예제 #1
0
파일: rnns.py 프로젝트: vsoch/sentencespace
class LNLSTM(object):
    def __init__(self, input_size, layer_size, batch_size=1, p=0.0,
                 name="", activation=T.tanh, inner_activation=T.nnet.sigmoid, weight_init=Uniform(), persistent=False):

        self.h = theano.shared(numpy.zeros((batch_size, layer_size), dtype=theano.config.floatX), name=name+"_h_init")
        self.c = theano.shared(numpy.zeros((batch_size, layer_size), dtype=theano.config.floatX), name=name+"_c_init")

        self.params = []
        self.preact = Sequential([
            Linear(input_size+layer_size, layer_size * 4, weight_init=weight_init, name=name+"_ifog"),
            LayerNormalization(layer_size * 4, name=name + "_ln")
        ])
        self.params = self.preact.params

        self.dropout = Dropout(p)

        self.updates = []
        self.activation = activation
        self.inner_activation = inner_activation
        self.batch_size = batch_size
        self.layer_size = layer_size
        self.persistent = persistent

    def __call__(self, x):
        if self.persistent:
            outputs_info = [self.c, self.h]
        else:
            outputs_info = [T.zeros((x.shape[1], self.layer_size)), T.zeros((x.shape[1], self.layer_size))]

        [c, h], upd = theano.scan(self.step, x, outputs_info=outputs_info)
        if self.persistent:
            upd[self.c] = c[-1]
            upd[self.h] = h[-1]

        self.updates = OrderedDict()
        self.updates.update(upd)

        return h

    def step(self, x_t, c_tm1, h_tm1):
        ifog = self.preact(T.concatenate([x_t, h_tm1], axis=1))
        i_t, f_t, o_t, g_t = self._split(ifog)
        c_t = f_t * c_tm1 + i_t * self.dropout(g_t)
        h_t = o_t * self.activation(c_t)
        return c_t, h_t

    def set_phase(self, train):
        self.dropout.set_phase(train)

    def reset(self):
        if self.persistent:
            self.h.set_value(numpy.zeros_like(self.h.get_value(), dtype=theano.config.floatX))
            self.c.set_value(numpy.zeros_like(self.c.get_value(), dtype=theano.config.floatX))

    def _split(self, x):
        i = x[:, 0 * self.layer_size:1 * self.layer_size]
        f = x[:, 1 * self.layer_size:2 * self.layer_size]
        o = x[:, 2 * self.layer_size:3 * self.layer_size]
        g = x[:, 3 * self.layer_size:4 * self.layer_size]
        return self.inner_activation(i), self.inner_activation(f), self.inner_activation(o), self.activation(g)
예제 #2
0
    def __init__(self,
                 kernel_size,
                 input_size,
                 causal=True,
                 dilation=1,
                 weight_init=Uniform(),
                 name="",
                 keepdims=False,
                 p=0.0):
        from nn.normalization import LayerNormalization

        assert kernel_size == 3

        self.conv = Sequential([
            Convolution1d(kernel_size,
                          input_size * 3,
                          input_size,
                          pad=dilation,
                          causal=causal,
                          dilation=dilation,
                          weight_init=weight_init,
                          name=name,
                          keepdims=keepdims),
            BatchNormalization(input_size * 3, name=name + "_bn"),
        ])
        self.dropout = Dropout(p)
        self.input_size = input_size
        self.params = self.conv.params
예제 #3
0
class HighwayConvolution1d(object):
    def __init__(self,
                 kernel_size,
                 input_size,
                 causal=True,
                 dilation=1,
                 weight_init=Uniform(),
                 name="",
                 keepdims=False,
                 p=0.0):
        from nn.normalization import LayerNormalization

        assert kernel_size == 3

        self.conv = Sequential([
            Convolution1d(kernel_size,
                          input_size * 3,
                          input_size,
                          pad=dilation,
                          causal=causal,
                          dilation=dilation,
                          weight_init=weight_init,
                          name=name,
                          keepdims=keepdims),
            BatchNormalization(input_size * 3, name=name + "_bn"),
        ])
        self.dropout = Dropout(p)
        self.input_size = input_size
        self.params = self.conv.params

    def __call__(self, x):
        i, f, g = self._split(self.conv(x))
        y = T.nnet.sigmoid(f) * x + T.nnet.sigmoid(i) * self.dropout(T.tanh(g))
        return y

    def _split(self, x):
        return x[:, 0 * self.input_size:1 * self.input_size], \
               x[:, 1 * self.input_size:2 * self.input_size], \
               x[:, 2 * self.input_size:3 * self.input_size]

    def set_phase(self, train):
        self.dropout.set_phase(train)
예제 #4
0
파일: rnns.py 프로젝트: vsoch/sentencespace
    def __init__(self, input_size, layer_size, batch_size=1, p=0.0,
                 name="", activation=T.tanh, inner_activation=T.nnet.sigmoid, weight_init=Uniform(), persistent=False):

        self.h = theano.shared(numpy.zeros((batch_size, layer_size), dtype=theano.config.floatX), name=name+"_h_init")
        self.c = theano.shared(numpy.zeros((batch_size, layer_size), dtype=theano.config.floatX), name=name+"_c_init")

        self.params = []
        self.preact = Sequential([
            Linear(input_size+layer_size, layer_size * 4, weight_init=weight_init, name=name+"_ifog"),
            LayerNormalization(layer_size * 4, name=name + "_ln")
        ])
        self.params = self.preact.params

        self.dropout = Dropout(p)

        self.updates = []
        self.activation = activation
        self.inner_activation = inner_activation
        self.batch_size = batch_size
        self.layer_size = layer_size
        self.persistent = persistent
예제 #5
0
파일: rnns.py 프로젝트: vsoch/sentencespace
    def __init__(self, input_size, layer_size, batch_size, p=0.0,
                 name="", activation=T.tanh, weight_init=Uniform(), persistent=False):
        self.h = theano.shared(numpy.zeros((batch_size, layer_size), dtype=theano.config.floatX), name=name+"_h_init")

        self.preact = Sequential([
            Linear(input_size+layer_size, layer_size, weight_init=weight_init, name=name+"_fc"),
            LayerNormalization(layer_size, name=name+"_ln"),
            activation,
            Dropout(p)
        ])
        self.params = self.preact.params

        self.activation = activation
        self.batch_size = batch_size
        self.layer_size = layer_size
        self.input_size = input_size
        self.persistent = persistent
예제 #6
0
파일: rnns.py 프로젝트: vsoch/sentencespace
    def __init__(self, input_size, layer_size, batch_size=1, name="", p=0.0, weight_init=Uniform(),
                 inner_activation=Sigmoid(), activation=Tanh(), persistent=False):
        self.activation = activation
        self.inner_activation = inner_activation
        self.layer_size = layer_size
        self.batch_size = batch_size
        self.persistent = persistent
        self.h = theano.shared(numpy.zeros((batch_size, layer_size), dtype=theano.config.floatX), name=name + "_h_init")

        self.rz = Sequential([
            Linear(input_size+layer_size, layer_size * 2, weight_init=weight_init, name=name+"_r"),
            LayerNormalization(layer_size * 2, name=name+"_ln_r"),
            inner_activation
        ])
        self.g = Sequential([
            Linear(input_size+layer_size, layer_size, weight_init=weight_init, name=name+"_g"),
            LayerNormalization(layer_size, name=name+"_ln_g"),
            activation,
            Dropout(p)
        ])

        self.params = self.rz.params + self.g.params
예제 #7
0
from nn.layers import Dropout

import numpy as np
from utils.check_grads_cnn import check_grads_layer

rate = 0.1
batch = 2
height = 10
width = 20
channel = 10

np.random.seed(1234)
input = np.random.uniform(size=(batch, channel, height, width))
out_grads = np.random.uniform(size=(batch, channel, height, width))

dropout = Dropout(rate, seed=1234)
dropout.set_mode(True)
check_grads_layer(dropout, input, out_grads)