def init_spaces(checkpoint=True): """Initialize the :attr:`~workflow.spaces` setting.""" from niworkflows.utils.spaces import Reference, SpatialReferences spaces = execution.output_spaces or SpatialReferences() if not isinstance(spaces, SpatialReferences): spaces = SpatialReferences([ ref for s in spaces.split(" ") for ref in Reference.from_string(s) ]) if checkpoint and not spaces.is_cached(): spaces.checkpoint() # # Add the default standard space if not already present (required by several sub-workflows) # if "MNI152NLin2009cAsym" not in spaces.get_spaces(nonstandard=False, dim=(3,)): # spaces.add(Reference("MNI152NLin2009cAsym", {})) # Ensure user-defined spatial references for outputs are correctly parsed. # Certain options require normalization to a space not explicitly defined by users. # These spaces will not be included in the final outputs. # if workflow.use_aroma: # # Make sure there's a normalization to FSL for AROMA to use. # spaces.add(Reference("MNI152NLin6Asym", {"res": "2"})) cifti_output = workflow.cifti_output if workflow.cifti_output: # CIFTI grayordinates to corresponding FSL-MNI resolutions. vol_res = "2" if cifti_output == "91k" else "1" spaces.add(Reference("fsaverage", {"den": "164k"})) spaces.add(Reference("MNI152NLin6Asym", {"res": vol_res})) # Make the SpatialReferences object available workflow.spaces = spaces
def init_spaces(checkpoint=True): """Initialize the :attr:`~workflow.spaces` setting.""" from niworkflows.utils.spaces import Reference, SpatialReferences spaces = execution.output_spaces or SpatialReferences() if not isinstance(spaces, SpatialReferences): spaces = SpatialReferences([ ref for s in spaces.split(' ') for ref in Reference.from_string(s) ]) if checkpoint and not spaces.is_cached(): spaces.checkpoint() # Make the SpatialReferences object available workflow.spaces = spaces
def init_spaces(checkpoint=True): """Initialize the :attr:`~workflow.spaces` setting.""" from niworkflows.utils.spaces import Reference, SpatialReferences spaces = execution.output_spaces or SpatialReferences() if not isinstance(spaces, SpatialReferences): spaces = SpatialReferences( [ref for s in spaces.split(' ') for ref in Reference.from_string(s)] ) if checkpoint and not spaces.is_cached(): spaces.checkpoint() # Add the default standard space if not already present (required by several sub-workflows) if "Fischer344" not in spaces.get_spaces(nonstandard=False, dim=(3,)): spaces.add( Reference("Fischer344", {}) ) # Make the SpatialReferences object available workflow.spaces = spaces
MergeColumns, ApplyTransforms, MakeResultdicts, ResultdictDatasink, Vals, FilterRegressor, ) from ...resource import get as getresource from ...utils import firststr, loadints from ..constants import constants from ..memory import MemoryCalculator spaces = SpatialReferences([Reference("MNI152NLin6Asym", {"res": "2"})]) if not spaces.is_cached(): spaces.checkpoint() def _aroma_column_names(melodic_mix=None, aroma_noise_ics=None): import numpy as np from halfpipe.utils import ncol ncomponents = ncol(melodic_mix) leading_zeros = int(np.ceil(np.log10(ncomponents))) column_names = [] for i in range(1, ncomponents + 1): if i in aroma_noise_ics: column_names.append(f"aroma_noise_{i:0{leading_zeros}d}") else: column_names.append(f"aroma_signal_{i:0{leading_zeros}d}")