def test_rte_classification_without_megam(self): # Use a sample size for unit testing, since we # don't need to fully train these classifiers clf = rte_classifier("IIS", sample_N=100) clf = rte_classifier("GIS", sample_N=100)
def test_rte_classification_with_megam(self): nltk.config_megam("/usr/local/bin/megam") clf = rte_classifier("megam", sample_N=100) clf = rte_classifier("BFGS", sample_N=100)
def test_rte_classification_with_megam(self): nltk.config_megam('/usr/local/bin/megam') clf = rte_classifier('megam', sample_N=100) clf = rte_classifier('BFGS', sample_N=100)
def test_rte_classification_without_megam(self): clf = rte_classifier('IIS') clf = rte_classifier('GIS')
def test_rte_classification_with_megam(self): nltk.config_megam('/usr/local/bin/megam') clf = rte_classifier('megam') clf = rte_classifier('BFGS')
def test_rte_classification_with_megam(self): try: config_megam() except (LookupError, AttributeError) as e: pytest.skip("Skipping tests with dependencies on MEGAM") clf = rte_classifier("megam", sample_N=100)