예제 #1
0
def getNetworkWithin(in_dat, roiIndx):

        m=in_dat.copy()
        #Null the upper triangle, so that you don't get the redundant and
	#the diagonal values:    
	idx_null = triu_indices(m.shape[0])
	m[idx_null] = np.nan

        #Extract network values
        withinVals = m[roiIndx,:][:,roiIndx]

        return withinVals
예제 #2
0
def getNetworkWithin(in_dat, roiIndx):

    m = in_dat.copy()
    #Null the upper triangle, so that you don't get the redundant and
    #the diagonal values:
    idx_null = triu_indices(m.shape[0])
    m[idx_null] = np.nan

    #Extract network values
    withinVals = m[roiIndx, :][:, roiIndx]

    return withinVals
예제 #3
0
def getNetworkWithin(in_dat, roiIndx):
    m=in_dat.copy()
    #Null the upper triangle, so that you don't get the redundant and
    #the diagonal values:
    newMat=np.zeros((m.shape[0], len(roiIndx), len(roiIndx)))

    #Iterate through each run
    for runNum in range(m.shape[0]):
        m_onerun=m[runNum][:][:]
        idx_null = triu_indices(m_onerun.shape[0])
        m_onerun[idx_null] = np.nan

        #Extract network values
        withinVals = m_onerun[roiIndx,:][:,roiIndx]
        newMat[runNum][:][:]=withinVals

    return newMat
예제 #4
0
def getNetworkWithin_test(in_d, roiIndx):

    dat = in_d.copy()
    #Null the upper triangle, so that you don't get the redundant and
    #the diagonal values:
    idx_null = triu_indices(dat.shape[0])
    dat[idx_null] = np.nan

    #Extract network values
    allNet = []
    numROIs = roiIndx[1:]
    numStart = 0
    while len(numROIs) > 0:
        for jj in numROIs:
            allNet.append(dat[jj][roiIndx[numStart]])
        numStart += 1
        numROIs = numROIs[1:]
    return allNet
예제 #5
0
def getNetworkWithin_test(in_d, roiIndx):

        dat=in_d.copy()
        #Null the upper triangle, so that you don't get the redundant and
	#the diagonal values:                                                                            
	idx_null = triu_indices(dat.shape[0])
	dat[idx_null] = np.nan
        
        #Extract network values
        allNet=[]
        numROIs=roiIndx[1:]
        numStart=0
        while len(numROIs)>0:
            for jj in numROIs:
                allNet.append(dat[jj][roiIndx[numStart]])
            numStart+=1
            numROIs=numROIs[1:]
        return allNet
예제 #6
0
파일: viz.py 프로젝트: miketrumpis/nitime
def drawmatrix_channels(in_m, channel_names=None, fig=None, x_tick_rot=0,
                        size=None, cmap=plt.cm.RdBu_r, colorbar=True,
                        color_anchor=None, title=None):
    r"""Creates a lower-triangle of the matrix of an nxn set of values. This is
    the typical format to show a symmetrical bivariate quantity (such as
    correlation or coherence between two different ROIs).

    Parameters
    ----------

    in_m: nxn array with values of relationships between two sets of rois or
    channels

    channel_names (optional): list of strings with the labels to be applied to
    the channels in the input. Defaults to '0','1','2', etc.

    fig (optional): a matplotlib figure

    cmap (optional): a matplotlib colormap to be used for displaying the values
    of the connections on the graph

    title (optional): string to title the figure (can be like '$\alpha$')

    color_anchor (optional): determine the mapping from values to colormap
        if None, min and max of colormap correspond to min and max of in_m
        if 0, min and max of colormap correspond to max of abs(in_m)
        if (a,b), min and max of colormap correspond to (a,b)

    Returns
    -------

    fig: a figure object

    """
    N = in_m.shape[0]
    ind = np.arange(N)  # the evenly spaced plot indices

    def channel_formatter(x, pos=None):
        thisind = np.clip(int(x), 0, N - 1)
        return channel_names[thisind]

    if fig is None:
        fig = plt.figure()

    if size is not None:

        fig.set_figwidth(size[0])
        fig.set_figheight(size[1])

    w = fig.get_figwidth()
    h = fig.get_figheight()

    ax_im = fig.add_subplot(1, 1, 1)

    # If you want to draw the colorbar:
    if colorbar:
        divider = make_axes_locatable(ax_im)
        ax_cb = divider.new_vertical(size="10%", pad=0.1, pack_start=True)
        fig.add_axes(ax_cb)

    # Make a copy of the input, so that you don't make changes to the original
    # data provided
    m = in_m.copy()

    # Null the upper triangle, so that you don't get the redundant and the
    # diagonal values:
    idx_null = triu_indices(m.shape[0])
    m[idx_null] = np.nan

    # Extract the minimum and maximum values for scaling of the
    # colormap/colorbar:
    max_val = np.nanmax(m)
    min_val = np.nanmin(m)

    if color_anchor is None:
        color_min = min_val
        color_max = max_val
    elif color_anchor == 0:
        bound = max(abs(max_val), abs(min_val))
        color_min = -bound
        color_max = bound
    else:
        color_min = color_anchor[0]
        color_max = color_anchor[1]

    # The call to imshow produces the matrix plot:
    im = ax_im.imshow(m, origin='upper', interpolation='nearest',
                      vmin=color_min, vmax=color_max, cmap=cmap)

    # Formatting:
    ax = ax_im
    ax.grid(True)
    # Label each of the cells with the row and the column:
    if channel_names is not None:
        for i in range(0, m.shape[0]):
            if i < (m.shape[0] - 1):
                ax.text(i - 0.3, i, channel_names[i], rotation=x_tick_rot)
            if i > 0:
                ax.text(-1, i + 0.3, channel_names[i],
                        horizontalalignment='right')

        ax.set_axis_off()
        ax.set_xticks(np.arange(N))
        ax.xaxis.set_major_formatter(ticker.FuncFormatter(channel_formatter))
        fig.autofmt_xdate(rotation=x_tick_rot)
        ax.set_yticks(np.arange(N))
        ax.set_yticklabels(channel_names)
        ax.set_ybound([-0.5, N - 0.5])
        ax.set_xbound([-0.5, N - 1.5])

    # Make the tick-marks invisible:
    for line in ax.xaxis.get_ticklines():
        line.set_markeredgewidth(0)

    for line in ax.yaxis.get_ticklines():
        line.set_markeredgewidth(0)

    ax.set_axis_off()

    if title is not None:
        ax.set_title(title)

    # The following produces the colorbar and sets the ticks
    if colorbar:
        # Set the ticks - if 0 is in the interval of values, set that, as well
        # as the maximal and minimal values:
        if min_val < 0:
            ticks = [color_min, min_val, 0, max_val, color_max]
        # Otherwise - only set the minimal and maximal value:
        else:
            ticks = [color_min, min_val, max_val, color_max]

        # This makes the colorbar:
        cb = fig.colorbar(im, cax=ax_cb, orientation='horizontal',
                          cmap=cmap,
                          norm=im.norm,
                          boundaries=np.linspace(color_min, color_max, 256),
                          ticks=ticks,
                          format='%.2f')

    # Set the current figure active axis to be the top-one, which is the one
    # most likely to be operated on by users later on
    fig.sca(ax)

    return fig
예제 #7
0
파일: viz.py 프로젝트: derekrollend/nitime
def drawmatrix_channels(in_m,
                        channel_names=None,
                        fig=None,
                        x_tick_rot=0,
                        size=None,
                        cmap=plt.cm.RdBu_r,
                        colorbar=True,
                        color_anchor=None,
                        title=None):
    """Creates a lower-triangle of the matrix of an nxn set of values. This is
    the typical format to show a symmetrical bivariate quantity (such as
    correlation or coherence between two different ROIs).

    Parameters
    ----------

    in_m: nxn array with values of relationships between two sets of rois or
    channels

    channel_names (optional): list of strings with the labels to be applied to
    the channels in the input. Defaults to '0','1','2', etc.

    fig (optional): a matplotlib figure

    cmap (optional): a matplotlib colormap to be used for displaying the values
    of the connections on the graph

    title : optional, string
      If given, title to be drawn atop the matrix.

    Returns
    -------

    fig: a figure object

    """
    N = in_m.shape[0]
    ind = np.arange(N)  # the evenly spaced plot indices

    def channel_formatter(x, pos=None):
        thisind = np.clip(int(x), 0, N - 1)
        return channel_names[thisind]

    if fig is None:
        fig = plt.figure()

    if size is not None:

        fig.set_figwidth(size[0])
        fig.set_figheight(size[1])

    w = fig.get_figwidth()
    h = fig.get_figheight()

    ax_im = fig.add_subplot(1, 1, 1)

    #If you want to draw the colorbar:
    if colorbar:
        divider = make_axes_locatable(ax_im)
        ax_cb = divider.new_vertical(size="20%", pad=0.2, pack_start=True)
        fig.add_axes(ax_cb)

    #Make a copy of the input, so that you don't make changes to the original
    #data provided
    m = in_m.copy()

    #Null the upper triangle, so that you don't get the redundant and the
    #diagonal values:
    idx_null = triu_indices(m.shape[0])
    m[idx_null] = np.nan

    #Extract the minimum and maximum values for scaling of the
    #colormap/colorbar:
    max_val = np.nanmax(m)
    min_val = np.nanmin(m)

    if color_anchor is None:
        color_min = min_val
        color_max = max_val
    elif color_anchor == 0:
        bound = max(abs(max_val), abs(min_val))
        color_min = -bound
        color_max = bound
    else:
        color_min = color_anchor[0]
        color_max = color_anchor[1]

    #The call to imshow produces the matrix plot:
    im = ax_im.imshow(m,
                      origin='upper',
                      interpolation='nearest',
                      vmin=color_min,
                      vmax=color_max,
                      cmap=cmap)

    #Formatting:
    ax = ax_im
    ax.grid(True)
    #Label each of the cells with the row and the column:
    if channel_names is not None:
        for i in xrange(0, m.shape[0]):
            if i < (m.shape[0] - 1):
                ax.text(i - 0.3, i, channel_names[i], rotation=x_tick_rot)
            if i > 0:
                ax.text(-1,
                        i + 0.3,
                        channel_names[i],
                        horizontalalignment='right')

        ax.set_axis_off()
        ax.set_xticks(np.arange(N))
        ax.xaxis.set_major_formatter(ticker.FuncFormatter(channel_formatter))
        fig.autofmt_xdate(rotation=x_tick_rot)
        ax.set_yticks(np.arange(N))
        ax.set_yticklabels(channel_names)
        ax.set_ybound([-0.5, N - 0.5])
        ax.set_xbound([-0.5, N - 1.5])

    #Make the tick-marks invisible:
    for line in ax.xaxis.get_ticklines():
        line.set_markeredgewidth(0)

    for line in ax.yaxis.get_ticklines():
        line.set_markeredgewidth(0)

    ax.set_axis_off()

    if title is not None:
        ax.set_title(title)

    #The following produces the colorbar and sets the ticks
    if colorbar:
        #Set the ticks - if 0 is in the interval of values, set that, as well
        #as the maximal and minimal values:
        if min_val < 0:
            ticks = [min_val, 0, max_val]
        #Otherwise - only set the minimal and maximal value:
        else:
            ticks = [min_val, max_val]

        #This makes the colorbar:
        cb = fig.colorbar(im,
                          cax=ax_cb,
                          orientation='horizontal',
                          cmap=cmap,
                          norm=im.norm,
                          boundaries=np.linspace(min_val, max_val, 256),
                          ticks=ticks,
                          format='%.2f')

    # Set the current figure active axis to be the top-one, which is the one
    # most likely to be operated on by users later on
    fig.sca(ax)

    return fig
예제 #8
0
      sxx = alg.mtm_cross_spectrum(
         tspectra[i], tspectra[i], (w[i], w[i]), sides='onesided'
         ).real
      syy = alg.mtm_cross_spectrum(
         tspectra[j], tspectra[j], (w[i], w[j]), sides='onesided'
         ).real
      psd_mat[0,i,j] = sxx
      psd_mat[1,i,j] = syy
      coh_mat[i,j] = np.abs(sxy)**2
      coh_mat[i,j] /= (sxx * syy)
      csd_mat[i,j] = sxy
      if i != j:
         coh_var[i,j] = utils.jackknifed_coh_variance(
            tspectra[i], tspectra[j], weights=(w[i], w[j]), last_freq=L
            )
upper_idc = utils.triu_indices(nseq, k=1)
lower_idc = utils.tril_indices(nseq, k=-1)
coh_mat[upper_idc] = coh_mat[lower_idc]
coh_var[upper_idc] = coh_var[lower_idc]

# convert this measure with the normalizing function
coh_mat_xform = utils.normalize_coherence(coh_mat, 2*K-2)

t025_limit = coh_mat_xform + dist.t.ppf(.025, K-1)*np.sqrt(coh_var)
t975_limit = coh_mat_xform + dist.t.ppf(.975, K-1)*np.sqrt(coh_var)


utils.normal_coherence_to_unit(t025_limit, 2*K-2, t025_limit)
utils.normal_coherence_to_unit(t975_limit, 2*K-2, t975_limit)

if L < n_samples: