def setup(self, n_components, coord_type): self.data_dir = Path( __file__).parent.parent / "gallery" / "neurolang_data" self.resolution = 3 self.mask = load_mni_atlas(data_dir=self.data_dir, resolution=self.resolution)
def load_voxels(nl, region_voxels, difumo_meta): nl.add_tuple_set(region_voxels, name="RegionVoxel") nl.add_tuple_set({("ContA",), ("ContB",)}, name="Network") nl.add_tuple_set( set( (row["Yeo_networks17"], row["Difumo_names"]) for _, row in difumo_meta.iterrows() if row["Yeo_networks17"] in ("ContA", "ContB") ), name="NetworkRegion", ) # %% resolution = 3 mni_mask = data_utils.load_mni_atlas(data_dir=data_dir, resolution=resolution) # %% coord_type = "ijk" peak_reported, study_ids = data_utils.fetch_neuroquery_peak_data( mask=mni_mask, coord_type=coord_type, data_dir=data_dir ) # %% n_difumo_components = 128 region_voxels, difumo_meta = data_utils.fetch_difumo( mask=mni_mask, coord_type=coord_type, n_components=n_difumo_components, data_dir=data_dir,
def setup(self, tfidf_threshold, coord_type, convert_study_ids): self.data_dir = Path( __file__).parent.parent / "gallery" / "neurolang_data" self.resolution = 3 self.mask = load_mni_atlas(data_dir=self.data_dir, resolution=self.resolution)