def test_DiffusionTensorStreamlineTrack_outputs(): output_map = dict(tracked=dict(), ) outputs = DiffusionTensorStreamlineTrack.output_spec() for key, metadata in output_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(outputs.traits()[key], metakey), value
def test_DiffusionTensorStreamlineTrack_inputs(): input_map = dict(args=dict(argstr='%s', ), cutoff_value=dict(argstr='-cutoff %s', units='NA', ), desired_number_of_tracks=dict(argstr='-number %d', ), do_not_precompute=dict(argstr='-noprecomputed', ), environ=dict(nohash=True, usedefault=True, ), exclude_file=dict(argstr='-exclude %s', xor=['exclude_file', 'exclude_spec'], ), exclude_spec=dict(argstr='-exclude %s', position=2, sep=',', units='mm', xor=['exclude_file', 'exclude_spec'], ), gradient_encoding_file=dict(argstr='-grad %s', mandatory=True, position=-2, ), ignore_exception=dict(nohash=True, usedefault=True, ), in_file=dict(argstr='%s', mandatory=True, position=-2, ), include_file=dict(argstr='-include %s', xor=['include_file', 'include_spec'], ), include_spec=dict(argstr='-include %s', position=2, sep=',', units='mm', xor=['include_file', 'include_spec'], ), initial_cutoff_value=dict(argstr='-initcutoff %s', units='NA', ), initial_direction=dict(argstr='-initdirection %s', units='voxels', ), inputmodel=dict(argstr='%s', position=-3, usedefault=True, ), mask_file=dict(argstr='-mask %s', xor=['mask_file', 'mask_spec'], ), mask_spec=dict(argstr='-mask %s', position=2, sep=',', units='mm', xor=['mask_file', 'mask_spec'], ), maximum_number_of_tracks=dict(argstr='-maxnum %d', ), maximum_tract_length=dict(argstr='-length %s', units='mm', ), minimum_radius_of_curvature=dict(argstr='-curvature %s', units='mm', ), minimum_tract_length=dict(argstr='-minlength %s', units='mm', ), no_mask_interpolation=dict(argstr='-nomaskinterp', ), out_file=dict(argstr='%s', name_source=['in_file'], name_template='%s_tracked.tck', output_name='tracked.tck', position=-1, ), seed_file=dict(argstr='-seed %s', xor=['seed_file', 'seed_spec'], ), seed_spec=dict(argstr='-seed %s', position=2, sep=',', units='mm', xor=['seed_file', 'seed_spec'], ), step_size=dict(argstr='-step %s', units='mm', ), stop=dict(argstr='-stop', ), terminal_output=dict(mandatory=True, nohash=True, ), unidirectional=dict(argstr='-unidirectional', ), ) inputs = DiffusionTensorStreamlineTrack.input_spec() for key, metadata in input_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(inputs.traits()[key], metakey), value