예제 #1
0
    def test_generate_report_no_segments(self):
        ''' test of FAST's report under no segments conditions '''

        bet_interface = BETRPT(in_file=MNI_2MM, mask=True)
        bet_interface.run()
        skullstripped = bet_interface.aggregate_outputs().out_file

        report_interface = FASTRPT(in_files=skullstripped,
                                   generate_report=True,
                                   no_bias=True,
                                   probability_maps=True,
                                   out_basename='test')

        _smoke_test_report(report_interface, 'testFAST_no_segments.html')
예제 #2
0
    def test_generate_report_from_4d(self):
        ''' if the in_file was 4d, it should be able to produce the same report
        anyway (using arbitrary volume) '''
        # makeshift 4d in_file
        mni_file = MNI_2MM
        mni_4d = image.concat_imgs([mni_file, mni_file, mni_file])
        mni_4d_file = os.path.join(os.getcwd(), 'mni_4d.nii.gz')
        nb.save(mni_4d, mni_4d_file)

        _smoke_test_report(
            BETRPT(in_file=mni_4d_file, generate_report=True, mask=True),
            'testBET4d.html')
예제 #3
0
    def test_compression(self):
        ''' test if compression makes files smaller '''
        uncompressed_int = BETRPT(in_file=MNI_2MM,
                                  generate_report=True,
                                  mask=True,
                                  compress_report=False)
        uncompressed_int.run()
        uncompressed_report = uncompressed_int.inputs.out_report

        compressed_int = BETRPT(in_file=MNI_2MM,
                                generate_report=True,
                                mask=True,
                                compress_report=True)
        compressed_int.run()
        compressed_report = compressed_int.inputs.out_report

        unittest.TestCase.assertTrue(
            int(os.stat(uncompressed_report).st_size) > int(
                os.stat(compressed_report).st_size),
            'An uncompressed report is bigger than '
            'a compressed report')
예제 #4
0
    def test_compression(self):
        ''' test if compression makes files smaller '''
        uncompressed_int = BETRPT(in_file=MNI_2MM,
                                  generate_report=True,
                                  mask=True,
                                  compress_report=False)
        uncompressed_int.run()
        uncompressed_report = uncompressed_int.inputs.out_report

        compressed_int = BETRPT(in_file=MNI_2MM,
                                generate_report=True,
                                mask=True,
                                compress_report=True)
        compressed_int.run()
        compressed_report = compressed_int.inputs.out_report

        size = int(os.stat(uncompressed_report).st_size)
        size_compress = int(os.stat(compressed_report).st_size)

        assert size >= size_compress, (
            'The uncompressed report is smaller (%d)'
            'than the compressed report (%d)' % (size, size_compress))
예제 #5
0
 def test_generate_report(self):
     ''' test of BET's report under basic (output binary mask) conditions '''
     _smoke_test_report(
         BETRPT(in_file=MNI_2MM, generate_report=True, mask=True),
         'testBET.html')
예제 #6
0
def test_BETRPT(moving):
    """ the BET report capable test """
    bet_rpt = BETRPT(generate_report=True, in_file=moving)
    _smoke_test_report(bet_rpt, "testBET.svg")
예제 #7
0
def init_fmap_wf(omp_nthreads, fmap_bspline, name='fmap_wf'):
    """
    Fieldmap workflow - when we have a sequence that directly measures the fieldmap
    we just need to mask it (using the corresponding magnitude image) to remove the
    noise in the surrounding air region, and ensure that units are Hz.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.fieldmap.fmap import init_fmap_wf
        wf = init_fmap_wf(omp_nthreads=6, fmap_bspline=False)

    """

    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(
        niu.IdentityInterface(fields=['magnitude', 'fieldmap']),
        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(fields=['fmap', 'fmap_ref', 'fmap_mask']),
        name='outputnode')

    # Merge input magnitude images
    magmrg = pe.Node(IntraModalMerge(), name='magmrg')
    # Merge input fieldmap images
    fmapmrg = pe.Node(IntraModalMerge(zero_based_avg=False, hmc=False),
                      name='fmapmrg')

    # de-gradient the fields ("bias/illumination artifact")
    n4_correct = pe.Node(ants.N4BiasFieldCorrection(dimension=3,
                                                    copy_header=True),
                         name='n4_correct',
                         n_procs=omp_nthreads)
    bet = pe.Node(BETRPT(generate_report=True, frac=0.6, mask=True),
                  name='bet')
    ds_fmap_mask = pe.Node(DerivativesDataSink(suffix='fmap_mask'),
                           name='ds_report_fmap_mask',
                           run_without_submitting=True)

    workflow.connect([
        (inputnode, magmrg, [('magnitude', 'in_files')]),
        (inputnode, fmapmrg, [('fieldmap', 'in_files')]),
        (magmrg, n4_correct, [('out_file', 'input_image')]),
        (n4_correct, bet, [('output_image', 'in_file')]),
        (bet, outputnode, [('mask_file', 'fmap_mask'),
                           ('out_file', 'fmap_ref')]),
        (inputnode, ds_fmap_mask, [('fieldmap', 'source_file')]),
        (bet, ds_fmap_mask, [('out_report', 'in_file')]),
    ])

    if fmap_bspline:
        # despike_threshold=1.0, mask_erode=1),
        fmapenh = pe.Node(FieldEnhance(unwrap=False, despike=False),
                          name='fmapenh',
                          mem_gb=4,
                          n_procs=omp_nthreads)

        workflow.connect([
            (bet, fmapenh, [('mask_file', 'in_mask'),
                            ('out_file', 'in_magnitude')]),
            (fmapmrg, fmapenh, [('out_file', 'in_file')]),
            (fmapenh, outputnode, [('out_file', 'fmap')]),
        ])

    else:
        torads = pe.Node(FieldToRadS(), name='torads')
        prelude = pe.Node(fsl.PRELUDE(), name='prelude')
        tohz = pe.Node(FieldToHz(), name='tohz')

        denoise = pe.Node(fsl.SpatialFilter(operation='median',
                                            kernel_shape='sphere',
                                            kernel_size=3),
                          name='denoise')
        demean = pe.Node(niu.Function(function=demean_image), name='demean')
        cleanup_wf = cleanup_edge_pipeline(name='cleanup_wf')

        applymsk = pe.Node(fsl.ApplyMask(), name='applymsk')

        workflow.connect([
            (bet, prelude, [('mask_file', 'mask_file'),
                            ('out_file', 'magnitude_file')]),
            (fmapmrg, torads, [('out_file', 'in_file')]),
            (torads, tohz, [('fmap_range', 'range_hz')]),
            (torads, prelude, [('out_file', 'phase_file')]),
            (prelude, tohz, [('unwrapped_phase_file', 'in_file')]),
            (tohz, denoise, [('out_file', 'in_file')]),
            (denoise, demean, [('out_file', 'in_file')]),
            (demean, cleanup_wf, [('out', 'inputnode.in_file')]),
            (bet, cleanup_wf, [('mask_file', 'inputnode.in_mask')]),
            (cleanup_wf, applymsk, [('outputnode.out_file', 'in_file')]),
            (bet, applymsk, [('mask_file', 'mask_file')]),
            (applymsk, outputnode, [('out_file', 'fmap')]),
        ])

    return workflow
예제 #8
0
def init_phdiff_wf(omp_nthreads, phasetype='phasediff', name='phdiff_wf'):
    """
    Estimates the fieldmap using a phase-difference image and one or more
    magnitude images corresponding to two or more :abbr:`GRE (Gradient Echo sequence)`
    acquisitions. The `original code was taken from nipype
    <https://github.com/nipy/nipype/blob/master/nipype/workflows/dmri/fsl/artifacts.py#L514>`_.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.fieldmap.phdiff import init_phdiff_wf
        wf = init_phdiff_wf(omp_nthreads=1)


    Outputs::

      outputnode.fmap_ref - The average magnitude image, skull-stripped
      outputnode.fmap_mask - The brain mask applied to the fieldmap
      outputnode.fmap - The estimated fieldmap in Hz


    """

    workflow = Workflow(name=name)
    workflow.__desc__ = """\
A deformation field to correct for susceptibility distortions was estimated
based on a field map that was co-registered to the BOLD reference,
using a custom workflow of *fMRIPrep* derived from D. Greve's `epidewarp.fsl`
[script](http://www.nmr.mgh.harvard.edu/~greve/fbirn/b0/epidewarp.fsl) and
further improvements of HCP Pipelines [@hcppipelines].
"""

    inputnode = pe.Node(
        niu.IdentityInterface(fields=['magnitude', 'phasediff']),
        name='inputnode')

    outputnode = pe.Node(
        niu.IdentityInterface(fields=['fmap', 'fmap_ref', 'fmap_mask']),
        name='outputnode')

    def _pick1st(inlist):
        return inlist[0]

    # Read phasediff echo times
    meta = pe.Node(ReadSidecarJSON(),
                   name='meta',
                   mem_gb=0.01,
                   run_without_submitting=True)

    # Merge input magnitude images
    magmrg = pe.Node(IntraModalMerge(), name='magmrg')

    # de-gradient the fields ("bias/illumination artifact")
    n4 = pe.Node(ants.N4BiasFieldCorrection(dimension=3, copy_header=True),
                 name='n4',
                 n_procs=omp_nthreads)
    bet = pe.Node(BETRPT(generate_report=True, frac=0.6, mask=True),
                  name='bet')
    ds_report_fmap_mask = pe.Node(DerivativesDataSink(desc='brain',
                                                      suffix='mask'),
                                  name='ds_report_fmap_mask',
                                  mem_gb=0.01,
                                  run_without_submitting=True)

    # uses mask from bet; outputs a mask
    # dilate = pe.Node(fsl.maths.MathsCommand(
    #     nan2zeros=True, args='-kernel sphere 5 -dilM'), name='MskDilate')

    # phase diff -> radians
    pha2rads = pe.Node(niu.Function(function=siemens2rads), name='pha2rads')

    # FSL PRELUDE will perform phase-unwrapping
    prelude = pe.Node(fsl.PRELUDE(), name='prelude')

    denoise = pe.Node(fsl.SpatialFilter(operation='median',
                                        kernel_shape='sphere',
                                        kernel_size=5),
                      name='denoise')

    demean = pe.Node(niu.Function(function=demean_image), name='demean')

    cleanup_wf = cleanup_edge_pipeline(name="cleanup_wf")

    compfmap = pe.Node(Phasediff2Fieldmap(), name='compfmap')

    # The phdiff2fmap interface is equivalent to:
    # rad2rsec (using rads2radsec from nipype.workflows.dmri.fsl.utils)
    # pre_fugue = pe.Node(fsl.FUGUE(save_fmap=True), name='ComputeFieldmapFUGUE')
    # rsec2hz (divide by 2pi)

    if phasetype == "phasediff":
        # Read phasediff echo times
        meta = pe.Node(ReadSidecarJSON(), name='meta', mem_gb=0.01)

        # phase diff -> radians
        pha2rads = pe.Node(niu.Function(function=siemens2rads),
                           name='pha2rads')
        # Read phasediff echo times
        meta = pe.Node(ReadSidecarJSON(),
                       name='meta',
                       mem_gb=0.01,
                       run_without_submitting=True)
        workflow.connect([
            (meta, compfmap, [('out_dict', 'metadata')]),
            (inputnode, pha2rads, [('phasediff', 'in_file')]),
            (pha2rads, prelude, [('out', 'phase_file')]),
            (inputnode, ds_report_fmap_mask, [('phasediff', 'source_file')]),
        ])

    elif phasetype == "phase":
        workflow.__desc__ += """\
The phase difference used for unwarping was calculated using two separate phase measurements
 [@pncprocessing].
    """
        # Special case for phase1, phase2 images
        meta = pe.MapNode(ReadSidecarJSON(),
                          name='meta',
                          mem_gb=0.01,
                          run_without_submitting=True,
                          iterfield=['in_file'])
        phases2fmap = pe.Node(Phases2Fieldmap(), name='phases2fmap')
        workflow.connect([
            (meta, phases2fmap, [('out_dict', 'metadatas')]),
            (inputnode, phases2fmap, [('phasediff', 'phase_files')]),
            (phases2fmap, prelude, [('out_file', 'phase_file')]),
            (phases2fmap, compfmap, [('phasediff_metadata', 'metadata')]),
            (phases2fmap, ds_report_fmap_mask, [('out_file', 'source_file')])
        ])

    workflow.connect([
        (inputnode, meta, [('phasediff', 'in_file')]),
        (inputnode, magmrg, [('magnitude', 'in_files')]),
        (magmrg, n4, [('out_avg', 'input_image')]),
        (n4, prelude, [('output_image', 'magnitude_file')]),
        (n4, bet, [('output_image', 'in_file')]),
        (bet, prelude, [('mask_file', 'mask_file')]),
        (prelude, denoise, [('unwrapped_phase_file', 'in_file')]),
        (denoise, demean, [('out_file', 'in_file')]),
        (demean, cleanup_wf, [('out', 'inputnode.in_file')]),
        (bet, cleanup_wf, [('mask_file', 'inputnode.in_mask')]),
        (cleanup_wf, compfmap, [('outputnode.out_file', 'in_file')]),
        (compfmap, outputnode, [('out_file', 'fmap')]),
        (bet, outputnode, [('mask_file', 'fmap_mask'),
                           ('out_file', 'fmap_ref')]),
        (bet, ds_report_fmap_mask, [('out_report', 'in_file')]),
    ])

    return workflow
예제 #9
0
def init_phdiff_wf(reportlets_dir, omp_nthreads, name='phdiff_wf'):
    """
    Estimates the fieldmap using a phase-difference image and one or more
    magnitude images corresponding to two or more :abbr:`GRE (Gradient Echo sequence)`
    acquisitions. The `original code was taken from nipype
    <https://github.com/nipy/nipype/blob/master/nipype/workflows/dmri/fsl/artifacts.py#L514>`_.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.fieldmap.phdiff import init_phdiff_wf
        wf = init_phdiff_wf(reportlets_dir='.', omp_nthreads=1)


    Outputs::

      outputnode.fmap_ref - The average magnitude image, skull-stripped
      outputnode.fmap_mask - The brain mask applied to the fieldmap
      outputnode.fmap - The estimated fieldmap in Hz


    """

    inputnode = pe.Node(
        niu.IdentityInterface(fields=['magnitude', 'phasediff']),
        name='inputnode')

    outputnode = pe.Node(
        niu.IdentityInterface(fields=['fmap', 'fmap_ref', 'fmap_mask']),
        name='outputnode')

    def _pick1st(inlist):
        return inlist[0]

    # Read phasediff echo times
    meta = pe.Node(ReadSidecarJSON(),
                   name='meta',
                   mem_gb=0.01,
                   run_without_submitting=True)
    dte = pe.Node(niu.Function(function=_delta_te), name='dte', mem_gb=0.01)

    # Merge input magnitude images
    magmrg = pe.Node(IntraModalMerge(), name='magmrg')

    # de-gradient the fields ("bias/illumination artifact")
    n4 = pe.Node(ants.N4BiasFieldCorrection(dimension=3, copy_header=True),
                 name='n4',
                 n_procs=omp_nthreads)
    bet = pe.Node(BETRPT(generate_report=True, frac=0.6, mask=True),
                  name='bet')
    ds_fmap_mask = pe.Node(DerivativesDataSink(base_directory=reportlets_dir,
                                               suffix='fmap_mask'),
                           name='ds_fmap_mask',
                           mem_gb=0.01,
                           run_without_submitting=True)
    # uses mask from bet; outputs a mask
    # dilate = pe.Node(fsl.maths.MathsCommand(
    #     nan2zeros=True, args='-kernel sphere 5 -dilM'), name='MskDilate')

    # phase diff -> radians
    pha2rads = pe.Node(niu.Function(function=siemens2rads), name='pha2rads')

    # FSL PRELUDE will perform phase-unwrapping
    prelude = pe.Node(fsl.PRELUDE(), name='prelude')

    denoise = pe.Node(fsl.SpatialFilter(operation='median',
                                        kernel_shape='sphere',
                                        kernel_size=3),
                      name='denoise')

    demean = pe.Node(niu.Function(function=demean_image), name='demean')

    cleanup_wf = cleanup_edge_pipeline(name="cleanup_wf")

    compfmap = pe.Node(niu.Function(function=phdiff2fmap), name='compfmap')

    # The phdiff2fmap interface is equivalent to:
    # rad2rsec (using rads2radsec from nipype.workflows.dmri.fsl.utils)
    # pre_fugue = pe.Node(fsl.FUGUE(save_fmap=True), name='ComputeFieldmapFUGUE')
    # rsec2hz (divide by 2pi)

    workflow = pe.Workflow(name=name)
    workflow.connect([
        (inputnode, meta, [('phasediff', 'in_file')]),
        (inputnode, magmrg, [('magnitude', 'in_files')]),
        (magmrg, n4, [('out_avg', 'input_image')]),
        (n4, prelude, [('output_image', 'magnitude_file')]),
        (n4, bet, [('output_image', 'in_file')]),
        (bet, prelude, [('mask_file', 'mask_file')]),
        (inputnode, pha2rads, [('phasediff', 'in_file')]),
        (pha2rads, prelude, [('out', 'phase_file')]),
        (meta, dte, [('out_dict', 'in_values')]),
        (dte, compfmap, [('out', 'delta_te')]),
        (prelude, denoise, [('unwrapped_phase_file', 'in_file')]),
        (denoise, demean, [('out_file', 'in_file')]),
        (demean, cleanup_wf, [('out', 'inputnode.in_file')]),
        (bet, cleanup_wf, [('mask_file', 'inputnode.in_mask')]),
        (cleanup_wf, compfmap, [('outputnode.out_file', 'in_file')]),
        (compfmap, outputnode, [('out', 'fmap')]),
        (bet, outputnode, [('mask_file', 'fmap_mask'),
                           ('out_file', 'fmap_ref')]),
        (inputnode, ds_fmap_mask, [('phasediff', 'source_file')]),
        (bet, ds_fmap_mask, [('out_report', 'in_file')]),
    ])

    return workflow
예제 #10
0
def init_magnitude_wf(omp_nthreads, name='magnitude_wf'):
    """
    Prepare the magnitude part of :abbr:`GRE (gradient-recalled echo)` fieldmaps.

    Average (if not done already) the magnitude part of the
    :abbr:`GRE (gradient recalled echo)` images, run N4 to
    correct for B1 field nonuniformity, and skull-strip the
    preprocessed magnitude.

    Workflow Graph
        .. workflow ::
            :graph2use: orig
            :simple_form: yes

            from sdcflows.workflows.fmap import init_magnitude_wf
            wf = init_magnitude_wf(omp_nthreads=6)

    Parameters
    ----------
    omp_nthreads : int
        Maximum number of threads an individual process may use
    name : str
        Name of workflow (default: ``prepare_magnitude_w``)

    Inputs
    ------
    magnitude : pathlike
        Path to the corresponding magnitude path(s).

    Outputs
    -------
    fmap_ref : pathlike
        Path to the fieldmap reference calculated in this workflow.
    fmap_mask : pathlike
        Path to a binary brain mask corresponding to the reference above.

    """
    workflow = Workflow(name=name)
    inputnode = pe.Node(
        niu.IdentityInterface(fields=['magnitude']), name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(fields=['fmap_ref', 'fmap_mask', 'mask_report']),
        name='outputnode')

    # Merge input magnitude images
    magmrg = pe.Node(IntraModalMerge(hmc=False), name='magmrg')

    # de-gradient the fields ("bias/illumination artifact")
    n4_correct = pe.Node(ants.N4BiasFieldCorrection(dimension=3, copy_header=True),
                         name='n4_correct', n_procs=omp_nthreads)
    bet = pe.Node(BETRPT(generate_report=True, frac=0.6, mask=True),
                  name='bet')

    workflow.connect([
        (inputnode, magmrg, [('magnitude', 'in_files')]),
        (magmrg, n4_correct, [('out_avg', 'input_image')]),
        (n4_correct, bet, [('output_image', 'in_file')]),
        (bet, outputnode, [('mask_file', 'fmap_mask'),
                           ('out_file', 'fmap_ref'),
                           ('out_report', 'mask_report')]),
    ])
    return workflow
예제 #11
0
def init_phdiff_wf(omp_nthreads, name='phdiff_wf'):
    """
    Distortion correction of EPI sequences using phase-difference maps.

    Estimates the fieldmap using a phase-difference image and one or more
    magnitude images corresponding to two or more :abbr:`GRE (Gradient Echo sequence)`
    acquisitions. The `original code was taken from nipype
    <https://github.com/nipy/nipype/blob/master/nipype/workflows/dmri/fsl/artifacts.py#L514>`_.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from sdcflows.workflows.phdiff import init_phdiff_wf
        wf = init_phdiff_wf(omp_nthreads=1)

    **Parameters**:

        omp_nthreads : int
            Maximum number of threads an individual process may use

    **Inputs**:

        magnitude : pathlike
            Path to the corresponding magnitude path(s).
        phasediff : pathlike
            Path to the corresponding phase-difference file.
        metadata : dict
            Metadata dictionary corresponding to the phasediff input

    **Outputs**:

        fmap_ref : pathlike
            The average magnitude image, skull-stripped
        fmap_mask : pathlike
            The brain mask applied to the fieldmap
        fmap : pathlike
            The estimated fieldmap in Hz

    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
A deformation field to correct for susceptibility distortions was estimated
based on a field map that was co-registered to the BOLD reference,
using a custom workflow of *fMRIPrep* derived from D. Greve's `epidewarp.fsl`
[script](http://www.nmr.mgh.harvard.edu/~greve/fbirn/b0/epidewarp.fsl) and
further improvements of HCP Pipelines [@hcppipelines].
"""

    inputnode = pe.Node(
        niu.IdentityInterface(fields=['magnitude', 'phasediff', 'metadata']),
        name='inputnode')

    outputnode = pe.Node(
        niu.IdentityInterface(fields=['fmap', 'fmap_ref', 'fmap_mask']),
        name='outputnode')

    # Merge input magnitude images
    magmrg = pe.Node(IntraModalMerge(), name='magmrg')

    # de-gradient the fields ("bias/illumination artifact")
    n4 = pe.Node(ants.N4BiasFieldCorrection(dimension=3, copy_header=True),
                 name='n4',
                 n_procs=omp_nthreads)
    bet = pe.Node(BETRPT(generate_report=True, frac=0.6, mask=True),
                  name='bet')

    # uses mask from bet; outputs a mask
    # dilate = pe.Node(fsl.maths.MathsCommand(
    #     nan2zeros=True, args='-kernel sphere 5 -dilM'), name='MskDilate')

    # phase diff -> radians
    pha2rads = pe.Node(niu.Function(function=siemens2rads), name='pha2rads')

    # FSL PRELUDE will perform phase-unwrapping
    prelude = pe.Node(fsl.PRELUDE(), name='prelude')

    denoise = pe.Node(fsl.SpatialFilter(operation='median',
                                        kernel_shape='sphere',
                                        kernel_size=3),
                      name='denoise')

    demean = pe.Node(niu.Function(function=demean_image), name='demean')

    cleanup_wf = cleanup_edge_pipeline(name="cleanup_wf")

    compfmap = pe.Node(Phasediff2Fieldmap(), name='compfmap')

    # The phdiff2fmap interface is equivalent to:
    # rad2rsec (using rads2radsec from nipype.workflows.dmri.fsl.utils)
    # pre_fugue = pe.Node(fsl.FUGUE(save_fmap=True), name='ComputeFieldmapFUGUE')
    # rsec2hz (divide by 2pi)

    workflow.connect([
        (inputnode, compfmap, [('metadata', 'metadata')]),
        (inputnode, magmrg, [('magnitude', 'in_files')]),
        (magmrg, n4, [('out_avg', 'input_image')]),
        (n4, prelude, [('output_image', 'magnitude_file')]),
        (n4, bet, [('output_image', 'in_file')]),
        (bet, prelude, [('mask_file', 'mask_file')]),
        (inputnode, pha2rads, [('phasediff', 'in_file')]),
        (pha2rads, prelude, [('out', 'phase_file')]),
        (prelude, denoise, [('unwrapped_phase_file', 'in_file')]),
        (denoise, demean, [('out_file', 'in_file')]),
        (demean, cleanup_wf, [('out', 'inputnode.in_file')]),
        (bet, cleanup_wf, [('mask_file', 'inputnode.in_mask')]),
        (cleanup_wf, compfmap, [('outputnode.out_file', 'in_file')]),
        (compfmap, outputnode, [('out_file', 'fmap')]),
        (bet, outputnode, [('mask_file', 'fmap_mask'),
                           ('out_file', 'fmap_ref')]),
    ])

    return workflow