예제 #1
0
 def test_rte_classification_without_megam(self):
     # Use a sample size for unit testing, since we
     # don't need to fully train these classifiers
     clf = rte_classifier("IIS", sample_N=100)
     clf = rte_classifier("GIS", sample_N=100)
예제 #2
0
 def test_rte_classification_with_megam(self):
     nltk.config_megam("/usr/local/bin/megam")
     clf = rte_classifier("megam", sample_N=100)
     clf = rte_classifier("BFGS", sample_N=100)
예제 #3
0
 def test_rte_classification_with_megam(self):
     nltk.config_megam('/usr/local/bin/megam')
     clf = rte_classifier('megam', sample_N=100)
     clf = rte_classifier('BFGS', sample_N=100)
예제 #4
0
 def test_rte_classification_without_megam(self):
     clf = rte_classifier('IIS')
     clf = rte_classifier('GIS')
예제 #5
0
 def test_rte_classification_with_megam(self):
     nltk.config_megam('/usr/local/bin/megam')
     clf = rte_classifier('megam')
     clf = rte_classifier('BFGS')
예제 #6
0
 def test_rte_classification_without_megam(self):
     clf = rte_classifier('IIS')
     clf = rte_classifier('GIS')
예제 #7
0
 def test_rte_classification_with_megam(self):
     try:
         config_megam()
     except (LookupError, AttributeError) as e:
         pytest.skip("Skipping tests with dependencies on MEGAM")
     clf = rte_classifier("megam", sample_N=100)