def test_all(self, n): _dbn=DBN([784,1000,500,250,30],learning_rate=0.01,cd_k=1) _dbn.pretrain(mnist.train.images,128,50) _nnet = NN([784, 1000, 500, 250, 30, 250, 500, 1000, 784], 0.01, 128, 50) _nnet.load_from_dbn_to_reconstructNN(_dbn) _nnet.train(mnist.train.images, mnist.train.images) _nnet.test_linear(mnist.test.images, mnist.test.images) x_in = mnist.test.images[:30] _predict = _nnet.predict(x_in) _predict_img = np.concatenate(np.reshape(_predict, [-1, 28, 28]), axis=1) x_in = np.concatenate(np.reshape(x_in, [-1, 28, 28]), axis=1) img = Image.fromarray( (1.0-np.concatenate((_predict_img, x_in), axis=0))*255.0) img = img.convert('L') img.save(str(n)+'_.jpg') img2 = Image.fromarray( (np.concatenate((_predict_img, x_in), axis=0))*255.0) img2 = img2.convert('L') img2.save(str(n)+'.jpg') nnet_encoder=NN() nnet_encoder.load_layers_from_NN(_nnet,0,4) # featrue=nnet_encoder.predict(mnist.test.images) nnet_decoder=NN() nnet_decoder.load_layers_from_NN(_nnet,5,8)
def test_another_rbmtrain(self, n): _dbn = DBN([784, 1000, 500, 250, 30], learning_rate=0.01, cd_k=1) print(len(mnist.train.images)) for j in range(5): for i in range(10): _dbn.pretrain(mnist.train.images[i * 5500:i * 5500 + 5500], 128, 5) _nnet = NN([784, 1000, 500, 250, 30, 250, 500, 1000, 784], 0.01, 128, 50) _nnet.load_from_dbn_to_reconstructNN(_dbn) _nnet.train(mnist.train.images, mnist.train.images) _nnet.test_linear(mnist.test.images, mnist.test.images) x_in = mnist.test.images[:30] _predict = _nnet.predict(x_in) _predict_img = np.concatenate(np.reshape(_predict, [-1, 28, 28]), axis=1) x_in = np.concatenate(np.reshape(x_in, [-1, 28, 28]), axis=1) img = Image.fromarray((1.0 - np.concatenate( (_predict_img, x_in), axis=0)) * 255.0) img = img.convert('L') img.save(str(n) + '_.jpg') img2 = Image.fromarray((np.concatenate( (_predict_img, x_in), axis=0)) * 255.0) img2 = img2.convert('L') img2.save(str(n) + '.jpg')