예제 #1
0
def init_ica_aroma_wf(
    mem_gb,
    metadata,
    omp_nthreads,
    aroma_melodic_dim=-200,
    err_on_aroma_warn=False,
    name='ica_aroma_wf',
    susan_fwhm=6.0,
):
    """
    Build a workflow that runs `ICA-AROMA`_.

    This workflow wraps `ICA-AROMA`_ to identify and remove motion-related
    independent components from a BOLD time series.

    The following steps are performed:

    #. Remove non-steady state volumes from the bold series.
    #. Smooth data using FSL `susan`, with a kernel width FWHM=6.0mm.
    #. Run FSL `melodic` outside of ICA-AROMA to generate the report
    #. Run ICA-AROMA
    #. Aggregate identified motion components (aggressive) to TSV
    #. Return ``classified_motion_ICs`` and ``melodic_mix`` for user to complete
       non-aggressive denoising in T1w space
    #. Calculate ICA-AROMA-identified noise components
       (columns named ``AROMAAggrCompXX``)

    Additionally, non-aggressive denoising is performed on the BOLD series
    resampled into MNI space.

    There is a current discussion on whether other confounds should be extracted
    before or after denoising `here
    <http://nbviewer.jupyter.org/github/poldracklab/fmriprep-notebooks/blob/922e436429b879271fa13e76767a6e73443e74d9/issue-817_aroma_confounds.ipynb>`__.

    .. _ICA-AROMA: https://github.com/maartenmennes/ICA-AROMA

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from fmriprep.workflows.bold.confounds import init_ica_aroma_wf
            wf = init_ica_aroma_wf(
                mem_gb=3,
                metadata={'RepetitionTime': 1.0},
                omp_nthreads=1)

    Parameters
    ----------
    metadata : :obj:`dict`
        BIDS metadata for BOLD file
    mem_gb : :obj:`float`
        Size of BOLD file in GB
    omp_nthreads : :obj:`int`
        Maximum number of threads an individual process may use
    name : :obj:`str`
        Name of workflow (default: ``bold_tpl_trans_wf``)
    susan_fwhm : :obj:`float`
        Kernel width (FWHM in mm) for the smoothing step with
        FSL ``susan`` (default: 6.0mm)
    err_on_aroma_warn : :obj:`bool`
        Do not fail on ICA-AROMA errors
    aroma_melodic_dim : :obj:`int`
        Set the dimensionality of the MELODIC ICA decomposition.
        Negative numbers set a maximum on automatic dimensionality estimation.
        Positive numbers set an exact number of components to extract.
        (default: -200, i.e., estimate <=200 components)

    Inputs
    ------
    itk_bold_to_t1
        Affine transform from ``ref_bold_brain`` to T1 space (ITK format)
    anat2std_xfm
        ANTs-compatible affine-and-warp transform file
    name_source
        BOLD series NIfTI file
        Used to recover original information lost during processing
    skip_vols
        number of non steady state volumes
    bold_split
        Individual 3D BOLD volumes, not motion corrected
    bold_mask
        BOLD series mask in template space
    hmc_xforms
        List of affine transforms aligning each volume to ``ref_image`` in ITK format
    movpar_file
        SPM-formatted motion parameters file

    Outputs
    -------
    aroma_confounds
        TSV of confounds identified as noise by ICA-AROMA
    aroma_noise_ics
        CSV of noise components identified by ICA-AROMA
    melodic_mix
        FSL MELODIC mixing matrix
    nonaggr_denoised_file
        BOLD series with non-aggressive ICA-AROMA denoising applied

    """
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.interfaces.segmentation import ICA_AROMARPT
    from niworkflows.interfaces.utility import KeySelect
    from niworkflows.interfaces.utils import TSV2JSON

    workflow = Workflow(name=name)
    workflow.__postdesc__ = """\
Automatic removal of motion artifacts using independent component analysis
[ICA-AROMA, @aroma] was performed on the *preprocessed BOLD on MNI space*
time-series after removal of non-steady state volumes and spatial smoothing
with an isotropic, Gaussian kernel of 6mm FWHM (full-width half-maximum).
Corresponding "non-aggresively" denoised runs were produced after such
smoothing.
Additionally, the "aggressive" noise-regressors were collected and placed
in the corresponding confounds file.
"""

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'bold_std',
        'bold_mask_std',
        'movpar_file',
        'name_source',
        'skip_vols',
        'spatial_reference',
    ]),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'aroma_confounds', 'aroma_noise_ics', 'melodic_mix',
        'nonaggr_denoised_file', 'aroma_metadata'
    ]),
                         name='outputnode')

    # extract out to BOLD base
    select_std = pe.Node(KeySelect(fields=['bold_mask_std', 'bold_std']),
                         name='select_std',
                         run_without_submitting=True)
    select_std.inputs.key = 'MNI152NLin6Asym_res-2'

    rm_non_steady_state = pe.Node(niu.Function(function=_remove_volumes,
                                               output_names=['bold_cut']),
                                  name='rm_nonsteady')

    calc_median_val = pe.Node(fsl.ImageStats(op_string='-k %s -p 50'),
                              name='calc_median_val')
    calc_bold_mean = pe.Node(fsl.MeanImage(), name='calc_bold_mean')

    def _getusans_func(image, thresh):
        return [tuple([image, thresh])]

    getusans = pe.Node(niu.Function(function=_getusans_func,
                                    output_names=['usans']),
                       name='getusans',
                       mem_gb=0.01)

    smooth = pe.Node(fsl.SUSAN(fwhm=susan_fwhm), name='smooth')

    # melodic node
    melodic = pe.Node(fsl.MELODIC(no_bet=True,
                                  tr_sec=float(metadata['RepetitionTime']),
                                  mm_thresh=0.5,
                                  out_stats=True,
                                  dim=aroma_melodic_dim),
                      name="melodic")

    # ica_aroma node
    ica_aroma = pe.Node(ICA_AROMARPT(denoise_type='nonaggr',
                                     generate_report=True,
                                     TR=metadata['RepetitionTime'],
                                     args='-np'),
                        name='ica_aroma')

    add_non_steady_state = pe.Node(niu.Function(function=_add_volumes,
                                                output_names=['bold_add']),
                                   name='add_nonsteady')

    # extract the confound ICs from the results
    ica_aroma_confound_extraction = pe.Node(
        ICAConfounds(err_on_aroma_warn=err_on_aroma_warn),
        name='ica_aroma_confound_extraction')

    ica_aroma_metadata_fmt = pe.Node(TSV2JSON(index_column='IC',
                                              output=None,
                                              enforce_case=True,
                                              additional_metadata={
                                                  'Method': {
                                                      'Name':
                                                      'ICA-AROMA',
                                                      'Version':
                                                      getenv(
                                                          'AROMA_VERSION',
                                                          'n/a')
                                                  }
                                              }),
                                     name='ica_aroma_metadata_fmt')

    ds_report_ica_aroma = pe.Node(DerivativesDataSink(
        desc='aroma', datatype="figures", dismiss_entities=("echo", )),
                                  name='ds_report_ica_aroma',
                                  run_without_submitting=True,
                                  mem_gb=DEFAULT_MEMORY_MIN_GB)

    def _getbtthresh(medianval):
        return 0.75 * medianval

    # connect the nodes
    workflow.connect([
        (inputnode, select_std, [('spatial_reference', 'keys'),
                                 ('bold_std', 'bold_std'),
                                 ('bold_mask_std', 'bold_mask_std')]),
        (inputnode, ica_aroma, [('movpar_file', 'motion_parameters')]),
        (inputnode, rm_non_steady_state, [('skip_vols', 'skip_vols')]),
        (select_std, rm_non_steady_state, [('bold_std', 'bold_file')]),
        (select_std, calc_median_val, [('bold_mask_std', 'mask_file')]),
        (rm_non_steady_state, calc_median_val, [('bold_cut', 'in_file')]),
        (rm_non_steady_state, calc_bold_mean, [('bold_cut', 'in_file')]),
        (calc_bold_mean, getusans, [('out_file', 'image')]),
        (calc_median_val, getusans, [('out_stat', 'thresh')]),
        # Connect input nodes to complete smoothing
        (rm_non_steady_state, smooth, [('bold_cut', 'in_file')]),
        (getusans, smooth, [('usans', 'usans')]),
        (calc_median_val, smooth, [(('out_stat', _getbtthresh),
                                    'brightness_threshold')]),
        # connect smooth to melodic
        (smooth, melodic, [('smoothed_file', 'in_files')]),
        (select_std, melodic, [('bold_mask_std', 'mask')]),
        # connect nodes to ICA-AROMA
        (smooth, ica_aroma, [('smoothed_file', 'in_file')]),
        (select_std, ica_aroma, [('bold_mask_std', 'report_mask'),
                                 ('bold_mask_std', 'mask')]),
        (melodic, ica_aroma, [('out_dir', 'melodic_dir')]),
        # generate tsvs from ICA-AROMA
        (ica_aroma, ica_aroma_confound_extraction, [('out_dir', 'in_directory')
                                                    ]),
        (inputnode, ica_aroma_confound_extraction, [('skip_vols', 'skip_vols')
                                                    ]),
        (ica_aroma_confound_extraction, ica_aroma_metadata_fmt,
         [('aroma_metadata', 'in_file')]),
        # output for processing and reporting
        (ica_aroma_confound_extraction,
         outputnode, [('aroma_confounds', 'aroma_confounds'),
                      ('aroma_noise_ics', 'aroma_noise_ics'),
                      ('melodic_mix', 'melodic_mix')]),
        (ica_aroma_metadata_fmt, outputnode, [('output', 'aroma_metadata')]),
        (ica_aroma, add_non_steady_state, [('nonaggr_denoised_file',
                                            'bold_cut_file')]),
        (select_std, add_non_steady_state, [('bold_std', 'bold_file')]),
        (inputnode, add_non_steady_state, [('skip_vols', 'skip_vols')]),
        (add_non_steady_state, outputnode, [('bold_add',
                                             'nonaggr_denoised_file')]),
        (ica_aroma, ds_report_ica_aroma, [('out_report', 'in_file')]),
    ])

    return workflow
예제 #2
0
def init_bold_confs_wf(
    mem_gb,
    metadata,
    regressors_all_comps,
    regressors_dvars_th,
    regressors_fd_th,
    freesurfer=False,
    name="bold_confs_wf",
):
    """
    Build a workflow to generate and write out confounding signals.

    This workflow calculates confounds for a BOLD series, and aggregates them
    into a :abbr:`TSV (tab-separated value)` file, for use as nuisance
    regressors in a :abbr:`GLM (general linear model)`.
    The following confounds are calculated, with column headings in parentheses:

    #. Region-wise average signal (``csf``, ``white_matter``, ``global_signal``)
    #. DVARS - original and standardized variants (``dvars``, ``std_dvars``)
    #. Framewise displacement, based on head-motion parameters
       (``framewise_displacement``)
    #. Temporal CompCor (``t_comp_cor_XX``)
    #. Anatomical CompCor (``a_comp_cor_XX``)
    #. Cosine basis set for high-pass filtering w/ 0.008 Hz cut-off
       (``cosine_XX``)
    #. Non-steady-state volumes (``non_steady_state_XX``)
    #. Estimated head-motion parameters, in mm and rad
       (``trans_x``, ``trans_y``, ``trans_z``, ``rot_x``, ``rot_y``, ``rot_z``)


    Prior to estimating aCompCor and tCompCor, non-steady-state volumes are
    censored and high-pass filtered using a :abbr:`DCT (discrete cosine
    transform)` basis.
    The cosine basis, as well as one regressor per censored volume, are included
    for convenience.

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from fmriprep.workflows.bold.confounds import init_bold_confs_wf
            wf = init_bold_confs_wf(
                mem_gb=1,
                metadata={},
                regressors_all_comps=False,
                regressors_dvars_th=1.5,
                regressors_fd_th=0.5,
            )

    Parameters
    ----------
    mem_gb : :obj:`float`
        Size of BOLD file in GB - please note that this size
        should be calculated after resamplings that may extend
        the FoV
    metadata : :obj:`dict`
        BIDS metadata for BOLD file
    name : :obj:`str`
        Name of workflow (default: ``bold_confs_wf``)
    regressors_all_comps : :obj:`bool`
        Indicates whether CompCor decompositions should return all
        components instead of the minimal number of components necessary
        to explain 50 percent of the variance in the decomposition mask.
    regressors_dvars_th : :obj:`float`
        Criterion for flagging DVARS outliers
    regressors_fd_th : :obj:`float`
        Criterion for flagging framewise displacement outliers

    Inputs
    ------
    bold
        BOLD image, after the prescribed corrections (STC, HMC and SDC)
        when available.
    bold_mask
        BOLD series mask
    movpar_file
        SPM-formatted motion parameters file
    rmsd_file
        Framewise displacement as measured by ``fsl_motion_outliers``.
    skip_vols
        number of non steady state volumes
    t1w_mask
        Mask of the skull-stripped template image
    t1w_tpms
        List of tissue probability maps in T1w space
    t1_bold_xform
        Affine matrix that maps the T1w space into alignment with
        the native BOLD space

    Outputs
    -------
    confounds_file
        TSV of all aggregated confounds
    rois_report
        Reportlet visualizing white-matter/CSF mask used for aCompCor,
        the ROI for tCompCor and the BOLD brain mask.
    confounds_metadata
        Confounds metadata dictionary.

    """
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.interfaces.confounds import ExpandModel, SpikeRegressors
    from niworkflows.interfaces.fixes import FixHeaderApplyTransforms as ApplyTransforms
    from niworkflows.interfaces.images import SignalExtraction
    from niworkflows.interfaces.masks import ROIsPlot
    from niworkflows.interfaces.nibabel import ApplyMask, Binarize
    from niworkflows.interfaces.patches import (
        RobustACompCor as ACompCor,
        RobustTCompCor as TCompCor,
    )
    from niworkflows.interfaces.plotting import (CompCorVariancePlot,
                                                 ConfoundsCorrelationPlot)
    from niworkflows.interfaces.utils import (AddTSVHeader, TSV2JSON,
                                              DictMerge)
    from ...interfaces.confounds import aCompCorMasks

    gm_desc = (
        "dilating a GM mask extracted from the FreeSurfer's *aseg* segmentation"
        if freesurfer else
        "thresholding the corresponding partial volume map at 0.05")

    workflow = Workflow(name=name)
    workflow.__desc__ = f"""\
Several confounding time-series were calculated based on the
*preprocessed BOLD*: framewise displacement (FD), DVARS and
three region-wise global signals.
FD was computed using two formulations following Power (absolute sum of
relative motions, @power_fd_dvars) and Jenkinson (relative root mean square
displacement between affines, @mcflirt).
FD and DVARS are calculated for each functional run, both using their
implementations in *Nipype* [following the definitions by @power_fd_dvars].
The three global signals are extracted within the CSF, the WM, and
the whole-brain masks.
Additionally, a set of physiological regressors were extracted to
allow for component-based noise correction [*CompCor*, @compcor].
Principal components are estimated after high-pass filtering the
*preprocessed BOLD* time-series (using a discrete cosine filter with
128s cut-off) for the two *CompCor* variants: temporal (tCompCor)
and anatomical (aCompCor).
tCompCor components are then calculated from the top 2% variable
voxels within the brain mask.
For aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM)
are generated in anatomical space.
The implementation differs from that of Behzadi et al. in that instead
of eroding the masks by 2 pixels on BOLD space, the aCompCor masks are
subtracted a mask of pixels that likely contain a volume fraction of GM.
This mask is obtained by {gm_desc}, and it ensures components are not extracted
from voxels containing a minimal fraction of GM.
Finally, these masks are resampled into BOLD space and binarized by
thresholding at 0.99 (as in the original implementation).
Components are also calculated separately within the WM and CSF masks.
For each CompCor decomposition, the *k* components with the largest singular
values are retained, such that the retained components' time series are
sufficient to explain 50 percent of variance across the nuisance mask (CSF,
WM, combined, or temporal). The remaining components are dropped from
consideration.
The head-motion estimates calculated in the correction step were also
placed within the corresponding confounds file.
The confound time series derived from head motion estimates and global
signals were expanded with the inclusion of temporal derivatives and
quadratic terms for each [@confounds_satterthwaite_2013].
Frames that exceeded a threshold of {regressors_fd_th} mm FD or
{regressors_dvars_th} standardised DVARS were annotated as motion outliers.
"""
    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'bold', 'bold_mask', 'movpar_file', 'rmsd_file', 'skip_vols',
        't1w_mask', 't1w_tpms', 't1_bold_xform'
    ]),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'confounds_file', 'confounds_metadata', 'acompcor_masks',
        'tcompcor_mask'
    ]),
                         name='outputnode')

    # DVARS
    dvars = pe.Node(nac.ComputeDVARS(save_nstd=True,
                                     save_std=True,
                                     remove_zerovariance=True),
                    name="dvars",
                    mem_gb=mem_gb)

    # Frame displacement
    fdisp = pe.Node(nac.FramewiseDisplacement(parameter_source="SPM"),
                    name="fdisp",
                    mem_gb=mem_gb)

    # Generate aCompCor probseg maps
    acc_masks = pe.Node(aCompCorMasks(is_aseg=freesurfer), name="acc_masks")

    # Resample probseg maps in BOLD space via T1w-to-BOLD transform
    acc_msk_tfm = pe.MapNode(ApplyTransforms(interpolation='Gaussian',
                                             float=False),
                             iterfield=["input_image"],
                             name='acc_msk_tfm',
                             mem_gb=0.1)
    acc_msk_brain = pe.MapNode(ApplyMask(),
                               name="acc_msk_brain",
                               iterfield=["in_file"])
    acc_msk_bin = pe.MapNode(Binarize(thresh_low=0.99),
                             name='acc_msk_bin',
                             iterfield=["in_file"])
    acompcor = pe.Node(ACompCor(components_file='acompcor.tsv',
                                header_prefix='a_comp_cor_',
                                pre_filter='cosine',
                                save_pre_filter=True,
                                save_metadata=True,
                                mask_names=['CSF', 'WM', 'combined'],
                                merge_method='none',
                                failure_mode='NaN'),
                       name="acompcor",
                       mem_gb=mem_gb)

    tcompcor = pe.Node(TCompCor(components_file='tcompcor.tsv',
                                header_prefix='t_comp_cor_',
                                pre_filter='cosine',
                                save_pre_filter=True,
                                save_metadata=True,
                                percentile_threshold=.02,
                                failure_mode='NaN'),
                       name="tcompcor",
                       mem_gb=mem_gb)

    # Set number of components
    if regressors_all_comps:
        acompcor.inputs.num_components = 'all'
        tcompcor.inputs.num_components = 'all'
    else:
        acompcor.inputs.variance_threshold = 0.5
        tcompcor.inputs.variance_threshold = 0.5

    # Set TR if present
    if 'RepetitionTime' in metadata:
        tcompcor.inputs.repetition_time = metadata['RepetitionTime']
        acompcor.inputs.repetition_time = metadata['RepetitionTime']

    # Global and segment regressors
    signals_class_labels = [
        "global_signal",
        "csf",
        "white_matter",
        "csf_wm",
        "tcompcor",
    ]
    merge_rois = pe.Node(niu.Merge(3, ravel_inputs=True),
                         name='merge_rois',
                         run_without_submitting=True)
    signals = pe.Node(SignalExtraction(class_labels=signals_class_labels),
                      name="signals",
                      mem_gb=mem_gb)

    # Arrange confounds
    add_dvars_header = pe.Node(AddTSVHeader(columns=["dvars"]),
                               name="add_dvars_header",
                               mem_gb=0.01,
                               run_without_submitting=True)
    add_std_dvars_header = pe.Node(AddTSVHeader(columns=["std_dvars"]),
                                   name="add_std_dvars_header",
                                   mem_gb=0.01,
                                   run_without_submitting=True)
    add_motion_headers = pe.Node(AddTSVHeader(
        columns=["trans_x", "trans_y", "trans_z", "rot_x", "rot_y", "rot_z"]),
                                 name="add_motion_headers",
                                 mem_gb=0.01,
                                 run_without_submitting=True)
    add_rmsd_header = pe.Node(AddTSVHeader(columns=["rmsd"]),
                              name="add_rmsd_header",
                              mem_gb=0.01,
                              run_without_submitting=True)
    concat = pe.Node(GatherConfounds(),
                     name="concat",
                     mem_gb=0.01,
                     run_without_submitting=True)

    # CompCor metadata
    tcc_metadata_fmt = pe.Node(TSV2JSON(
        index_column='component',
        drop_columns=['mask'],
        output=None,
        additional_metadata={'Method': 'tCompCor'},
        enforce_case=True),
                               name='tcc_metadata_fmt')
    acc_metadata_fmt = pe.Node(TSV2JSON(
        index_column='component',
        output=None,
        additional_metadata={'Method': 'aCompCor'},
        enforce_case=True),
                               name='acc_metadata_fmt')
    mrg_conf_metadata = pe.Node(niu.Merge(3),
                                name='merge_confound_metadata',
                                run_without_submitting=True)
    mrg_conf_metadata.inputs.in3 = {
        label: {
            'Method': 'Mean'
        }
        for label in signals_class_labels
    }
    mrg_conf_metadata2 = pe.Node(DictMerge(),
                                 name='merge_confound_metadata2',
                                 run_without_submitting=True)

    # Expand model to include derivatives and quadratics
    model_expand = pe.Node(
        ExpandModel(model_formula='(dd1(rps + wm + csf + gsr))^^2 + others'),
        name='model_expansion')

    # Add spike regressors
    spike_regress = pe.Node(SpikeRegressors(fd_thresh=regressors_fd_th,
                                            dvars_thresh=regressors_dvars_th),
                            name='spike_regressors')

    # Generate reportlet (ROIs)
    mrg_compcor = pe.Node(niu.Merge(2, ravel_inputs=True),
                          name='mrg_compcor',
                          run_without_submitting=True)
    rois_plot = pe.Node(ROIsPlot(colors=['b', 'magenta'],
                                 generate_report=True),
                        name='rois_plot',
                        mem_gb=mem_gb)

    ds_report_bold_rois = pe.Node(DerivativesDataSink(
        desc='rois', datatype="figures", dismiss_entities=("echo", )),
                                  name='ds_report_bold_rois',
                                  run_without_submitting=True,
                                  mem_gb=DEFAULT_MEMORY_MIN_GB)

    # Generate reportlet (CompCor)
    mrg_cc_metadata = pe.Node(niu.Merge(2),
                              name='merge_compcor_metadata',
                              run_without_submitting=True)
    compcor_plot = pe.Node(CompCorVariancePlot(
        variance_thresholds=(0.5, 0.7, 0.9),
        metadata_sources=['tCompCor', 'aCompCor']),
                           name='compcor_plot')
    ds_report_compcor = pe.Node(DerivativesDataSink(
        desc='compcorvar', datatype="figures", dismiss_entities=("echo", )),
                                name='ds_report_compcor',
                                run_without_submitting=True,
                                mem_gb=DEFAULT_MEMORY_MIN_GB)

    # Generate reportlet (Confound correlation)
    conf_corr_plot = pe.Node(ConfoundsCorrelationPlot(
        reference_column='global_signal', max_dim=20),
                             name='conf_corr_plot')
    ds_report_conf_corr = pe.Node(DerivativesDataSink(
        desc='confoundcorr', datatype="figures", dismiss_entities=("echo", )),
                                  name='ds_report_conf_corr',
                                  run_without_submitting=True,
                                  mem_gb=DEFAULT_MEMORY_MIN_GB)

    def _last(inlist):
        return inlist[-1]

    def _select_cols(table):
        import pandas as pd
        return [
            col for col in pd.read_table(table, nrows=2).columns
            if not col.startswith(("a_comp_cor_", "t_comp_cor_", "std_dvars"))
        ]

    workflow.connect([
        # connect inputnode to each non-anatomical confound node
        (inputnode, dvars, [('bold', 'in_file'), ('bold_mask', 'in_mask')]),
        (inputnode, fdisp, [('movpar_file', 'in_file')]),

        # aCompCor
        (inputnode, acompcor, [("bold", "realigned_file"),
                               ("skip_vols", "ignore_initial_volumes")]),
        (inputnode, acc_masks, [("t1w_tpms", "in_vfs"),
                                (("bold", _get_zooms), "bold_zooms")]),
        (inputnode, acc_msk_tfm, [("t1_bold_xform", "transforms"),
                                  ("bold_mask", "reference_image")]),
        (inputnode, acc_msk_brain, [("bold_mask", "in_mask")]),
        (acc_masks, acc_msk_tfm, [("out_masks", "input_image")]),
        (acc_msk_tfm, acc_msk_brain, [("output_image", "in_file")]),
        (acc_msk_brain, acc_msk_bin, [("out_file", "in_file")]),
        (acc_msk_bin, acompcor, [("out_file", "mask_files")]),

        # tCompCor
        (inputnode, tcompcor, [("bold", "realigned_file"),
                               ("skip_vols", "ignore_initial_volumes"),
                               ("bold_mask", "mask_files")]),
        # Global signals extraction (constrained by anatomy)
        (inputnode, signals, [('bold', 'in_file')]),
        (inputnode, merge_rois, [('bold_mask', 'in1')]),
        (acc_msk_bin, merge_rois, [('out_file', 'in2')]),
        (tcompcor, merge_rois, [('high_variance_masks', 'in3')]),
        (merge_rois, signals, [('out', 'label_files')]),

        # Collate computed confounds together
        (inputnode, add_motion_headers, [('movpar_file', 'in_file')]),
        (inputnode, add_rmsd_header, [('rmsd_file', 'in_file')]),
        (dvars, add_dvars_header, [('out_nstd', 'in_file')]),
        (dvars, add_std_dvars_header, [('out_std', 'in_file')]),
        (signals, concat, [('out_file', 'signals')]),
        (fdisp, concat, [('out_file', 'fd')]),
        (tcompcor, concat, [('components_file', 'tcompcor'),
                            ('pre_filter_file', 'cos_basis')]),
        (acompcor, concat, [('components_file', 'acompcor')]),
        (add_motion_headers, concat, [('out_file', 'motion')]),
        (add_rmsd_header, concat, [('out_file', 'rmsd')]),
        (add_dvars_header, concat, [('out_file', 'dvars')]),
        (add_std_dvars_header, concat, [('out_file', 'std_dvars')]),

        # Confounds metadata
        (tcompcor, tcc_metadata_fmt, [('metadata_file', 'in_file')]),
        (acompcor, acc_metadata_fmt, [('metadata_file', 'in_file')]),
        (tcc_metadata_fmt, mrg_conf_metadata, [('output', 'in1')]),
        (acc_metadata_fmt, mrg_conf_metadata, [('output', 'in2')]),
        (mrg_conf_metadata, mrg_conf_metadata2, [('out', 'in_dicts')]),

        # Expand the model with derivatives, quadratics, and spikes
        (concat, model_expand, [('confounds_file', 'confounds_file')]),
        (model_expand, spike_regress, [('confounds_file', 'confounds_file')]),

        # Set outputs
        (spike_regress, outputnode, [('confounds_file', 'confounds_file')]),
        (mrg_conf_metadata2, outputnode, [('out_dict', 'confounds_metadata')]),
        (tcompcor, outputnode, [("high_variance_masks", "tcompcor_mask")]),
        (acc_msk_bin, outputnode, [("out_file", "acompcor_masks")]),
        (inputnode, rois_plot, [('bold', 'in_file'),
                                ('bold_mask', 'in_mask')]),
        (tcompcor, mrg_compcor, [('high_variance_masks', 'in1')]),
        (acc_msk_bin, mrg_compcor, [(('out_file', _last), 'in2')]),
        (mrg_compcor, rois_plot, [('out', 'in_rois')]),
        (rois_plot, ds_report_bold_rois, [('out_report', 'in_file')]),
        (tcompcor, mrg_cc_metadata, [('metadata_file', 'in1')]),
        (acompcor, mrg_cc_metadata, [('metadata_file', 'in2')]),
        (mrg_cc_metadata, compcor_plot, [('out', 'metadata_files')]),
        (compcor_plot, ds_report_compcor, [('out_file', 'in_file')]),
        (concat, conf_corr_plot, [('confounds_file', 'confounds_file'),
                                  (('confounds_file', _select_cols), 'columns')
                                  ]),
        (conf_corr_plot, ds_report_conf_corr, [('out_file', 'in_file')]),
    ])

    return workflow
예제 #3
0
def init_bold_confs_wf(
    mem_gb,
    metadata,
    regressors_all_comps,
    regressors_dvars_th,
    regressors_fd_th,
    name="bold_confs_wf",
):
    """
    Build a workflow to generate and write out confounding signals.

    This workflow calculates confounds for a BOLD series, and aggregates them
    into a :abbr:`TSV (tab-separated value)` file, for use as nuisance
    regressors in a :abbr:`GLM (general linear model)`.
    The following confounds are calculated, with column headings in parentheses:

    #. Region-wise average signal (``csf``, ``white_matter``, ``global_signal``)
    #. DVARS - original and standardized variants (``dvars``, ``std_dvars``)
    #. Framewise displacement, based on head-motion parameters
       (``framewise_displacement``)
    #. Temporal CompCor (``t_comp_cor_XX``)
    #. Anatomical CompCor (``a_comp_cor_XX``)
    #. Cosine basis set for high-pass filtering w/ 0.008 Hz cut-off
       (``cosine_XX``)
    #. Non-steady-state volumes (``non_steady_state_XX``)
    #. Estimated head-motion parameters, in mm and rad
       (``trans_x``, ``trans_y``, ``trans_z``, ``rot_x``, ``rot_y``, ``rot_z``)


    Prior to estimating aCompCor and tCompCor, non-steady-state volumes are
    censored and high-pass filtered using a :abbr:`DCT (discrete cosine
    transform)` basis.
    The cosine basis, as well as one regressor per censored volume, are included
    for convenience.

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from fmriprep.workflows.bold.confounds import init_bold_confs_wf
            wf = init_bold_confs_wf(
                mem_gb=1,
                metadata={},
                regressors_all_comps=False,
                regressors_dvars_th=1.5,
                regressors_fd_th=0.5,
            )

    Parameters
    ----------
    mem_gb : :obj:`float`
        Size of BOLD file in GB - please note that this size
        should be calculated after resamplings that may extend
        the FoV
    metadata : :obj:`dict`
        BIDS metadata for BOLD file
    name : :obj:`str`
        Name of workflow (default: ``bold_confs_wf``)
    regressors_all_comps : :obj:`bool`
        Indicates whether CompCor decompositions should return all
        components instead of the minimal number of components necessary
        to explain 50 percent of the variance in the decomposition mask.
    regressors_dvars_th : :obj:`float`
        Criterion for flagging DVARS outliers
    regressors_fd_th : :obj:`float`
        Criterion for flagging framewise displacement outliers

    Inputs
    ------
    bold
        BOLD image, after the prescribed corrections (STC, HMC and SDC)
        when available.
    bold_mask
        BOLD series mask
    movpar_file
        SPM-formatted motion parameters file
    rmsd_file
        Framewise displacement as measured by ``fsl_motion_outliers``.
    skip_vols
        number of non steady state volumes
    t1w_mask
        Mask of the skull-stripped template image
    t1w_tpms
        List of tissue probability maps in T1w space
    t1_bold_xform
        Affine matrix that maps the T1w space into alignment with
        the native BOLD space

    Outputs
    -------
    confounds_file
        TSV of all aggregated confounds
    rois_report
        Reportlet visualizing white-matter/CSF mask used for aCompCor,
        the ROI for tCompCor and the BOLD brain mask.
    confounds_metadata
        Confounds metadata dictionary.

    """
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.interfaces.confounds import ExpandModel, SpikeRegressors
    from niworkflows.interfaces.fixes import FixHeaderApplyTransforms as ApplyTransforms
    from niworkflows.interfaces.images import SignalExtraction
    from niworkflows.interfaces.masks import ROIsPlot
    from niworkflows.interfaces.patches import (
        RobustACompCor as ACompCor,
        RobustTCompCor as TCompCor,
    )
    from niworkflows.interfaces.plotting import (CompCorVariancePlot,
                                                 ConfoundsCorrelationPlot)
    from niworkflows.interfaces.utils import (TPM2ROI, AddTPMs, AddTSVHeader,
                                              TSV2JSON, DictMerge)

    workflow = Workflow(name=name)
    workflow.__desc__ = """\
Several confounding time-series were calculated based on the
*preprocessed BOLD*: framewise displacement (FD), DVARS and
three region-wise global signals.
FD was computed using two formulations following Power (absolute sum of
relative motions, @power_fd_dvars) and Jenkinson (relative root mean square
displacement between affines, @mcflirt).
FD and DVARS are calculated for each functional run, both using their
implementations in *Nipype* [following the definitions by @power_fd_dvars].
The three global signals are extracted within the CSF, the WM, and
the whole-brain masks.
Additionally, a set of physiological regressors were extracted to
allow for component-based noise correction [*CompCor*, @compcor].
Principal components are estimated after high-pass filtering the
*preprocessed BOLD* time-series (using a discrete cosine filter with
128s cut-off) for the two *CompCor* variants: temporal (tCompCor)
and anatomical (aCompCor).
tCompCor components are then calculated from the top 5% variable
voxels within a mask covering the subcortical regions.
This subcortical mask is obtained by heavily eroding the brain mask,
which ensures it does not include cortical GM regions.
For aCompCor, components are calculated within the intersection of
the aforementioned mask and the union of CSF and WM masks calculated
in T1w space, after their projection to the native space of each
functional run (using the inverse BOLD-to-T1w transformation). Components
are also calculated separately within the WM and CSF masks.
For each CompCor decomposition, the *k* components with the largest singular
values are retained, such that the retained components' time series are
sufficient to explain 50 percent of variance across the nuisance mask (CSF,
WM, combined, or temporal). The remaining components are dropped from
consideration.
The head-motion estimates calculated in the correction step were also
placed within the corresponding confounds file.
The confound time series derived from head motion estimates and global
signals were expanded with the inclusion of temporal derivatives and
quadratic terms for each [@confounds_satterthwaite_2013].
Frames that exceeded a threshold of {fd} mm FD or {dv} standardised DVARS
were annotated as motion outliers.
""".format(fd=regressors_fd_th, dv=regressors_dvars_th)
    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'bold', 'bold_mask', 'movpar_file', 'rmsd_file', 'skip_vols',
        't1w_mask', 't1w_tpms', 't1_bold_xform'
    ]),
                        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(fields=['confounds_file', 'confounds_metadata']),
        name='outputnode')

    # Get masks ready in T1w space
    acc_tpm = pe.Node(
        AddTPMs(indices=[1, 2]),  # BIDS convention (WM=1, CSF=2)
        name='acc_tpm')  # acc stands for aCompCor
    csf_roi = pe.Node(TPM2ROI(erode_mm=0, mask_erode_mm=30), name='csf_roi')
    wm_roi = pe.Node(
        TPM2ROI(erode_prop=0.6,
                mask_erode_prop=0.6**3),  # 0.6 = radius; 0.6^3 = volume
        name='wm_roi')
    acc_roi = pe.Node(
        TPM2ROI(erode_prop=0.6,
                mask_erode_prop=0.6**3),  # 0.6 = radius; 0.6^3 = volume
        name='acc_roi')

    # Map ROIs in T1w space into BOLD space
    csf_tfm = pe.Node(ApplyTransforms(interpolation='NearestNeighbor',
                                      float=True),
                      name='csf_tfm',
                      mem_gb=0.1)
    wm_tfm = pe.Node(ApplyTransforms(interpolation='NearestNeighbor',
                                     float=True),
                     name='wm_tfm',
                     mem_gb=0.1)
    acc_tfm = pe.Node(ApplyTransforms(interpolation='NearestNeighbor',
                                      float=True),
                      name='acc_tfm',
                      mem_gb=0.1)
    tcc_tfm = pe.Node(ApplyTransforms(interpolation='NearestNeighbor',
                                      float=True),
                      name='tcc_tfm',
                      mem_gb=0.1)

    # Ensure ROIs don't go off-limits (reduced FoV)
    csf_msk = pe.Node(niu.Function(function=_maskroi), name='csf_msk')
    wm_msk = pe.Node(niu.Function(function=_maskroi), name='wm_msk')
    acc_msk = pe.Node(niu.Function(function=_maskroi), name='acc_msk')
    tcc_msk = pe.Node(niu.Function(function=_maskroi), name='tcc_msk')

    # DVARS
    dvars = pe.Node(nac.ComputeDVARS(save_nstd=True,
                                     save_std=True,
                                     remove_zerovariance=True),
                    name="dvars",
                    mem_gb=mem_gb)

    # Frame displacement
    fdisp = pe.Node(nac.FramewiseDisplacement(parameter_source="SPM"),
                    name="fdisp",
                    mem_gb=mem_gb)

    # a/t-CompCor
    mrg_lbl_cc = pe.Node(niu.Merge(3),
                         name='merge_rois_cc',
                         run_without_submitting=True)

    tcompcor = pe.Node(TCompCor(components_file='tcompcor.tsv',
                                header_prefix='t_comp_cor_',
                                pre_filter='cosine',
                                save_pre_filter=True,
                                save_metadata=True,
                                percentile_threshold=.05,
                                failure_mode='NaN'),
                       name="tcompcor",
                       mem_gb=mem_gb)

    acompcor = pe.Node(ACompCor(components_file='acompcor.tsv',
                                header_prefix='a_comp_cor_',
                                pre_filter='cosine',
                                save_pre_filter=True,
                                save_metadata=True,
                                mask_names=['combined', 'CSF', 'WM'],
                                merge_method='none',
                                failure_mode='NaN'),
                       name="acompcor",
                       mem_gb=mem_gb)

    # Set number of components
    if regressors_all_comps:
        acompcor.inputs.num_components = 'all'
        tcompcor.inputs.num_components = 'all'
    else:
        acompcor.inputs.variance_threshold = 0.5
        tcompcor.inputs.variance_threshold = 0.5

    # Set TR if present
    if 'RepetitionTime' in metadata:
        tcompcor.inputs.repetition_time = metadata['RepetitionTime']
        acompcor.inputs.repetition_time = metadata['RepetitionTime']

    # Global and segment regressors
    signals_class_labels = ["csf", "white_matter", "global_signal"]
    mrg_lbl = pe.Node(niu.Merge(3),
                      name='merge_rois',
                      run_without_submitting=True)
    signals = pe.Node(SignalExtraction(class_labels=signals_class_labels),
                      name="signals",
                      mem_gb=mem_gb)

    # Arrange confounds
    add_dvars_header = pe.Node(AddTSVHeader(columns=["dvars"]),
                               name="add_dvars_header",
                               mem_gb=0.01,
                               run_without_submitting=True)
    add_std_dvars_header = pe.Node(AddTSVHeader(columns=["std_dvars"]),
                                   name="add_std_dvars_header",
                                   mem_gb=0.01,
                                   run_without_submitting=True)
    add_motion_headers = pe.Node(AddTSVHeader(
        columns=["trans_x", "trans_y", "trans_z", "rot_x", "rot_y", "rot_z"]),
                                 name="add_motion_headers",
                                 mem_gb=0.01,
                                 run_without_submitting=True)
    add_rmsd_header = pe.Node(AddTSVHeader(columns=["rmsd"]),
                              name="add_rmsd_header",
                              mem_gb=0.01,
                              run_without_submitting=True)
    concat = pe.Node(GatherConfounds(),
                     name="concat",
                     mem_gb=0.01,
                     run_without_submitting=True)

    # CompCor metadata
    tcc_metadata_fmt = pe.Node(TSV2JSON(
        index_column='component',
        drop_columns=['mask'],
        output=None,
        additional_metadata={'Method': 'tCompCor'},
        enforce_case=True),
                               name='tcc_metadata_fmt')
    acc_metadata_fmt = pe.Node(TSV2JSON(
        index_column='component',
        output=None,
        additional_metadata={'Method': 'aCompCor'},
        enforce_case=True),
                               name='acc_metadata_fmt')
    mrg_conf_metadata = pe.Node(niu.Merge(3),
                                name='merge_confound_metadata',
                                run_without_submitting=True)
    mrg_conf_metadata.inputs.in3 = {
        label: {
            'Method': 'Mean'
        }
        for label in signals_class_labels
    }
    mrg_conf_metadata2 = pe.Node(DictMerge(),
                                 name='merge_confound_metadata2',
                                 run_without_submitting=True)

    # Expand model to include derivatives and quadratics
    model_expand = pe.Node(
        ExpandModel(model_formula='(dd1(rps + wm + csf + gsr))^^2 + others'),
        name='model_expansion')

    # Add spike regressors
    spike_regress = pe.Node(SpikeRegressors(fd_thresh=regressors_fd_th,
                                            dvars_thresh=regressors_dvars_th),
                            name='spike_regressors')

    # Generate reportlet (ROIs)
    mrg_compcor = pe.Node(niu.Merge(2),
                          name='merge_compcor',
                          run_without_submitting=True)
    rois_plot = pe.Node(ROIsPlot(colors=['b', 'magenta'],
                                 generate_report=True),
                        name='rois_plot',
                        mem_gb=mem_gb)

    ds_report_bold_rois = pe.Node(DerivativesDataSink(
        desc='rois', datatype="figures", dismiss_entities=("echo", )),
                                  name='ds_report_bold_rois',
                                  run_without_submitting=True,
                                  mem_gb=DEFAULT_MEMORY_MIN_GB)

    # Generate reportlet (CompCor)
    mrg_cc_metadata = pe.Node(niu.Merge(2),
                              name='merge_compcor_metadata',
                              run_without_submitting=True)
    compcor_plot = pe.Node(CompCorVariancePlot(
        variance_thresholds=(0.5, 0.7, 0.9),
        metadata_sources=['tCompCor', 'aCompCor']),
                           name='compcor_plot')
    ds_report_compcor = pe.Node(DerivativesDataSink(
        desc='compcorvar', datatype="figures", dismiss_entities=("echo", )),
                                name='ds_report_compcor',
                                run_without_submitting=True,
                                mem_gb=DEFAULT_MEMORY_MIN_GB)

    # Generate reportlet (Confound correlation)
    conf_corr_plot = pe.Node(ConfoundsCorrelationPlot(
        reference_column='global_signal', max_dim=70),
                             name='conf_corr_plot')
    ds_report_conf_corr = pe.Node(DerivativesDataSink(
        desc='confoundcorr', datatype="figures", dismiss_entities=("echo", )),
                                  name='ds_report_conf_corr',
                                  run_without_submitting=True,
                                  mem_gb=DEFAULT_MEMORY_MIN_GB)

    def _pick_csf(files):
        return files[2]  # after smriprep#189, this is BIDS-compliant.

    def _pick_wm(files):
        return files[1]  # after smriprep#189, this is BIDS-compliant.

    workflow.connect([
        # Massage ROIs (in T1w space)
        (inputnode, acc_tpm, [('t1w_tpms', 'in_files')]),
        (inputnode, csf_roi, [(('t1w_tpms', _pick_csf), 'in_tpm'),
                              ('t1w_mask', 'in_mask')]),
        (inputnode, wm_roi, [(('t1w_tpms', _pick_wm), 'in_tpm'),
                             ('t1w_mask', 'in_mask')]),
        (inputnode, acc_roi, [('t1w_mask', 'in_mask')]),
        (acc_tpm, acc_roi, [('out_file', 'in_tpm')]),
        # Map ROIs to BOLD
        (inputnode, csf_tfm, [('bold_mask', 'reference_image'),
                              ('t1_bold_xform', 'transforms')]),
        (csf_roi, csf_tfm, [('roi_file', 'input_image')]),
        (inputnode, wm_tfm, [('bold_mask', 'reference_image'),
                             ('t1_bold_xform', 'transforms')]),
        (wm_roi, wm_tfm, [('roi_file', 'input_image')]),
        (inputnode, acc_tfm, [('bold_mask', 'reference_image'),
                              ('t1_bold_xform', 'transforms')]),
        (acc_roi, acc_tfm, [('roi_file', 'input_image')]),
        (inputnode, tcc_tfm, [('bold_mask', 'reference_image'),
                              ('t1_bold_xform', 'transforms')]),
        (csf_roi, tcc_tfm, [('eroded_mask', 'input_image')]),
        # Mask ROIs with bold_mask
        (inputnode, csf_msk, [('bold_mask', 'in_mask')]),
        (inputnode, wm_msk, [('bold_mask', 'in_mask')]),
        (inputnode, acc_msk, [('bold_mask', 'in_mask')]),
        (inputnode, tcc_msk, [('bold_mask', 'in_mask')]),
        # connect inputnode to each non-anatomical confound node
        (inputnode, dvars, [('bold', 'in_file'), ('bold_mask', 'in_mask')]),
        (inputnode, fdisp, [('movpar_file', 'in_file')]),

        # tCompCor
        (inputnode, tcompcor, [('bold', 'realigned_file')]),
        (inputnode, tcompcor, [('skip_vols', 'ignore_initial_volumes')]),
        (tcc_tfm, tcc_msk, [('output_image', 'roi_file')]),
        (tcc_msk, tcompcor, [('out', 'mask_files')]),

        # aCompCor
        (inputnode, acompcor, [('bold', 'realigned_file')]),
        (inputnode, acompcor, [('skip_vols', 'ignore_initial_volumes')]),
        (acc_tfm, acc_msk, [('output_image', 'roi_file')]),
        (acc_msk, mrg_lbl_cc, [('out', 'in1')]),
        (csf_msk, mrg_lbl_cc, [('out', 'in2')]),
        (wm_msk, mrg_lbl_cc, [('out', 'in3')]),
        (mrg_lbl_cc, acompcor, [('out', 'mask_files')]),

        # Global signals extraction (constrained by anatomy)
        (inputnode, signals, [('bold', 'in_file')]),
        (csf_tfm, csf_msk, [('output_image', 'roi_file')]),
        (csf_msk, mrg_lbl, [('out', 'in1')]),
        (wm_tfm, wm_msk, [('output_image', 'roi_file')]),
        (wm_msk, mrg_lbl, [('out', 'in2')]),
        (inputnode, mrg_lbl, [('bold_mask', 'in3')]),
        (mrg_lbl, signals, [('out', 'label_files')]),

        # Collate computed confounds together
        (inputnode, add_motion_headers, [('movpar_file', 'in_file')]),
        (inputnode, add_rmsd_header, [('rmsd_file', 'in_file')]),
        (dvars, add_dvars_header, [('out_nstd', 'in_file')]),
        (dvars, add_std_dvars_header, [('out_std', 'in_file')]),
        (signals, concat, [('out_file', 'signals')]),
        (fdisp, concat, [('out_file', 'fd')]),
        (tcompcor, concat, [('components_file', 'tcompcor'),
                            ('pre_filter_file', 'cos_basis')]),
        (acompcor, concat, [('components_file', 'acompcor')]),
        (add_motion_headers, concat, [('out_file', 'motion')]),
        (add_rmsd_header, concat, [('out_file', 'rmsd')]),
        (add_dvars_header, concat, [('out_file', 'dvars')]),
        (add_std_dvars_header, concat, [('out_file', 'std_dvars')]),

        # Confounds metadata
        (tcompcor, tcc_metadata_fmt, [('metadata_file', 'in_file')]),
        (acompcor, acc_metadata_fmt, [('metadata_file', 'in_file')]),
        (tcc_metadata_fmt, mrg_conf_metadata, [('output', 'in1')]),
        (acc_metadata_fmt, mrg_conf_metadata, [('output', 'in2')]),
        (mrg_conf_metadata, mrg_conf_metadata2, [('out', 'in_dicts')]),

        # Expand the model with derivatives, quadratics, and spikes
        (concat, model_expand, [('confounds_file', 'confounds_file')]),
        (model_expand, spike_regress, [('confounds_file', 'confounds_file')]),

        # Set outputs
        (spike_regress, outputnode, [('confounds_file', 'confounds_file')]),
        (mrg_conf_metadata2, outputnode, [('out_dict', 'confounds_metadata')]),
        (inputnode, rois_plot, [('bold', 'in_file'),
                                ('bold_mask', 'in_mask')]),
        (tcompcor, mrg_compcor, [('high_variance_masks', 'in1')]),
        (acc_msk, mrg_compcor, [('out', 'in2')]),
        (mrg_compcor, rois_plot, [('out', 'in_rois')]),
        (rois_plot, ds_report_bold_rois, [('out_report', 'in_file')]),
        (tcompcor, mrg_cc_metadata, [('metadata_file', 'in1')]),
        (acompcor, mrg_cc_metadata, [('metadata_file', 'in2')]),
        (mrg_cc_metadata, compcor_plot, [('out', 'metadata_files')]),
        (compcor_plot, ds_report_compcor, [('out_file', 'in_file')]),
        (concat, conf_corr_plot, [('confounds_file', 'confounds_file')]),
        (conf_corr_plot, ds_report_conf_corr, [('out_file', 'in_file')]),
    ])

    return workflow
예제 #4
0
def init_ica_aroma_wf(
    dt,
    aroma_melodic_dim=-200,
    err_on_aroma_warn=False,
    susan_fwhm=6.0,
    name='ica_aroma_wf',
):
    """
    Build a workflow that runs `ICA-AROMA`_.

    This workflow wraps `ICA-AROMA`_ to identify and remove motion-related
    independent components from a BOLD time series.

    The following steps are performed:

    #. Remove non-steady state volumes from the bold series.
    #. Smooth data using FSL `susan`, with a kernel width FWHM=6.0mm.
    #. Run FSL `melodic` outside of ICA-AROMA to generate the report
    #. Run ICA-AROMA
    #. Aggregate identified motion components (aggressive) to TSV
    #. Return ``classified_motion_ICs`` and ``melodic_mix`` for user to complete
       non-aggressive denoising in T1w space
    #. Calculate ICA-AROMA-identified noise components
       (columns named ``AROMAAggrCompXX``)

    There is a current discussion on whether other confounds should be extracted
    before or after denoising `here
    <http://nbviewer.jupyter.org/github/nipreps/fmriprep-notebooks/blob/922e436429b879271fa13e76767a6e73443e74d9/issue-817_aroma_confounds.ipynb>`__.

    .. _ICA-AROMA: https://github.com/maartenmennes/ICA-AROMA

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from ecp.workflows.confounds import init_ica_aroma_wf
            wf = init_ica_aroma_wf(
                dt=1.0)

    Parameters
    ----------
    dt : :obj:`float`
        bold repetition time
    aroma_melodic_dim : :obj:`int`
        Set the dimensionality of the MELODIC ICA decomposition.
        Negative numbers set a maximum on automatic dimensionality estimation.
        Positive numbers set an exact number of components to extract.
        (default: -200, i.e., estimate <=200 components)
    err_on_aroma_warn : :obj:`bool`
        Do not fail on ICA-AROMA errors
    susan_fwhm : :obj:`float`
        Kernel width (FWHM in mm) for the smoothing step with
        FSL ``susan`` (default: 6.0mm)
    name : :obj:`str`
        Name of workflow (default: ``ica_aroma_wf``)

    Inputs
    ------
    bold_std
        BOLD series NIfTI file in MNI152NLin6Asym space
    bold_mask_std
        BOLD mask for MNI152NLin6Asym space
    movpar_file
        movement parameter file
    skip_vols
        number of non steady state volumes
        
    Outputs
    -------
    aroma_confounds
        TSV of confounds identified as noise by ICA-AROMA
    aroma_noise_ics
        CSV of noise components identified by ICA-AROMA
    melodic_mix
        FSL MELODIC mixing matrix
    aroma_metatdata
        metadata
    out_report
        aroma out report

    """
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.interfaces.segmentation import ICA_AROMARPT
    from niworkflows.interfaces.utility import KeySelect
    from niworkflows.interfaces.utils import TSV2JSON

    workflow = Workflow(name=name)
    workflow.__postdesc__ = """\
Automatic removal of motion artifacts using independent component analysis
[ICA-AROMA, @aroma] was performed on the *preprocessed BOLD on MNI space*
time-series after removal of non-steady state volumes and spatial smoothing
with an isotropic, Gaussian kernel of 6mm FWHM (full-width half-maximum).
The "aggressive" noise-regressors were collected and placed
in the corresponding confounds file.
"""

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'bold_std',
        'bold_mask_std',
        'movpar_file',
        'skip_vols',
    ]),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'aroma_confounds', 'aroma_noise_ics', 'melodic_mix', 'aroma_metadata',
        'out_report'
    ]),
                         name='outputnode')

    # extract out to BOLD base
    rm_non_steady_state = pe.Node(Trim(), name='rm_nonsteady')
    trim_movement = pe.Node(TrimMovement(), name='trim_movement')

    calc_median_val = pe.Node(fsl.ImageStats(op_string='-k %s -p 50'),
                              name='calc_median_val')
    calc_bold_mean = pe.Node(fsl.MeanImage(), name='calc_bold_mean')

    def _getusans_func(image, thresh):
        return [tuple([image, thresh])]

    getusans = pe.Node(niu.Function(function=_getusans_func,
                                    output_names=['usans']),
                       name='getusans',
                       mem_gb=0.01)

    smooth = pe.Node(fsl.SUSAN(fwhm=susan_fwhm), name='smooth')

    # melodic node
    melodic = pe.Node(fsl.MELODIC(no_bet=True,
                                  tr_sec=dt,
                                  mm_thresh=0.5,
                                  out_stats=True,
                                  dim=aroma_melodic_dim),
                      name="melodic")

    # ica_aroma node
    ica_aroma = pe.Node(ICA_AROMARPT(denoise_type='no',
                                     generate_report=True,
                                     TR=dt,
                                     args='-np'),
                        name='ica_aroma')

    # extract the confound ICs from the results
    ica_aroma_confound_extraction = pe.Node(
        ICAConfounds(err_on_aroma_warn=err_on_aroma_warn),
        name='ica_aroma_confound_extraction')

    ica_aroma_metadata_fmt = pe.Node(TSV2JSON(index_column='IC',
                                              output=None,
                                              enforce_case=True,
                                              additional_metadata={
                                                  'Method': {
                                                      'Name':
                                                      'ICA-AROMA',
                                                      'Version':
                                                      getenv(
                                                          'AROMA_VERSION',
                                                          'n/a')
                                                  }
                                              }),
                                     name='ica_aroma_metadata_fmt')

    def _getbtthresh(medianval):
        return 0.75 * medianval

    # connect the nodes
    workflow.connect([
        (inputnode, ica_aroma, [('movpar_file', 'motion_parameters')]),
        (inputnode, rm_non_steady_state, [('skip_vols', 'begin_index')]),
        (inputnode, rm_non_steady_state, [('bold_std', 'in_file')]),
        (inputnode, calc_median_val, [('bold_mask_std', 'mask_file')]),
        (inputnode, trim_movement, [('movpar_file', 'movpar_file')]),
        (inputnode, trim_movement, [('skip_vols', 'skip_vols')]),
        (rm_non_steady_state, calc_median_val, [('out_file', 'in_file')]),
        (rm_non_steady_state, calc_bold_mean, [('out_file', 'in_file')]),
        (calc_bold_mean, getusans, [('out_file', 'image')]),
        (calc_median_val, getusans, [('out_stat', 'thresh')]),
        # Connect input nodes to complete smoothing
        (rm_non_steady_state, smooth, [('out_file', 'in_file')]),
        (getusans, smooth, [('usans', 'usans')]),
        (calc_median_val, smooth, [(('out_stat', _getbtthresh),
                                    'brightness_threshold')]),
        # connect smooth to melodic
        (smooth, melodic, [('smoothed_file', 'in_files')]),
        (inputnode, melodic, [('bold_mask_std', 'mask')]),
        # connect nodes to ICA-AROMA
        (smooth, ica_aroma, [('smoothed_file', 'in_file')]),
        (inputnode, ica_aroma, [('bold_mask_std', 'report_mask'),
                                ('bold_mask_std', 'mask')]),
        (melodic, ica_aroma, [('out_dir', 'melodic_dir')]),
        # generate tsvs from ICA-AROMA
        (ica_aroma, ica_aroma_confound_extraction, [('out_dir', 'in_directory')
                                                    ]),
        (inputnode, ica_aroma_confound_extraction, [('skip_vols', 'skip_vols')
                                                    ]),
        (ica_aroma_confound_extraction, ica_aroma_metadata_fmt,
         [('aroma_metadata', 'in_file')]),
        # output for processing and reporting
        (ica_aroma_confound_extraction,
         outputnode, [('aroma_confounds', 'aroma_confounds'),
                      ('aroma_noise_ics', 'aroma_noise_ics'),
                      ('melodic_mix', 'melodic_mix')]),
        (ica_aroma_metadata_fmt, outputnode, [('output', 'aroma_metadata')]),
        (ica_aroma, outputnode, [('out_report', 'out_report')]),
    ])

    return workflow
예제 #5
0
def init_bold_confs_wf(
    out_dir,
    out_path_base,
    source_file,
    mem_gb,
    regressors_all_comps,
    regressors_dvars_th,
    regressors_fd_th,
    dt=None,
    work_dir=None,
    name="bold_confs_wf",
):
    """
    This workflow calculates confounds for a BOLD series, and aggregates them
    into a :abbr:`TSV (tab-separated value)` file, for use as nuisance
    regressors in a :abbr:`GLM (general linear model)`.

    The following confounds are calculated, with column headings in parentheses:

    #. Region-wise average signal (``csf``, ``white_matter``, ``global_signal``)
    #. DVARS - original and standardized variants (``dvars``, ``std_dvars``)
    #. Framewise displacement, based on head-motion parameters
       (``framewise_displacement``)
    #. Temporal CompCor (``t_comp_cor_XX``)
    #. Anatomical CompCor (``a_comp_cor_XX``)
    #. Cosine basis set for high-pass filtering w/ 0.008 Hz cut-off
       (``cosine_XX``)
    #. Non-steady-state volumes (``non_steady_state_XX``)
    #. Estimated head-motion parameters, in mm and rad
       (``trans_x``, ``trans_y``, ``trans_z``, ``rot_x``, ``rot_y``, ``rot_z``)


    Prior to estimating aCompCor and tCompCor, non-steady-state volumes are
    censored and high-pass filtered using a :abbr:`DCT (discrete cosine
    transform)` basis.
    The cosine basis, as well as one regressor per censored volume, are included
    for convenience.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.confounds import init_bold_confs_wf
        wf = init_bold_confs_wf(
            mem_gb=1,
            regressors_all_comps=False,
            regressors_dvars_th=1.5,
            regressors_fd_th=0.5,
            dt=2.0,
        )

    **Parameters**

        mem_gb : float
            Size of BOLD file in GB - please note that this size
            should be calculated after resamplings that may extend
            the FoV
        regressors_all_comps: bool
            Indicates whether CompCor decompositions should return all
            components instead of the minimal number of components necessary
            to explain 50 percent of the variance in the decomposition mask.
        regressors_dvars_th
            Criterion for flagging DVARS outliers
        regressors_fd_th
            Criterion for flagging framewise displacement outliers
        dt: float
            repetition time
        name : str
            Name of workflow (default: ``bold_confs_wf``)


    **Inputs**

        bold
            BOLD image, after the prescribed corrections (STC, HMC and SDC)
            when available.
        bold_mask
            BOLD series mask
        movpar_file
            SPM-formatted motion parameters file
        skip_vols
            number of non steady state volumes
        csf_mask
            csk mask in MNI 2mm space
        wm_mask
            wm mask in MNI 2mm space
        cortical_gm_mask
            gm mask in MNI 2mm space
        

    **Outputs**

        confounds_file
            TSV of all aggregated confounds
        confounds_metadata
            Confounds metadata dictionary.

    """

    DerivativesDataSink.out_path_base = out_path_base

    workflow = Workflow(name=name, base_dir=work_dir)

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'bold', 'bold_mask', 'movpar_file', 'skip_vols', 'csf_mask', 'wm_mask',
        'cortical_gm_mask'
    ]),
                        name='inputnode')

    outputnode = pe.Node(
        niu.IdentityInterface(fields=['confounds_file', 'confounds_metadata']),
        name='outputnode')

    # create tcc mask: fslmaths cortical_gm_mask -dilD -mul -1 -add bold_mask -bin
    tcc_roi = pe.Node(fsl.utils.ImageMaths(op_string='-dilD -mul -1 -add',
                                           args='-bin'),
                      name='tcc_roi')

    # create acc mask fslmaths wm_mask -add csf_mask
    acc_roi = pe.Node(fsl.utils.ImageMaths(op_string='-add'), name='acc_roi')

    # Ensure ROIs don't go off-limits (reduced FoV)
    csf_msk = pe.Node(niu.Function(function=_maskroi), name='csf_msk')
    wm_msk = pe.Node(niu.Function(function=_maskroi), name='wm_msk')
    acc_msk = pe.Node(niu.Function(function=_maskroi), name='acc_msk')
    tcc_msk = pe.Node(niu.Function(function=_maskroi), name='tcc_msk')

    # DVARS
    dvars = pe.Node(nac.ComputeDVARS(save_nstd=True,
                                     save_std=True,
                                     remove_zerovariance=True),
                    name="dvars",
                    mem_gb=mem_gb)

    # Frame displacement
    fdisp = pe.Node(nac.FramewiseDisplacement(parameter_source="SPM"),
                    name="fdisp",
                    mem_gb=mem_gb)

    # a/t-Compcor
    mrg_lbl_cc = pe.Node(niu.Merge(3),
                         name='merge_rois_cc',
                         run_without_submitting=True)

    tcompcor = pe.Node(TCompCor(components_file='tcompcor.tsv',
                                header_prefix='t_comp_cor_',
                                pre_filter='cosine',
                                save_pre_filter=True,
                                save_metadata=True,
                                percentile_threshold=.05,
                                failure_mode='NaN'),
                       name="tcompcor",
                       mem_gb=mem_gb)

    acompcor = pe.Node(ACompCor(components_file='acompcor.tsv',
                                header_prefix='a_comp_cor_',
                                pre_filter='cosine',
                                save_pre_filter=True,
                                save_metadata=True,
                                mask_names=['combined', 'CSF', 'WM'],
                                merge_method='none',
                                failure_mode='NaN'),
                       name="acompcor",
                       mem_gb=mem_gb)

    # Set number of components
    if regressors_all_comps:
        acompcor.inputs.num_components = 'all'
        tcompcor.inputs.num_components = 'all'
    else:
        acompcor.inputs.variance_threshold = 0.5
        tcompcor.inputs.variance_threshold = 0.5

    # Set TR if present
    if dt:
        tcompcor.inputs.repetition_time = dt
        acompcor.inputs.repetition_time = dt

    # Global and segment regressors
    mrg_lbl = pe.Node(niu.Merge(3),
                      name='merge_rois',
                      run_without_submitting=True)
    signals = pe.Node(SignalExtraction(
        class_labels=["csf", "white_matter", "global_signal"]),
                      name="signals",
                      mem_gb=mem_gb)

    # Arrange confounds
    add_dvars_header = pe.Node(AddTSVHeader(columns=["dvars"]),
                               name="add_dvars_header",
                               mem_gb=0.01,
                               run_without_submitting=True)
    add_std_dvars_header = pe.Node(AddTSVHeader(columns=["std_dvars"]),
                                   name="add_std_dvars_header",
                                   mem_gb=0.01,
                                   run_without_submitting=True)
    add_motion_headers = pe.Node(AddTSVHeader(
        columns=["trans_x", "trans_y", "trans_z", "rot_x", "rot_y", "rot_z"]),
                                 name="add_motion_headers",
                                 mem_gb=0.01,
                                 run_without_submitting=True)
    concat = pe.Node(GatherConfounds(),
                     name="concat",
                     mem_gb=0.01,
                     run_without_submitting=True)

    # CompCor metadata
    tcc_metadata_fmt = pe.Node(TSV2JSON(
        index_column='component',
        drop_columns=['mask'],
        output=None,
        additional_metadata={'Method': 'tCompCor'},
        enforce_case=True),
                               name='tcc_metadata_fmt')
    acc_metadata_fmt = pe.Node(TSV2JSON(
        index_column='component',
        output=None,
        additional_metadata={'Method': 'aCompCor'},
        enforce_case=True),
                               name='acc_metadata_fmt')
    mrg_conf_metadata = pe.Node(niu.Merge(2),
                                name='merge_confound_metadata',
                                run_without_submitting=True)
    mrg_conf_metadata2 = pe.Node(DictMerge(),
                                 name='merge_confound_metadata2',
                                 run_without_submitting=True)

    # Expand model to include derivatives and quadratics
    model_expand = pe.Node(
        ExpandModel(model_formula='(dd1(rps + wm + csf + gsr))^^2 + others'),
        name='model_expansion')

    # Add spike regressors
    spike_regress = pe.Node(SpikeRegressors(fd_thresh=regressors_fd_th,
                                            dvars_thresh=regressors_dvars_th),
                            name='spike_regressors')

    # Generate reportlet (ROIs)
    mrg_compcor = pe.Node(niu.Merge(2),
                          name='merge_compcor',
                          run_without_submitting=True)
    rois_plot = pe.Node(ROIsPlot(colors=['b', 'magenta'],
                                 generate_report=True),
                        name='rois_plot',
                        mem_gb=mem_gb)

    ds_report_bold_rois = pe.Node(DerivativesDataSink(base_directory=out_dir,
                                                      desc='rois',
                                                      source_file=source_file,
                                                      suffix='reportlet',
                                                      keep_dtype=True),
                                  name='ds_report_bold_rois',
                                  run_without_submitting=True,
                                  mem_gb=DEFAULT_MEMORY_MIN_GB)

    # Generate reportlet (CompCor)
    mrg_cc_metadata = pe.Node(niu.Merge(2),
                              name='merge_compcor_metadata',
                              run_without_submitting=True)
    compcor_plot = pe.Node(
        CompCorVariancePlot(metadata_sources=['tCompCor', 'aCompCor']),
        name='compcor_plot')
    ds_report_compcor = pe.Node(DerivativesDataSink(base_directory=out_dir,
                                                    desc='compcorvar',
                                                    source_file=source_file,
                                                    keep_dtype=True),
                                name='ds_report_compcor',
                                run_without_submitting=True,
                                mem_gb=DEFAULT_MEMORY_MIN_GB)

    # Generate reportlet (Confound correlation)
    conf_corr_plot = pe.Node(ConfoundsCorrelationPlot(
        reference_column='global_signal', max_dim=70),
                             name='conf_corr_plot')
    ds_report_conf_corr = pe.Node(DerivativesDataSink(base_directory=out_dir,
                                                      desc='confoundcorr',
                                                      source_file=source_file,
                                                      keep_dtype=True),
                                  name='ds_report_conf_corr',
                                  run_without_submitting=True,
                                  mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        # generate tcc and acc rois
        (inputnode, tcc_roi, [('cortical_gm_mask', 'in_file'),
                              ('bold_mask', 'in_file2')]),
        (inputnode, acc_roi, [('wm_mask', 'in_file'),
                              ('csf_mask', 'in_file2')]),
        # Mask ROIs with bold_mask
        (inputnode, csf_msk, [('bold_mask', 'in_mask')]),
        (inputnode, wm_msk, [('bold_mask', 'in_mask')]),
        (inputnode, acc_msk, [('bold_mask', 'in_mask')]),
        (inputnode, tcc_msk, [('bold_mask', 'in_mask')]),
        # connect inputnode to each non-anatomical confound node
        (inputnode, dvars, [('bold', 'in_file'), ('bold_mask', 'in_mask')]),
        (inputnode, fdisp, [('movpar_file', 'in_file')]),

        # tCompCor
        (inputnode, tcompcor, [('bold', 'realigned_file')]),
        (inputnode, tcompcor, [('skip_vols', 'ignore_initial_volumes')]),
        (tcc_roi, tcc_msk, [('out_file', 'roi_file')]),
        (tcc_msk, tcompcor, [('out', 'mask_files')]),

        # aCompCor
        (inputnode, acompcor, [('bold', 'realigned_file')]),
        (inputnode, acompcor, [('skip_vols', 'ignore_initial_volumes')]),
        (acc_roi, acc_msk, [('out_file', 'roi_file')]),
        (acc_msk, mrg_lbl_cc, [('out', 'in1')]),
        (inputnode, mrg_lbl_cc, [('csf_mask', 'in2')]),
        (inputnode, mrg_lbl_cc, [('wm_mask', 'in3')]),
        (mrg_lbl_cc, acompcor, [('out', 'mask_files')]),

        # Global signals extraction (constrained by anatomy)
        (inputnode, signals, [('bold', 'in_file')]),
        (inputnode, csf_msk, [('csf_mask', 'roi_file')]),
        (csf_msk, mrg_lbl, [('out', 'in1')]),
        (inputnode, wm_msk, [('wm_mask', 'roi_file')]),
        (wm_msk, mrg_lbl, [('out', 'in2')]),
        (inputnode, mrg_lbl, [('bold_mask', 'in3')]),
        (mrg_lbl, signals, [('out', 'label_files')]),

        # Collate computed confounds together
        (inputnode, add_motion_headers, [('movpar_file', 'in_file')]),
        (dvars, add_dvars_header, [('out_nstd', 'in_file')]),
        (dvars, add_std_dvars_header, [('out_std', 'in_file')]),
        (signals, concat, [('out_file', 'signals')]),
        (fdisp, concat, [('out_file', 'fd')]),
        (tcompcor, concat, [('components_file', 'tcompcor'),
                            ('pre_filter_file', 'cos_basis')]),
        (acompcor, concat, [('components_file', 'acompcor')]),
        (add_motion_headers, concat, [('out_file', 'motion')]),
        (add_dvars_header, concat, [('out_file', 'dvars')]),
        (add_std_dvars_header, concat, [('out_file', 'std_dvars')]),

        # Confounds metadata
        (tcompcor, tcc_metadata_fmt, [('metadata_file', 'in_file')]),
        (acompcor, acc_metadata_fmt, [('metadata_file', 'in_file')]),
        (tcc_metadata_fmt, mrg_conf_metadata, [('output', 'in1')]),
        (acc_metadata_fmt, mrg_conf_metadata, [('output', 'in2')]),
        (mrg_conf_metadata, mrg_conf_metadata2, [('out', 'in_dicts')]),

        # Expand the model with derivatives, quadratics, and spikes
        (concat, model_expand, [('confounds_file', 'confounds_file')]),
        (model_expand, spike_regress, [('confounds_file', 'confounds_file')]),

        # Set outputs
        (spike_regress, outputnode, [('confounds_file', 'confounds_file')]),
        (mrg_conf_metadata2, outputnode, [('out_dict', 'confounds_metadata')]),
        (inputnode, rois_plot, [('bold', 'in_file'),
                                ('bold_mask', 'in_mask')]),
        (tcompcor, mrg_compcor, [('high_variance_masks', 'in1')]),
        (acc_msk, mrg_compcor, [('out', 'in2')]),
        (mrg_compcor, rois_plot, [('out', 'in_rois')]),
        (rois_plot, ds_report_bold_rois, [('out_report', 'in_file')]),
        (tcompcor, mrg_cc_metadata, [('metadata_file', 'in1')]),
        (acompcor, mrg_cc_metadata, [('metadata_file', 'in2')]),
        (mrg_cc_metadata, compcor_plot, [('out', 'metadata_files')]),
        (compcor_plot, ds_report_compcor, [('out_file', 'in_file')]),
        (concat, conf_corr_plot, [('confounds_file', 'confounds_file')]),
        (conf_corr_plot, ds_report_conf_corr, [('out_file', 'in_file')]),
    ])

    return workflow
예제 #6
0
def init_confound_wf(t1, t1_mask, wm_tpm, csf_tpm, bold, bold_mask, tr,
                     skipvols):
    '''
    Initialize the confound extraction workflow
    '''

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'bold', 'bold_mask', 't1w_mask', 't1w', 'wm_tpm', 'csf_tpm', 'tpms'
    ]),
                        name='inputnode')

    inputnode.inputs.bold = bold
    inputnode.inputs.bold_mask = bold_mask
    inputnode.inputs.t1w_mask = t1_mask
    inputnode.inputs.t1w = t1
    inputnode.inputs.wm_tpm = wm_tpm
    inputnode.inputs.csf_tpm = csf_tpm
    inputnode.inputs.tpms = [wm_tpm, csf_tpm]
    inputnode.inputs.skip_vols = skipvols

    # WM Inputs
    wm_roi = pe.Node(TPM2ROI(erode_prop=0.6, mask_erode_prop=0.6**3),
                     name='wm_roi')
    wm_msk = pe.Node(niu.Function(function=_maskroi), name='wm_msk')
    resample_wm_roi = pe.Node(ResampleTPM(), name='resampled_wm_roi')

    # CSF inputs
    csf_roi = pe.Node(TPM2ROI(erode_mm=0, mask_erode_mm=30), name='csf_roi')
    csf_msk = pe.Node(niu.Function(function=_maskroi), name='csf_msk')
    resample_csf_roi = pe.Node(ResampleTPM(), name='resampled_csf_roi')

    # Nodes for aCompCor
    merge_label = pe.Node(niu.Merge(2),
                          name='merge_rois',
                          run_without_submitting=True)

    # Set up aCompCor
    acc_tpm = pe.Node(AddTPMs(indices=[0, 1]), name='tpms_add_csf_wm')
    acc_roi = pe.Node(TPM2ROI(erode_prop=0.6, mask_erode_prop=0.6**3),
                      name='acc_roi')
    resample_acc_roi = pe.Node(ResampleTPM(), name='resampled_acc_roi')
    acc_msk = pe.Node(niu.Function(function=_maskroi), name='acc_msk')
    acompcor = pe.Node(ACompCor(components_file='acompcor.tsv',
                                header_prefix='a_comp_cor_',
                                pre_filter='cosine',
                                repetition_time=tr,
                                save_pre_filter=True,
                                save_metadata=True,
                                merge_method='none',
                                mask_names=["combined", "CSF", "WM"],
                                failure_mode="NaN"),
                       name='acompcor')
    acompcor.inputs.variance_threshold = 0.5

    # aCompCor metadata extraction
    acc_metadata_fmt = pe.Node(TSV2JSON(
        index_column="component",
        output=None,
        additional_metadata={'Method': 'aCompCor'},
        enforce_case=True),
                               name='acc_metadata_fmt')

    acc_meta2json = pe.Node(niu.Function(function=_dict2json,
                                         output_names=['out_meta']),
                            name='acc_meta2json')
    mrg_lbl_cc = pe.Node(niu.Merge(3), name='merge_rois_acc')

    signals_class_labels = ["white_matter", "csf"]
    signals = pe.Node(SignalExtraction(class_labels=signals_class_labels),
                      name="signals")

    # Nodes to join signal extraction and aCompCor components

    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'signals', 'wm_roi', 'csf_roi', 'acc_roi', 'components_file',
        'confounds_file', 'confounds_metadata'
    ]),
                         name='outputnode')

    wf = pe.Workflow(name='confound_wf')
    wf.config['execution']['crashfile_format'] = 'txt'

    # WM workflow
    wf.connect([(inputnode, wm_roi, [('wm_tpm', 'in_tpm'),
                                     ('t1w_mask', 'in_mask')]),
                (inputnode, resample_wm_roi, [('bold_mask', 'fixed_file')]),
                (wm_roi, resample_wm_roi, [('roi_file', 'moving_file')]),
                (inputnode, wm_msk, [('bold_mask', 'in_mask')]),
                (resample_wm_roi, wm_msk, [('out_file', 'roi_file')])])

    # CSF workflow
    wf.connect([(inputnode, csf_roi, [('csf_tpm', 'in_tpm'),
                                      ('t1w_mask', 'in_mask')]),
                (inputnode, resample_csf_roi, [('bold_mask', 'fixed_file')]),
                (csf_roi, resample_csf_roi, [('roi_file', 'moving_file')]),
                (inputnode, csf_msk, [('bold_mask', 'in_mask')]),
                (resample_csf_roi, csf_msk, [('out_file', 'roi_file')])])

    # Signal extraction workflow
    wf.connect([(wm_msk, merge_label, [('out', 'in1')]),
                (csf_msk, merge_label, [('out', 'in2')]),
                (inputnode, signals, [('bold', 'in_file')]),
                (merge_label, signals, [('out', 'label_files')]),
                (signals, outputnode, [('out_file', 'signals')]),
                (wm_roi, outputnode, [('roi_file', 'wm_roi')]),
                (csf_roi, outputnode, [('roi_file', 'csf_roi')])])

    # ACC workflow
    wf.connect([
        (inputnode, acc_tpm, [('tpms', 'in_files')]),
        (inputnode, acc_roi, [('t1w_mask', 'in_mask')]),
        (acc_tpm, acc_roi, [('out_file', 'in_tpm')]),
        (inputnode, resample_acc_roi, [('bold_mask', 'fixed_file')]),
        (acc_roi, resample_acc_roi, [('roi_file', 'moving_file')]),
        (inputnode, acc_msk, [('bold_mask', 'in_mask')]),
        (resample_acc_roi, acc_msk, [('out_file', 'roi_file')]),
        (acc_msk, mrg_lbl_cc, [('out', 'in1')]),
        (csf_msk, mrg_lbl_cc, [('out', 'in2')]),
        (wm_msk, mrg_lbl_cc, [('out', 'in3')]),
        (mrg_lbl_cc, acompcor, [('out', 'mask_files')]),
        (inputnode, acompcor, [('bold', 'realigned_file')]),
        (inputnode, acompcor, [('skip_vols', 'ignore_initial_volumes')]),
        (acc_roi, outputnode, [('roi_file', 'acc_roi')]),
        (acompcor, outputnode, [('components_file', 'components_file')]),
        (acompcor, acc_metadata_fmt, [('metadata_file', 'in_file')]),
        (acc_metadata_fmt, acc_meta2json, [('output', 'in_dict')]),
        (acc_meta2json, outputnode, [('out_meta', 'confounds_metadata')])
    ])

    concat = pe.Node(GatherConfounds(),
                     name="concat",
                     mem_gb=0.01,
                     run_without_submitting=True)

    # Join ACC and WM/CSF signal extraction workflow TSVs
    wf.connect([(signals, concat, [('out_file', 'signals')]),
                (acompcor, concat, [('components_file', 'acompcor')]),
                (concat, outputnode, [('confounds_file', 'confounds_file')])])

    return wf