예제 #1
0
def get_localizations (X, y, cv, maskf, presels, sv):

    mask, hdr, aff = au.get_nii_data(maskf)
    maskidx = np.array(np.where(mask > 0))
    hdr.set_data_dtype(np.dtype(np.float))

    my_presels  = np.zeros_like(presels[0])
    my_svs      = np.zeros_like(mask)
    my_svs_done = False

    #unmasking method found in:
    #http://nisl.github.io/auto_examples/plot_ica_resting_state.html
    from nisl.io import NiftiMasker

    k = 0
    cv.n = X.shape[0]
    for train,test in cv:

        X_train, y_train = X[train,:], y[train]

        preselsvol = np.zeros_like (mask, dtype=np.float)
        preselsvol[tuple(maskidx)] = presels[k] > 0
        preselsnii = au.save_nibabel ('', preselsvol, aff, hdr)

        my_presels += presels[k] > 0

        if len(sv) > 0:
            try:
                nifti_masker = NiftiMasker(mask=preselsnii)
                nifti_masker.fit (X_train[:,presels[k]>0], y_train)
                niimg = nifti_masker.inverse_transform(sv[k][0])
                #X_masked = nifti_masker.fit_transform (X_train[:,presels[k]>0], y_train) #,y_train, target_affine=aff, target_shape=hdr.get_data_shape()
                #niimg = nifti_masker.inverse_transform(sv[0][0])
                #act = np.ma.masked_array(niimg.get_data(), niimg.get_data() == 0)

                my_svs += niimg.get_data()
                my_svs_done = True
            except:
                pass

        k += 1

    my_presels /= cv.n_folds
    my_svs     /= cv.n_folds

    prelocs = np.zeros_like (mask, dtype=np.float)
    prelocs[tuple(maskidx)] = my_presels

    return prelocs, my_svs, my_svs_done
예제 #2
0
def get_nii_data_from_folder(folder, use_verbs=False):

    # inside the folder, search only for betasXX.nii files
    beta_map_regex = r'betas(\d{2}).nii$'
    beta_map_filter = re_filter(beta_map_regex)

    beta_files = filter(beta_map_filter,
                        glob.glob(
                            os.path.join(folder, "*")))

    beta_files = sorted(beta_files)

    # get mask file. It must be in same folder
    mask_file = os.path.join(folder, "mask.nii")
    #new_folder = '/volatile/thirion/mygit/worddecoding/brain_reading/fmri/vl100318/fmri/' ## ugly
    #mask_file = os.path.join(new_folder, "HO_epi.nii")

    masker = NiftiMasker(mask_file, smooth=3.)

    masker.fit(beta_files[0])

    masked_nii_data = [masker.transform(beta_file)
                       for beta_file in beta_files]

    # this returns a 3D array with dimensions
    # (sessions, trials, voxels)
    masked_nii_data = np.array(masked_nii_data)

    # return only the useful values: The last 6 are
    # drift regressors and are thrown away

    masked_nii_data = masked_nii_data[:, :-6, :]

    if use_verbs:
        return masked_nii_data
    else:
        # In case we do not want the verbs (default case)
        # we need to remove the lines corresponding to verbs

        masked_nii_data = masked_nii_data.reshape(-1,
                                                  masked_nii_data.shape[-1])
        masked_nii_data = masked_nii_data[:, masked_nii_data.std(0) > 0]
        _, verbs, _, _, _ = parse_stimuli()

        return masked_nii_data[verbs == False]
예제 #3
0
def get_nii_data_from_folder(folder, use_verbs=False):

    # inside the folder, search only for betasXX.nii files
    beta_map_regex = r'betas(\d{2}).nii$'
    beta_map_filter = re_filter(beta_map_regex)

    beta_files = filter(beta_map_filter, glob.glob(os.path.join(folder, "*")))

    beta_files = sorted(beta_files)

    # get mask file. It must be in same folder
    mask_file = os.path.join(folder, "mask.nii")
    #new_folder = '/volatile/thirion/mygit/worddecoding/brain_reading/fmri/vl100318/fmri/' ## ugly
    #mask_file = os.path.join(new_folder, "HO_epi.nii")

    masker = NiftiMasker(mask_file, smooth=3.)

    masker.fit(beta_files[0])

    masked_nii_data = [masker.transform(beta_file) for beta_file in beta_files]

    # this returns a 3D array with dimensions
    # (sessions, trials, voxels)
    masked_nii_data = np.array(masked_nii_data)

    # return only the useful values: The last 6 are
    # drift regressors and are thrown away

    masked_nii_data = masked_nii_data[:, :-6, :]

    if use_verbs:
        return masked_nii_data
    else:
        # In case we do not want the verbs (default case)
        # we need to remove the lines corresponding to verbs

        masked_nii_data = masked_nii_data.reshape(-1,
                                                  masked_nii_data.shape[-1])
        masked_nii_data = masked_nii_data[:, masked_nii_data.std(0) > 0]
        _, verbs, _, _, _ = parse_stimuli()

        return masked_nii_data[verbs == False]
예제 #4
0
==================================

Here is a simple example of automatic mask computation using the nifti masker.
The mask is computed and visualized.
"""

### Load nyu_rest dataset #####################################################

from nisl import datasets
from nisl.io import NiftiMasker
dataset = datasets.fetch_nyu_rest(n_subjects=1)

### Compute the mask ##########################################################

nifti_masker = NiftiMasker(memory="nisl_cache", memory_level=2)
nifti_masker.fit(dataset.func[0])
mask = nifti_masker.mask_img_.get_data()

### Visualize the mask ########################################################
import pylab as pl
import numpy as np
import nibabel
pl.figure()
pl.axis('off')
pl.imshow(np.rot90(nibabel.load(dataset.func[0]).get_data()[..., 20, 0]),
          interpolation='nearest', cmap=pl.cm.gray)
ma = np.ma.masked_equal(mask, False)
pl.imshow(np.rot90(ma[..., 20]), interpolation='nearest', cmap=pl.cm.autumn,
          alpha=0.5)
pl.title("Mask")
예제 #5
0
### Restrict to faces and houses ##############################################
condition_mask = np.logical_or(conditions == 'face', conditions == 'house')
X = fmri_data[..., condition_mask]
y = y[condition_mask]
session = session[condition_mask]
conditions = conditions[condition_mask]

### Loading step ##############################################################
from nisl.io import NiftiMasker
from nibabel import Nifti1Image

nifti_masker = NiftiMasker(mask=mask, sessions=session,
                           memory='nisl_cache', memory_level=1)
niimg = Nifti1Image(X, affine)
X_masked = nifti_masker.fit(niimg).transform(niimg)
X_preprocessed = nifti_masker.inverse_transform(X_masked).get_data()
X_preprocessed = np.rollaxis(X_preprocessed, axis=-1)
mask = nifti_masker.mask_img_.get_data().astype(np.bool)

### Prepare the masks #########################################################
# Here we will use several masks :
# * mask is the originalmask
# * process_mask is a subset of mask, it contains voxels that should be
#   processed (we only keep the slice z = 26 and the back of the brain to speed
#   up computation)
process_mask = mask.copy()
process_mask[..., 38:] = False
process_mask[..., :36] = False
process_mask[:, 30:] = False
예제 #6
0
condition_mask = np.logical_or(conditions == 'face', conditions == 'house')
X = fmri_data[..., condition_mask]
y = y[condition_mask]
session = session[condition_mask]
conditions = conditions[condition_mask]

### Loading step ##############################################################
from nisl.io import NiftiMasker
from nibabel import Nifti1Image
# Detrending is disabled as we are not yet able to do it by session
nifti_masker = NiftiMasker(mask=mask,
                           detrend=True,
                           copy=False,
                           sessions=session)
niimg = Nifti1Image(X, affine)
X_masked = nifti_masker.fit(niimg).transform(niimg)
X_detrended = nifti_masker.inverse_transform(X_masked).get_data()

### Prepare the masks #########################################################
# Here we will use several masks :
# * mask is the originalmask
# * process_mask is a subset of mask, it contains voxels that should be
#   processed (we only keep the slice z = 26 and the back of the brain to speed
#   up computation)
process_mask = mask.copy()
process_mask[..., 38:] = False
process_mask[..., :36] = False
process_mask[:, 30:] = False

### Searchlight ###############################################################