode(),
                                   name='erode_mask_firstpass')
    erode_mask_firstpass.inputs.out_filename = "b0_mask_median3D_erode.nii.gz"
    erode_mask_secondpass = pe.Node(interface=mrtrix.Erode(),
                                    name='erode_mask_secondpass')
    erode_mask_secondpass.inputs.out_filename = "b0_mask_median3D_erode_secondpass.nii.gz"

    threshold_FA = pe.Node(interface=fsl.ImageMaths(), name='threshold_FA')
    threshold_FA.inputs.op_string = "-thr 0.8 -uthr 0.99"
    threshold_mode = pe.Node(interface=fsl.ImageMaths(), name='threshold_mode')
    threshold_mode.inputs.op_string = "-thr 0.9 -fmedian -fmedian"

    make_termination_mask = pe.Node(interface=fsl.ImageMaths(), name='make_termination_mask')
    make_termination_mask.inputs.op_string = "-bin"

    fast_seg_T1 = pe.Node(interface=fsl.FAST(), name='fast_seg_T1')
    fast_seg_T1.inputs.segments = True
    fast_seg_T1.inputs.probability_maps = True

    fix_wm_mask = pe.Node(interface=fsl.MultiImageMaths(), name='fix_wm_mask')
    fix_wm_mask.inputs.op_string = "-mul %s"

    fix_termination_mask = pe.Node(interface=fsl.MultiImageMaths(), name='fix_termination_mask')
    fix_termination_mask.inputs.op_string = "-binv -mul %s"

    wm_mask_interface = util.Function(input_names=["in_file", "out_filename"],
                                         output_names=["out_file"],
                                         function=wm_labels_only)
    make_wm_mask = pe.Node(interface=wm_mask_interface, name='make_wm_mask')

    MRmultiply = pe.Node(interface=mrtrix.MRMultiply(), name='MRmultiply')
    MRmultiply.inputs.out_filename = "Eroded_FA.nii.gz"

    MultFAbyMode = pe.Node(interface=mrtrix.MRMultiply(), name='MultFAbyMode')

    MRmult_merge = pe.Node(interface=util.Merge(2), name='MRmultiply_merge')
    MultFAbyMode_merge = pe.Node(interface=util.Merge(2), name='MultFAbyMode_merge')

    median3d = pe.Node(interface=mrtrix.MedianFilter3D(), name='median3D')

    FreeSurferSource = pe.Node(
        interface=nio.FreeSurferSource(), name='fssource')
    mri_convert_Brain = pe.Node(
        interface=fs.MRIConvert(), name='mri_convert_Brain')
    mri_convert_Brain.inputs.out_type = 'nii'
    mri_convert_Brain.inputs.no_change = True
    
    mri_convert_Ribbon = mri_convert_Brain.clone("mri_convert_Ribbon")
    mri_convert_ROIs = mri_convert_Brain.clone("mri_convert_ROIs")
    mri_convert_T1 = mri_convert_Brain.clone("mri_convert_T1")
    
    mni_for_reg = op.join(os.environ["FSL_DIR"],"data","standard","MNI152_T1_1mm.nii.gz")

    if auto_reorient:
        reorientBrain = pe.Node(interface=fsl.FLIRT(dof=6), name = 'reorientBrain')
        reorientBrain.inputs.reference = mni_for_reg
        reorientROIs = pe.Node(interface=fsl.ApplyXfm(), name = 'reorientROIs')
        reorientROIs.inputs.interp = "nearestneighbour"
        reorientROIs.inputs.reference = mni_for_reg
        reorientRibbon = reorientROIs.clone("reorientRibbon")
        reorientRibbon.inputs.interp = "nearestneighbour"
        reorientT1 = reorientROIs.clone("reorientT1")
        reorientT1.inputs.interp = "trilinear"

    if reg_pet_T1:
        reg_pet_T1 = pe.Node(interface=fsl.FLIRT(dof=6), name = 'reg_pet_T1')
        reg_pet_T1.inputs.cost = ('corratio')
    
    reslice_fdgpet = mri_convert_Brain.clone("reslice_fdgpet")
    reslice_fdgpet.inputs.no_change = True

    extract_PreCoTh_interface = util.Function(input_names=["in_file", "out_filename"],
                                         output_names=["out_file"],
                                         function=extract_PreCoTh)
    thalamus2precuneus2cortex_ROIs = pe.Node(
        interface=extract_PreCoTh_interface, name='thalamus2precuneus2cortex_ROIs')


    workflow = pe.Workflow(name=name)
    workflow.base_output_dir = name

    workflow.connect(
        [(inputnode, FreeSurferSource, [("subjects_dir", "subjects_dir")])])
    workflow.connect(
        [(inputnode, FreeSurferSource, [("subject_id", "subject_id")])])

    workflow.connect(
        [(FreeSurferSource, mri_convert_T1, [('T1', 'in_file')])])
    workflow.connect(
        [(FreeSurferSource, mri_convert_Brain, [('brain', 'in_file')])])


    if auto_reorient:
        workflow.connect(
            [(mri_convert_T1, reorientT1, [('out_file', 'in_file')])])
        workflow.connect(
            [(mri_convert_Brain, reorientBrain, [('out_file', 'in_file')])])
        workflow.connect(
            [(reorientBrain, reorientROIs, [('out_matrix_file', 'in_matrix_file')])])
        workflow.connect(
            [(reorientBrain, reorientRibbon, [('out_matrix_file', 'in_matrix_file')])])
        workflow.connect(
            [(reorientBrain, reorientT1, [('out_matrix_file', 'in_matrix_file')])])

    workflow.connect(
        [(FreeSurferSource, mri_convert_ROIs, [(('aparc_aseg', select_aparc), 'in_file')])])
    
    if auto_reorient:
        workflow.connect(
            [(mri_convert_ROIs, reorientROIs, [('out_file', 'in_file')])])
        workflow.connect(
            [(reorientROIs, make_wm_mask, [('out_file', 'in_file')])])
        workflow.connect(
            [(reorientROIs, thalamus2precuneus2cortex_ROIs, [("out_file", "in_file")])])
    else:
        workflow.connect(
            [(mri_convert_ROIs, make_wm_mask, [('out_file', 'in_file')])])
        workflow.connect(
            [(mri_convert_ROIs, thalamus2precuneus2cortex_ROIs, [("out_file", "in_file")])])

    workflow.connect(
        [(FreeSurferSource, mri_convert_Ribbon, [(('ribbon', select_ribbon), 'in_file')])])
    if auto_reorient:
        workflow.connect(
            [(mri_convert_Ribbon, reorientRibbon, [('out_file', 'in_file')])])
        workflow.connect(
            [(reorientRibbon, make_termination_mask, [('out_file', 'in_file')])])
    else:
        workflow.connect(
            [(mri_convert_Ribbon, make_termination_mask, [('out_file', 'in_file')])])        

    if auto_reorient:
        workflow.connect(
            [(reorientBrain, fast_seg_T1, [('out_file', 'in_files')])])
    else:
        workflow.connect(
            [(mri_convert_Brain, fast_seg_T1, [('out_file', 'in_files')])])


    workflow.connect(
        [(inputnode, fast_seg_T1, [("subject_id", "out_basename")])])
    workflow.connect([(fast_seg_T1, fix_termination_mask, [(('tissue_class_files', select_CSF), 'in_file')])])
    workflow.connect([(fast_seg_T1, fix_wm_mask, [(('tissue_class_files', select_WM), 'in_file')])])


    workflow.connect(
        [(make_termination_mask, fix_termination_mask, [('out_file', 'operand_files')])])
    workflow.connect(
        [(make_wm_mask, fix_wm_mask, [('out_file', 'operand_files')])])

    workflow.connect(inputnode, 'dwi', nonlinfit_node, 'dwi')
    workflow.connect(inputnode, 'subject_id', nonlinfit_node, 'base_name')
    workflow.connect(inputnode, 'bvecs', nonlinfit_node, 'bvecs')
    workflow.connect(inputnode, 'bvals', nonlinfit_node, 'bvals')

    if reg_pet_T1:
        workflow.connect([(inputnode, reg_pet_T1, [("fdgpet", "in_file")])])
        if auto_reorient:
            workflow.connect(
                [(reorientBrain, reg_pet_T1, [("out_file", "reference")])])
            workflow.connect(
                [(reorientROIs, reslice_fdgpet, [("out_file", "reslice_like")])])
        else:
            workflow.connect(
                [(mri_convert_Brain, reg_pet_T1, [("out_file", "reference")])])
            workflow.connect(
                [(mri_convert_ROIs, reslice_fdgpet, [("out_file", "reslice_like")])])

        workflow.connect(
            [(reg_pet_T1, reslice_fdgpet, [("out_file", "in_file")])])

    else:
        workflow.connect([(inputnode, reslice_fdgpet, [("fdgpet", "in_file")])])
        if auto_reorient:
            workflow.connect(
                [(reorientROIs, reslice_fdgpet, [("out_file", "reslice_like")])])
        else:
            workflow.connect(
                [(mri_convert_ROIs, reslice_fdgpet, [("out_file", "reslice_like")])])

    workflow.connect([(nonlinfit_node, median3d, [("binary_mask", "in_file")])])
    workflow.connect(
        [(median3d, erode_mask_firstpass, [("out_file", "in_file")])])
    workflow.connect(
        [(erode_mask_firstpass, erode_mask_secondpass, [("out_file", "in_file")])])
    workflow.connect([(nonlinfit_node, MRmult_merge, [("FA", "in1")])])
    workflow.connect(
        [(erode_mask_secondpass, MRmult_merge, [("out_file", "in2")])])
    workflow.connect([(MRmult_merge, MRmultiply, [("out", "in_files")])])
    workflow.connect([(MRmultiply, threshold_FA, [("out_file", "in_file")])])

    workflow.connect([(nonlinfit_node, threshold_mode, [("mode", "in_file")])])
    workflow.connect([(threshold_mode, MultFAbyMode_merge, [("out_file", "in1")])])
    workflow.connect([(threshold_FA, MultFAbyMode_merge, [("out_file", "in2")])])
    workflow.connect([(MultFAbyMode_merge, MultFAbyMode, [("out", "in_files")])])
    workflow.connect([(inputnode, MultFAbyMode, [(('subject_id', add_subj_name_to_sfmask), 'out_filename')])])

    workflow.connect([(inputnode, reslice_fdgpet, [(('subject_id', add_subj_name_to_fdgpet), 'out_file')])])
    workflow.connect([(inputnode, make_wm_mask, [(('subject_id', add_subj_name_to_wmmask), 'out_filename')])])
    workflow.connect([(inputnode, fix_wm_mask, [(('subject_id', add_subj_name_to_wmmask), 'out_file')])])
    workflow.connect([(inputnode, fix_termination_mask, [(('subject_id', add_subj_name_to_termmask), 'out_file')])])
    workflow.connect([(inputnode, thalamus2precuneus2cortex_ROIs, [(('subject_id', add_subj_name_to_rois), 'out_filename')])])
    if auto_reorient:
        workflow.connect([(inputnode, reorientT1, [(('subject_id', add_subj_name_to_T1), 'out_file')])])
        workflow.connect([(inputnode, reorientBrain, [(('subject_id', add_subj_name_to_T1brain), 'out_file')])])
    else:
        workflow.connect([(inputnode, mri_convert_T1, [(('subject_id', add_subj_name_to_T1), 'out_file')])])
        workflow.connect([(inputnode, mri_convert_Brain, [(('subject_id', add_subj_name_to_T1brain), 'out_file')])])

    output_fields = ["single_fiber_mask", "fa", "rgb_fa", "md", "t1", "t1_brain",
    "wm_mask", "term_mask", "fdgpet", "rois","mode", "tissue_class_files", "probability_maps"]

    outputnode = pe.Node(
        interface=util.IdentityInterface(fields=output_fields),
        name="outputnode")

    workflow.connect([(fast_seg_T1, outputnode, [("tissue_class_files", "tissue_class_files")])])
    workflow.connect([(fast_seg_T1, outputnode, [("probability_maps", "probability_maps")])])
    
    workflow.connect([
         (nonlinfit_node, outputnode, [("FA", "fa")]),
         (nonlinfit_node, outputnode, [("rgb_fa", "rgb_fa")]),
         (nonlinfit_node, outputnode, [("MD", "md")]),
         (nonlinfit_node, outputnode, [("mode", "mode")]),
         (MultFAbyMode, outputnode, [("out_file", "single_fiber_mask")]),
         (fix_wm_mask, outputnode, [("out_file", "wm_mask")]),
         (fix_termination_mask, outputnode, [("out_file", "term_mask")]),
         (reslice_fdgpet, outputnode, [("out_file", "fdgpet")]),
         (thalamus2precuneus2cortex_ROIs, outputnode, [("out_file", "rois")]),
         ])

    if auto_reorient:
        workflow.connect([
            (reorientBrain, outputnode, [("out_file", "t1_brain")]),
            (reorientT1, outputnode, [("out_file", "t1")]),
            ])
    else:
        workflow.connect([
            (mri_convert_Brain, outputnode, [("out_file", "t1_brain")]),
            (mri_convert_T1, outputnode, [("out_file", "t1")]),
            ])
    return workflow