def init_pepolar_unwarp_wf(fmaps, bold_file, omp_nthreads, layout=None, fmaps_pes=None, bold_file_pe=None, name="pepolar_unwarp_wf"): """ This workflow takes in a set of EPI files with opposite phase encoding direction than the target file and calculates a displacements field (in other words, an ANTs-compatible warp file). This procedure works if there is only one '_epi' file is present (as long as it has the opposite phase encoding direction to the target file). The target file will be used to estimate the field distortion. However, if there is another '_epi' file present with a matching phase encoding direction to the target it will be used instead. Currently, different phase encoding dimension in the target file and the '_epi' file(s) (for example 'i' and 'j') is not supported. The warp field correcting for the distortions is estimated using AFNI's 3dQwarp, with displacement estimation limited to the target file phase encoding direction. It also calculates a new mask for the input dataset that takes into account the distortions. .. workflow :: :graph2use: orig :simple_form: yes from fmriprep.workflows.fieldmap.unwarp import init_pepolar_unwarp_wf wf = init_pepolar_unwarp_wf(fmaps=['/dataset/sub-01/fmap/sub-01_epi.nii.gz'], fmaps_pes=['j-'], bold_file='/dataset/sub-01/func/sub-01_task-rest_bold.nii.gz', bold_file_pe='j', omp_nthreads=8) Inputs in_reference the reference image in_reference_brain the reference image skullstripped in_mask a brain mask corresponding to ``in_reference`` name_source not used, kept for signature compatibility with ``init_sdc_unwarp_wf`` Outputs out_reference the ``in_reference`` after unwarping out_reference_brain the ``in_reference`` after unwarping and skullstripping out_warp the corresponding :abbr:`DFM (displacements field map)` compatible with ANTs out_mask mask of the unwarped input file out_mask_report reportlet for the skullstripping """ if not bold_file_pe: bold_file_pe = layout.get_metadata(bold_file)["PhaseEncodingDirection"] usable_fieldmaps_matching_pe = [] usable_fieldmaps_opposite_pe = [] args = '-noXdis -noYdis -noZdis' rm_arg = {'i': '-noXdis', 'j': '-noYdis', 'k': '-noZdis'}[bold_file_pe[0]] args = args.replace(rm_arg, '') for i, fmap in enumerate(fmaps): if fmaps_pes: fmap_pe = fmaps_pes[i] else: fmap_pe = layout.get_metadata(fmap)["PhaseEncodingDirection"] if fmap_pe[0] == bold_file_pe[0]: if len(fmap_pe) != len(bold_file_pe): add_list = usable_fieldmaps_opposite_pe else: add_list = usable_fieldmaps_matching_pe add_list.append(fmap) if len(usable_fieldmaps_opposite_pe) == 0: raise Exception("None of the discovered fieldmaps has the right " "phase encoding direction. Possibly a problem with " "metadata. If not, rerun with '--ignore fieldmaps' to " "skip distortion correction step.") workflow = pe.Workflow(name=name) inputnode = pe.Node(niu.IdentityInterface(fields=[ 'in_reference', 'in_reference_brain', 'in_mask', 'name_source' ]), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=[ 'out_reference', 'out_reference_brain', 'out_warp', 'out_mask', 'out_mask_report' ]), name='outputnode') prepare_epi_opposite_wf = init_prepare_epi_wf( ants_nthreads=omp_nthreads, name="prepare_epi_opposite_wf") prepare_epi_opposite_wf.inputs.inputnode.fmaps = usable_fieldmaps_opposite_pe qwarp = pe.Node(afni.QwarpPlusMinus( pblur=[0.05, 0.05], blur=[-1, -1], noweight=True, minpatch=9, nopadWARP=True, environ={'OMP_NUM_THREADS': str(omp_nthreads)}, args=args), name='qwarp') qwarp.interface.num_threads = omp_nthreads workflow.connect([ (inputnode, prepare_epi_opposite_wf, [('in_reference_brain', 'inputnode.ref_brain')]), (prepare_epi_opposite_wf, qwarp, [('outputnode.out_file', 'base_file') ]), ]) if usable_fieldmaps_matching_pe: prepare_epi_matching_wf = init_prepare_epi_wf( ants_nthreads=omp_nthreads, name="prepare_epi_matching_wf") prepare_epi_matching_wf.inputs.inputnode.fmaps = usable_fieldmaps_matching_pe workflow.connect([ (inputnode, prepare_epi_matching_wf, [('in_reference_brain', 'inputnode.ref_brain')]), (prepare_epi_matching_wf, qwarp, [('outputnode.out_file', 'source_file')]), ]) else: workflow.connect([(inputnode, qwarp, [('in_reference_brain', 'source_file')])]) to_ants = pe.Node(niu.Function(function=_fix_hdr), name='to_ants') cphdr_warp = pe.Node(CopyHeader(), name='cphdr_warp') unwarp_reference = pe.Node(ANTSApplyTransformsRPT( dimension=3, generate_report=False, float=True, interpolation='LanczosWindowedSinc'), name='unwarp_reference') enhance_and_skullstrip_epi_wf = init_enhance_and_skullstrip_epi_wf() workflow.connect([ (inputnode, cphdr_warp, [('in_reference', 'hdr_file')]), (qwarp, cphdr_warp, [('source_warp', 'in_file')]), (cphdr_warp, to_ants, [('out_file', 'in_file')]), (to_ants, unwarp_reference, [('out', 'transforms')]), (inputnode, unwarp_reference, [('in_reference', 'reference_image'), ('in_reference', 'input_image')]), (unwarp_reference, enhance_and_skullstrip_epi_wf, [('output_image', 'inputnode.in_file')]), (unwarp_reference, outputnode, [('output_image', 'out_reference')]), (enhance_and_skullstrip_epi_wf, outputnode, [('outputnode.mask_file', 'out_mask'), ('outputnode.out_report', 'out_report'), ('outputnode.skull_stripped_file', 'out_reference_brain')]), (to_ants, outputnode, [('out', 'out_warp')]), ]) return workflow
def init_sdc_unwarp_wf(reportlets_dir, omp_nthreads, fmap_bspline, fmap_demean, debug, name='sdc_unwarp_wf'): """ This workflow takes in a displacements fieldmap and calculates the corresponding displacements field (in other words, an ANTs-compatible warp file). It also calculates a new mask for the input dataset that takes into account the distortions. The mask is restricted to the field of view of the fieldmap since outside of it corrections could not be performed. .. workflow :: :graph2use: orig :simple_form: yes from fmriprep.workflows.fieldmap.unwarp import init_sdc_unwarp_wf wf = init_sdc_unwarp_wf(reportlets_dir='.', omp_nthreads=8, fmap_bspline=False, fmap_demean=True, debug=False) Inputs in_reference the reference image in_mask a brain mask corresponding to ``in_reference`` name_source path to the original _bold file being unwarped fmap the fieldmap in Hz fmap_ref the reference (anatomical) image corresponding to ``fmap`` fmap_mask a brain mask corresponding to ``fmap`` Outputs out_reference the ``in_reference`` after unwarping out_reference_brain the ``in_reference`` after unwarping and skullstripping out_warp the corresponding :abbr:`DFM (displacements field map)` compatible with ANTs out_jacobian the jacobian of the field (for drop-out alleviation) out_mask mask of the unwarped input file out_mask_report reportled for the skullstripping """ workflow = pe.Workflow(name=name) inputnode = pe.Node(niu.IdentityInterface(fields=[ 'in_reference', 'in_reference_brain', 'in_mask', 'name_source', 'fmap_ref', 'fmap_mask', 'fmap' ]), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=[ 'out_reference', 'out_reference_brain', 'out_warp', 'out_mask', 'out_jacobian', 'out_mask_report' ]), name='outputnode') meta = pe.Node(ReadSidecarJSON(), name='meta') # Register the reference of the fieldmap to the reference # of the target image (the one that shall be corrected) ants_settings = pkgr.resource_filename('fmriprep', 'data/fmap-any_registration.json') if debug: ants_settings = pkgr.resource_filename( 'fmriprep', 'data/fmap-any_registration_testing.json') fmap2ref_reg = pe.Node(ANTSRegistrationRPT( generate_report=True, from_file=ants_settings, output_inverse_warped_image=True, output_warped_image=True, num_threads=omp_nthreads), name='fmap2ref_reg') fmap2ref_reg.interface.num_threads = omp_nthreads ds_reg = pe.Node(DerivativesDataSink(base_directory=reportlets_dir, suffix='fmap_reg'), name='ds_reg') # Map the VSM into the EPI space fmap2ref_apply = pe.Node(ANTSApplyTransformsRPT(generate_report=True, dimension=3, interpolation='BSpline', float=True), name='fmap2ref_apply') fmap_mask2ref_apply = pe.Node(ANTSApplyTransformsRPT( generate_report=False, dimension=3, interpolation='NearestNeighbor', float=True), name='fmap_mask2ref_apply') ds_reg_vsm = pe.Node(DerivativesDataSink(base_directory=reportlets_dir, suffix='fmap_reg_vsm'), name='ds_reg_vsm') # Fieldmap to rads and then to voxels (VSM - voxel shift map) torads = pe.Node(niu.Function(function=_hz2rads), name='torads') gen_vsm = pe.Node(fsl.FUGUE(save_unmasked_shift=True), name='gen_vsm') # Convert the VSM into a DFM (displacements field map) # or: FUGUE shift to ANTS warping. vsm2dfm = pe.Node(itk.FUGUEvsm2ANTSwarp(), name='vsm2dfm') jac_dfm = pe.Node(ants.CreateJacobianDeterminantImage( imageDimension=3, outputImage='jacobian.nii.gz'), name='jac_dfm') unwarp_reference = pe.Node(ANTSApplyTransformsRPT( dimension=3, generate_report=False, float=True, interpolation='LanczosWindowedSinc'), name='unwarp_reference') fieldmap_fov_mask = pe.Node(niu.Function(function=_fill_with_ones), name='fieldmap_fov_mask') fmap_fov2ref_apply = pe.Node(ANTSApplyTransformsRPT( generate_report=False, dimension=3, interpolation='NearestNeighbor', float=True), name='fmap_fov2ref_apply') apply_fov_mask = pe.Node(fsl.ApplyMask(), name="apply_fov_mask") enhance_and_skullstrip_epi_wf = init_enhance_and_skullstrip_epi_wf() workflow.connect([ (inputnode, meta, [('name_source', 'in_file')]), (inputnode, fmap2ref_reg, [('fmap_ref', 'moving_image')]), (inputnode, fmap2ref_apply, [('in_reference', 'reference_image')]), (fmap2ref_reg, fmap2ref_apply, [('composite_transform', 'transforms') ]), (inputnode, fmap_mask2ref_apply, [('in_reference', 'reference_image') ]), (fmap2ref_reg, fmap_mask2ref_apply, [('composite_transform', 'transforms')]), (inputnode, ds_reg_vsm, [('name_source', 'source_file')]), (fmap2ref_apply, ds_reg_vsm, [('out_report', 'in_file')]), (inputnode, fmap2ref_reg, [('in_reference_brain', 'fixed_image')]), (inputnode, ds_reg, [('name_source', 'source_file')]), (fmap2ref_reg, ds_reg, [('out_report', 'in_file')]), (inputnode, fmap2ref_apply, [('fmap', 'input_image')]), (inputnode, fmap_mask2ref_apply, [('fmap_mask', 'input_image')]), (fmap2ref_apply, torads, [('output_image', 'in_file')]), (meta, gen_vsm, [(('out_dict', _get_ec), 'dwell_time'), (('out_dict', _get_pedir_fugue), 'unwarp_direction') ]), (meta, vsm2dfm, [(('out_dict', _get_pedir_bids), 'pe_dir')]), (torads, gen_vsm, [('out', 'fmap_in_file')]), (vsm2dfm, unwarp_reference, [('out_file', 'transforms')]), (inputnode, unwarp_reference, [('in_reference', 'reference_image')]), (inputnode, unwarp_reference, [('in_reference', 'input_image')]), (vsm2dfm, outputnode, [('out_file', 'out_warp')]), (vsm2dfm, jac_dfm, [('out_file', 'deformationField')]), (inputnode, fieldmap_fov_mask, [('fmap_ref', 'in_file')]), (fieldmap_fov_mask, fmap_fov2ref_apply, [('out', 'input_image')]), (inputnode, fmap_fov2ref_apply, [('in_reference', 'reference_image')]), (fmap2ref_reg, fmap_fov2ref_apply, [('composite_transform', 'transforms')]), (fmap_fov2ref_apply, apply_fov_mask, [('output_image', 'mask_file')]), (unwarp_reference, apply_fov_mask, [('output_image', 'in_file')]), (apply_fov_mask, enhance_and_skullstrip_epi_wf, [('out_file', 'inputnode.in_file')]), (apply_fov_mask, outputnode, [('out_file', 'out_reference')]), (enhance_and_skullstrip_epi_wf, outputnode, [('outputnode.mask_file', 'out_mask'), ('outputnode.out_report', 'out_mask_report'), ('outputnode.skull_stripped_file', 'out_reference_brain')]), (jac_dfm, outputnode, [('jacobian_image', 'out_jacobian')]), ]) if not fmap_bspline: workflow.connect([(fmap_mask2ref_apply, gen_vsm, [('output_image', 'mask_file')])]) if fmap_demean: # Demean within mask demean = pe.Node(niu.Function(function=_demean), name='demean') workflow.connect([ (gen_vsm, demean, [('shift_out_file', 'in_file')]), (fmap_mask2ref_apply, demean, [('output_image', 'in_mask')]), (demean, vsm2dfm, [('out', 'in_file')]), ]) else: workflow.connect([ (gen_vsm, vsm2dfm, [('shift_out_file', 'in_file')]), ]) return workflow
def init_pepolar_unwarp_wf(omp_nthreads=1, matched_pe=False, name="pepolar_unwarp_wf"): """ Create the PE-Polar field estimation workflow. This workflow takes in a set of EPI files with opposite phase encoding direction than the target file and calculates a displacements field (in other words, an ANTs-compatible warp file). This procedure works if there is only one '_epi' file is present (as long as it has the opposite phase encoding direction to the target file). The target file will be used to estimate the field distortion. However, if there is another '_epi' file present with a matching phase encoding direction to the target it will be used instead. Currently, different phase encoding dimension in the target file and the '_epi' file(s) (for example 'i' and 'j') is not supported. The warp field correcting for the distortions is estimated using AFNI's 3dQwarp, with displacement estimation limited to the target file phase encoding direction. It also calculates a new mask for the input dataset that takes into account the distortions. .. workflow :: :graph2use: orig :simple_form: yes from sdcflows.workflows.pepolar import init_pepolar_unwarp_wf wf = init_pepolar_unwarp_wf() **Parameters**: matched_pe : bool Whether the input ``fmaps_epi`` will contain images with matched PE blips or not. Please use :func:`sdcflows.workflows.pepolar.check_pes` to determine whether they exist or not. name : str Name for this workflow omp_nthreads : int Parallelize internal tasks across the number of CPUs given by this option. **Inputs**: fmaps_epi : list of tuple(pathlike, str) The list of EPI images that will be used in PE-Polar correction, and their corresponding ``PhaseEncodingDirection`` metadata. The workflow will use the ``bold_pe_dir`` input to separate out those EPI acquisitions with opposed PE blips and those with matched PE blips (the latter could be none, and ``in_reference_brain`` would then be used). The workflow raises a ``ValueError`` when no images with opposed PE blips are found. bold_pe_dir : str The baseline PE direction. in_reference : pathlike The baseline reference image (must correspond to ``bold_pe_dir``). in_reference_brain : pathlike The reference image above, but skullstripped. in_mask : pathlike Not used, present only for consistency across fieldmap estimation workflows. **Outputs**: out_reference : pathlike The ``in_reference`` after unwarping out_reference_brain : pathlike The ``in_reference`` after unwarping and skullstripping out_warp : pathlike The corresponding :abbr:`DFM (displacements field map)` compatible with ANTs. out_mask : pathlike Mask of the unwarped input file """ workflow = Workflow(name=name) workflow.__desc__ = """\ A deformation field to correct for susceptibility distortions was estimated based on two echo-planar imaging (EPI) references with opposing phase-encoding directions, using `3dQwarp` @afni (AFNI {afni_ver}). """.format(afni_ver=''.join(['%02d' % v for v in afni.Info().version() or []])) inputnode = pe.Node(niu.IdentityInterface(fields=[ 'fmaps_epi', 'in_reference', 'in_reference_brain', 'in_mask', 'bold_pe_dir' ]), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=[ 'out_reference', 'out_reference_brain', 'out_warp', 'out_mask' ]), name='outputnode') prepare_epi_wf = init_prepare_epi_wf(omp_nthreads=omp_nthreads, matched_pe=matched_pe, name="prepare_epi_wf") qwarp = pe.Node(afni.QwarpPlusMinus( pblur=[0.05, 0.05], blur=[-1, -1], noweight=True, minpatch=9, nopadWARP=True, environ={'OMP_NUM_THREADS': '%d' % omp_nthreads}), name='qwarp', n_procs=omp_nthreads) to_ants = pe.Node(niu.Function(function=_fix_hdr), name='to_ants', mem_gb=0.01) cphdr_warp = pe.Node(CopyHeader(), name='cphdr_warp', mem_gb=0.01) unwarp_reference = pe.Node(ANTSApplyTransformsRPT( dimension=3, generate_report=False, float=True, interpolation='LanczosWindowedSinc'), name='unwarp_reference') enhance_and_skullstrip_bold_wf = init_enhance_and_skullstrip_bold_wf( omp_nthreads=omp_nthreads) workflow.connect([ (inputnode, qwarp, [(('bold_pe_dir', _qwarp_args), 'args')]), (inputnode, cphdr_warp, [('in_reference', 'hdr_file')]), (inputnode, prepare_epi_wf, [('fmaps_epi', 'inputnode.maps_pe'), ('bold_pe_dir', 'inputnode.epi_pe'), ('in_reference_brain', 'inputnode.ref_brain')]), (prepare_epi_wf, qwarp, [('outputnode.opposed_pe', 'base_file'), ('outputnode.matched_pe', 'in_file')]), (qwarp, cphdr_warp, [('source_warp', 'in_file')]), (cphdr_warp, to_ants, [('out_file', 'in_file')]), (to_ants, unwarp_reference, [('out', 'transforms')]), (inputnode, unwarp_reference, [('in_reference', 'reference_image'), ('in_reference', 'input_image')]), (unwarp_reference, enhance_and_skullstrip_bold_wf, [('output_image', 'inputnode.in_file')]), (unwarp_reference, outputnode, [('output_image', 'out_reference')]), (enhance_and_skullstrip_bold_wf, outputnode, [('outputnode.mask_file', 'out_mask'), ('outputnode.skull_stripped_file', 'out_reference_brain')]), (to_ants, outputnode, [('out', 'out_warp')]), ]) return workflow
def init_sdc_unwarp_wf(omp_nthreads, debug, name='sdc_unwarp_wf'): """ Apply the warping given by a displacements fieldmap. This workflow takes in a displacements field through which the input reference can be corrected for susceptibility-derived distortion. It also calculates a new mask for the input dataset, after the distortions have been accounted for. .. workflow :: :graph2use: orig :simple_form: yes from sdcflows.workflows.unwarp import init_sdc_unwarp_wf wf = init_sdc_unwarp_wf(omp_nthreads=8, debug=False) Parameters ---------- omp_nthreads : int Maximum number of threads an individual process may use. debug : bool Run fast configurations of registrations. name : str Unique name of this workflow. Inputs ------ in_warp : os.pathlike The :abbr:`DFM (displacements field map)` that corrects for susceptibility-derived distortions estimated elsewhere. in_reference : os.pathlike the reference image to be unwarped. in_reference_mask : os.pathlike the reference image mask to be unwarped Outputs ------- out_reference : str the ``in_reference`` after unwarping out_reference_brain : str the ``in_reference`` after unwarping and skullstripping out_warp : str the ``in_warp`` field is forwarded for compatibility out_mask : str mask of the unwarped input file """ workflow = Workflow(name=name) inputnode = pe.Node(niu.IdentityInterface( fields=['in_warp', 'in_reference', 'in_reference_mask']), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=[ 'out_reference', 'out_reference_brain', 'out_warp', 'out_mask' ]), name='outputnode') unwarp_reference = pe.Node(ANTSApplyTransformsRPT( dimension=3, generate_report=False, float=True, interpolation='LanczosWindowedSinc'), name='unwarp_reference') unwarp_mask = pe.Node(ANTSApplyTransformsRPT( dimension=3, generate_report=False, float=True, interpolation='NearestNeighbor'), name='unwarp_mask') enhance_and_skullstrip_bold_wf = init_enhance_and_skullstrip_bold_wf( omp_nthreads=omp_nthreads, pre_mask=True) workflow.connect([ (inputnode, unwarp_reference, [('in_warp', 'transforms'), ('in_reference', 'reference_image'), ('in_reference', 'input_image')]), (inputnode, unwarp_mask, [('in_warp', 'transforms'), ('in_reference_mask', 'reference_image'), ('in_reference_mask', 'input_image')]), (unwarp_reference, enhance_and_skullstrip_bold_wf, [('output_image', 'inputnode.in_file')]), (unwarp_mask, enhance_and_skullstrip_bold_wf, [('output_image', 'inputnode.pre_mask')]), (inputnode, outputnode, [('in_warp', 'out_warp')]), (unwarp_reference, outputnode, [('output_image', 'out_reference')]), (enhance_and_skullstrip_bold_wf, outputnode, [('outputnode.mask_file', 'out_mask'), ('outputnode.skull_stripped_file', 'out_reference_brain')]), ]) return workflow
def init_pepolar_unwarp_wf(bold_meta, epi_fmaps, omp_nthreads=1, name="pepolar_unwarp_wf"): """ This workflow takes in a set of EPI files with opposite phase encoding direction than the target file and calculates a displacements field (in other words, an ANTs-compatible warp file). This procedure works if there is only one '_epi' file is present (as long as it has the opposite phase encoding direction to the target file). The target file will be used to estimate the field distortion. However, if there is another '_epi' file present with a matching phase encoding direction to the target it will be used instead. Currently, different phase encoding dimension in the target file and the '_epi' file(s) (for example 'i' and 'j') is not supported. The warp field correcting for the distortions is estimated using AFNI's 3dQwarp, with displacement estimation limited to the target file phase encoding direction. It also calculates a new mask for the input dataset that takes into account the distortions. .. workflow :: :graph2use: orig :simple_form: yes from fmriprep.workflows.fieldmap.pepolar import init_pepolar_unwarp_wf wf = init_pepolar_unwarp_wf( bold_meta={'PhaseEncodingDirection': 'j'}, epi_fmaps=[('/dataset/sub-01/fmap/sub-01_epi.nii.gz', 'j-')], omp_nthreads=8) Inputs in_reference the reference image in_reference_brain the reference image skullstripped in_mask a brain mask corresponding to ``in_reference`` Outputs out_reference the ``in_reference`` after unwarping out_reference_brain the ``in_reference`` after unwarping and skullstripping out_warp the corresponding :abbr:`DFM (displacements field map)` compatible with ANTs out_mask mask of the unwarped input file """ bold_file_pe = bold_meta["PhaseEncodingDirection"] args = '-noXdis -noYdis -noZdis' rm_arg = {'i': '-noXdis', 'j': '-noYdis', 'k': '-noZdis'}[bold_file_pe[0]] args = args.replace(rm_arg, '') usable_fieldmaps_matching_pe = [] usable_fieldmaps_opposite_pe = [] for fmap, fmap_pe in epi_fmaps: if fmap_pe == bold_file_pe: usable_fieldmaps_matching_pe.append(fmap) elif fmap_pe[0] == bold_file_pe[0]: usable_fieldmaps_opposite_pe.append(fmap) if not usable_fieldmaps_opposite_pe: raise Exception("None of the discovered fieldmaps has the right " "phase encoding direction. Possibly a problem with " "metadata. If not, rerun with '--ignore fieldmaps' to " "skip distortion correction step.") workflow = Workflow(name=name) workflow.__desc__ = """\ A deformation field to correct for susceptibility distortions was estimated based on two echo-planar imaging (EPI) references with opposing phase-encoding directions, using `3dQwarp` @afni (AFNI {afni_ver}). """.format(afni_ver=''.join(list(afni.QwarpPlusMinus().version or '<ver>'))) inputnode = pe.Node(niu.IdentityInterface( fields=['in_reference', 'in_reference_brain', 'in_mask']), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=[ 'out_reference', 'out_reference_brain', 'out_warp', 'out_mask' ]), name='outputnode') prepare_epi_opposite_wf = init_prepare_epi_wf( omp_nthreads=omp_nthreads, name="prepare_epi_opposite_wf") prepare_epi_opposite_wf.inputs.inputnode.fmaps = usable_fieldmaps_opposite_pe qwarp = pe.Node(afni.QwarpPlusMinus( pblur=[0.05, 0.05], blur=[-1, -1], noweight=True, minpatch=9, nopadWARP=True, environ={'OMP_NUM_THREADS': '%d' % omp_nthreads}, args=args), name='qwarp', n_procs=omp_nthreads) workflow.connect([ (inputnode, prepare_epi_opposite_wf, [('in_reference_brain', 'inputnode.ref_brain')]), (prepare_epi_opposite_wf, qwarp, [('outputnode.out_file', 'base_file') ]), ]) if usable_fieldmaps_matching_pe: prepare_epi_matching_wf = init_prepare_epi_wf( omp_nthreads=omp_nthreads, name="prepare_epi_matching_wf") prepare_epi_matching_wf.inputs.inputnode.fmaps = usable_fieldmaps_matching_pe workflow.connect([ (inputnode, prepare_epi_matching_wf, [('in_reference_brain', 'inputnode.ref_brain')]), (prepare_epi_matching_wf, qwarp, [('outputnode.out_file', 'source_file')]), ]) else: workflow.connect([(inputnode, qwarp, [('in_reference_brain', 'source_file')])]) to_ants = pe.Node(niu.Function(function=_fix_hdr), name='to_ants', mem_gb=0.01) cphdr_warp = pe.Node(CopyHeader(), name='cphdr_warp', mem_gb=0.01) unwarp_reference = pe.Node(ANTSApplyTransformsRPT( dimension=3, generate_report=False, float=True, interpolation='LanczosWindowedSinc'), name='unwarp_reference') enhance_and_skullstrip_bold_wf = init_enhance_and_skullstrip_bold_wf( omp_nthreads=omp_nthreads) workflow.connect([ (inputnode, cphdr_warp, [('in_reference', 'hdr_file')]), (qwarp, cphdr_warp, [('source_warp', 'in_file')]), (cphdr_warp, to_ants, [('out_file', 'in_file')]), (to_ants, unwarp_reference, [('out', 'transforms')]), (inputnode, unwarp_reference, [('in_reference', 'reference_image'), ('in_reference', 'input_image')]), (unwarp_reference, enhance_and_skullstrip_bold_wf, [('output_image', 'inputnode.in_file')]), (unwarp_reference, outputnode, [('output_image', 'out_reference')]), (enhance_and_skullstrip_bold_wf, outputnode, [('outputnode.mask_file', 'out_mask'), ('outputnode.skull_stripped_file', 'out_reference_brain')]), (to_ants, outputnode, [('out', 'out_warp')]), ]) return workflow
def init_sdc_unwarp_wf(omp_nthreads, fmap_demean, debug, name='sdc_unwarp_wf'): """ Apply the warping given by a displacements fieldmap. This workflow takes in a displacements fieldmap and calculates the corresponding displacements field (in other words, an ANTs-compatible warp file). It also calculates a new mask for the input dataset that takes into account the distortions. The mask is restricted to the field of view of the fieldmap since outside of it corrections could not be performed. .. workflow :: :graph2use: orig :simple_form: yes from sdcflows.workflows.unwarp import init_sdc_unwarp_wf wf = init_sdc_unwarp_wf(omp_nthreads=8, fmap_demean=True, debug=False) Inputs in_reference the reference image in_reference_brain the reference image (skull-stripped) in_mask a brain mask corresponding to ``in_reference`` metadata metadata associated to the ``in_reference`` EPI input fmap the fieldmap in Hz fmap_ref the reference (anatomical) image corresponding to ``fmap`` fmap_mask a brain mask corresponding to ``fmap`` Outputs out_reference the ``in_reference`` after unwarping out_reference_brain the ``in_reference`` after unwarping and skullstripping out_warp the corresponding :abbr:`DFM (displacements field map)` compatible with ANTs out_jacobian the jacobian of the field (for drop-out alleviation) out_mask mask of the unwarped input file """ workflow = Workflow(name=name) inputnode = pe.Node(niu.IdentityInterface(fields=[ 'in_reference', 'in_reference_brain', 'in_mask', 'metadata', 'fmap_ref', 'fmap_mask', 'fmap' ]), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=[ 'out_reference', 'out_reference_brain', 'out_warp', 'out_mask', 'out_jacobian' ]), name='outputnode') # Register the reference of the fieldmap to the reference # of the target image (the one that shall be corrected) ants_settings = pkgr.resource_filename('sdcflows', 'data/fmap-any_registration.json') if debug: ants_settings = pkgr.resource_filename( 'sdcflows', 'data/fmap-any_registration_testing.json') fmap2ref_reg = pe.Node(ANTSRegistrationRPT( generate_report=True, from_file=ants_settings, output_inverse_warped_image=True, output_warped_image=True), name='fmap2ref_reg', n_procs=omp_nthreads) ds_report_reg = pe.Node(DerivativesDataSink(desc='magnitude', suffix='bold'), name='ds_report_reg', mem_gb=0.01, run_without_submitting=True) # Map the VSM into the EPI space fmap2ref_apply = pe.Node(ANTSApplyTransformsRPT(generate_report=True, dimension=3, interpolation='BSpline', float=True), name='fmap2ref_apply') fmap_mask2ref_apply = pe.Node(ANTSApplyTransformsRPT( generate_report=False, dimension=3, interpolation='MultiLabel', float=True), name='fmap_mask2ref_apply') ds_report_vsm = pe.Node(DerivativesDataSink(desc='fieldmap', suffix='bold'), name='ds_report_vsm', mem_gb=0.01, run_without_submitting=True) # Fieldmap to rads and then to voxels (VSM - voxel shift map) torads = pe.Node(FieldToRadS(fmap_range=0.5), name='torads') get_ees = pe.Node(niu.Function(function=_get_ees, output_names=['ees']), name='get_ees') gen_vsm = pe.Node(fsl.FUGUE(save_unmasked_shift=True), name='gen_vsm') # Convert the VSM into a DFM (displacements field map) # or: FUGUE shift to ANTS warping. vsm2dfm = pe.Node(itk.FUGUEvsm2ANTSwarp(), name='vsm2dfm') jac_dfm = pe.Node(ants.CreateJacobianDeterminantImage( imageDimension=3, outputImage='jacobian.nii.gz'), name='jac_dfm') unwarp_reference = pe.Node(ANTSApplyTransformsRPT( dimension=3, generate_report=False, float=True, interpolation='LanczosWindowedSinc'), name='unwarp_reference') fieldmap_fov_mask = pe.Node(FilledImageLike(dtype='uint8'), name='fieldmap_fov_mask') fmap_fov2ref_apply = pe.Node(ANTSApplyTransformsRPT( generate_report=False, dimension=3, interpolation='NearestNeighbor', float=True), name='fmap_fov2ref_apply') apply_fov_mask = pe.Node(fsl.ApplyMask(), name="apply_fov_mask") enhance_and_skullstrip_bold_wf = init_enhance_and_skullstrip_bold_wf( omp_nthreads=omp_nthreads, pre_mask=True) workflow.connect([ (inputnode, fmap2ref_reg, [('fmap_ref', 'moving_image')]), (inputnode, fmap2ref_apply, [('in_reference', 'reference_image')]), (fmap2ref_reg, fmap2ref_apply, [('composite_transform', 'transforms') ]), (inputnode, fmap_mask2ref_apply, [('in_reference', 'reference_image') ]), (fmap2ref_reg, fmap_mask2ref_apply, [('composite_transform', 'transforms')]), (fmap2ref_apply, ds_report_vsm, [('out_report', 'in_file')]), (inputnode, fmap2ref_reg, [('in_reference_brain', 'fixed_image')]), (fmap2ref_reg, ds_report_reg, [('out_report', 'in_file')]), (inputnode, fmap2ref_apply, [('fmap', 'input_image')]), (inputnode, fmap_mask2ref_apply, [('fmap_mask', 'input_image')]), (fmap2ref_apply, torads, [('output_image', 'in_file')]), (inputnode, get_ees, [('in_reference', 'in_file'), ('metadata', 'in_meta')]), (fmap_mask2ref_apply, gen_vsm, [('output_image', 'mask_file')]), (get_ees, gen_vsm, [('ees', 'dwell_time')]), (inputnode, gen_vsm, [(('metadata', _get_pedir_fugue), 'unwarp_direction')]), (inputnode, vsm2dfm, [(('metadata', _get_pedir_bids), 'pe_dir')]), (torads, gen_vsm, [('out_file', 'fmap_in_file')]), (vsm2dfm, unwarp_reference, [('out_file', 'transforms')]), (inputnode, unwarp_reference, [('in_reference', 'reference_image')]), (inputnode, unwarp_reference, [('in_reference', 'input_image')]), (vsm2dfm, outputnode, [('out_file', 'out_warp')]), (vsm2dfm, jac_dfm, [('out_file', 'deformationField')]), (inputnode, fieldmap_fov_mask, [('fmap_ref', 'in_file')]), (fieldmap_fov_mask, fmap_fov2ref_apply, [('out_file', 'input_image')]), (inputnode, fmap_fov2ref_apply, [('in_reference', 'reference_image')]), (fmap2ref_reg, fmap_fov2ref_apply, [('composite_transform', 'transforms')]), (fmap_fov2ref_apply, apply_fov_mask, [('output_image', 'mask_file')]), (unwarp_reference, apply_fov_mask, [('output_image', 'in_file')]), (apply_fov_mask, enhance_and_skullstrip_bold_wf, [('out_file', 'inputnode.in_file')]), (fmap_mask2ref_apply, enhance_and_skullstrip_bold_wf, [('output_image', 'inputnode.pre_mask')]), (apply_fov_mask, outputnode, [('out_file', 'out_reference')]), (enhance_and_skullstrip_bold_wf, outputnode, [('outputnode.mask_file', 'out_mask'), ('outputnode.skull_stripped_file', 'out_reference_brain')]), (jac_dfm, outputnode, [('jacobian_image', 'out_jacobian')]), ]) if fmap_demean: # Demean within mask demean = pe.Node(DemeanImage(), name='demean') workflow.connect([ (gen_vsm, demean, [('shift_out_file', 'in_file')]), (fmap_mask2ref_apply, demean, [('output_image', 'in_mask')]), (demean, vsm2dfm, [('out_file', 'in_file')]), ]) else: workflow.connect([ (gen_vsm, vsm2dfm, [('shift_out_file', 'in_file')]), ]) return workflow
def init_fmap2field_wf(omp_nthreads, debug, name='fmap2field_wf', generate_report=True): """ Convert the estimated fieldmap in Hz into a displacements field. This workflow takes in a fieldmap and calculates the corresponding displacements field (in other words, an ANTs-compatible warp file). Workflow Graph .. workflow :: :graph2use: orig :simple_form: yes from sdcflows.workflows.fmap import init_fmap2field_wf wf = init_fmap2field_wf(omp_nthreads=8, debug=False) Parameters ---------- omp_nthreads : int Maximum number of threads an individual process may use. debug : bool Run fast configurations of registrations. name : str Unique name of this workflow. Inputs ------ in_reference the reference image in_reference_brain the reference image (skull-stripped) metadata metadata associated to the ``in_reference`` EPI input fmap the fieldmap in Hz fmap_ref the reference (anatomical) image corresponding to ``fmap`` fmap_mask a brain mask corresponding to ``fmap`` Outputs ------- out_reference the ``in_reference`` after unwarping out_reference_brain the ``in_reference`` after unwarping and skullstripping out_warp the corresponding :abbr:`DFM (displacements field map)` compatible with ANTs out_jacobian the jacobian of the field (for drop-out alleviation) out_mask mask of the unwarped input file """ workflow = Workflow(name=name) workflow.__desc__ = """\ The *fieldmap* was then co-registered to the target EPI (echo-planar imaging) reference run and converted to a displacements field map (amenable to registration tools such as ANTs) with FSL's `fugue` and other *SDCflows* tools. """ inputnode = pe.Node(niu.IdentityInterface(fields=[ 'in_reference', 'in_reference_brain', 'metadata', 'fmap_ref', 'fmap_mask', 'fmap' ]), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=['out_warp']), name='outputnode') # Register the reference of the fieldmap to the reference # of the target image (the one that shall be corrected) ants_settings = pkgr.resource_filename('sdcflows', 'data/fmap-any_registration.json') if debug: ants_settings = pkgr.resource_filename( 'sdcflows', 'data/fmap-any_registration_testing.json') fmap2ref_reg = pe.Node(ANTSRegistrationRPT( generate_report=False, from_file=ants_settings, output_inverse_warped_image=True, output_warped_image=True), name='fmap2ref_reg', n_procs=omp_nthreads) # Map the VSM into the EPI space fmap2ref_apply = pe.Node(ANTSApplyTransformsRPT(generate_report=False, dimension=3, interpolation='BSpline', float=True), name='fmap2ref_apply') fmap_mask2ref_apply = pe.Node(ANTSApplyTransformsRPT( generate_report=False, dimension=3, interpolation='MultiLabel', float=True), name='fmap_mask2ref_apply') # Fieldmap to rads and then to voxels (VSM - voxel shift map) torads = pe.Node(FieldToRadS(fmap_range=0.5), name='torads') get_ees = pe.Node(niu.Function(function=_get_ees, output_names=['ees']), name='get_ees') gen_vsm = pe.Node(fsl.FUGUE(save_unmasked_shift=True), name='gen_vsm') # Convert the VSM into a DFM (displacements field map) # or: FUGUE shift to ANTS warping. vsm2dfm = pe.Node(FUGUEvsm2ANTSwarp(), name='vsm2dfm') workflow.connect([ (inputnode, fmap2ref_reg, [('fmap_ref', 'moving_image'), ('in_reference_brain', 'fixed_image')]), (inputnode, fmap2ref_apply, [('fmap', 'input_image'), ('in_reference', 'reference_image')]), (inputnode, fmap_mask2ref_apply, [('in_reference', 'reference_image'), ('fmap_mask', 'input_image')]), (inputnode, get_ees, [('in_reference', 'in_file'), ('metadata', 'in_meta')]), (inputnode, gen_vsm, [(('metadata', _get_pedir_fugue), 'unwarp_direction')]), (inputnode, vsm2dfm, [(('metadata', _get_pedir_bids), 'pe_dir')]), (fmap2ref_reg, fmap2ref_apply, [('composite_transform', 'transforms') ]), (fmap2ref_reg, fmap_mask2ref_apply, [('composite_transform', 'transforms')]), (fmap2ref_apply, torads, [('output_image', 'in_file')]), (fmap_mask2ref_apply, gen_vsm, [('output_image', 'mask_file')]), (gen_vsm, vsm2dfm, [('shift_out_file', 'in_file')]), (get_ees, gen_vsm, [('ees', 'dwell_time')]), (torads, gen_vsm, [('out_file', 'fmap_in_file')]), (vsm2dfm, outputnode, [('out_file', 'out_warp')]), ]) if generate_report: from niworkflows.interfaces.bids import DerivativesDataSink from ..interfaces.reportlets import FieldmapReportlet fmap_rpt = pe.Node(FieldmapReportlet(reference_label='EPI Reference', moving_label='Magnitude', show='both'), name='fmap_rpt') ds_report_sdc = pe.Node(DerivativesDataSink(desc='fieldmap', suffix='bold'), name='ds_report_fmap', mem_gb=0.01, run_without_submitting=True) workflow.connect([ (inputnode, fmap_rpt, [('in_reference', 'reference')]), (fmap2ref_reg, fmap_rpt, [('warped_image', 'moving')]), (fmap_mask2ref_apply, fmap_rpt, [('output_image', 'mask')]), (vsm2dfm, fmap_rpt, [('fieldmap', 'fieldmap')]), (fmap_rpt, ds_report_sdc, [('out_report', 'in_file')]), ]) return workflow