예제 #1
0
    def test_opt_goal(self):
        ''' Optimization goal. '''
        network = self.alex_net

        batch_size = 8

        resource = self.resource._replace(
            proc_region=NodeRegion(origin=PhyDim2(0, 0),
                                   dim=PhyDim2(8, 8),
                                   type=NodeRegion.PROC)
        )

        nnd = NNDataflow(network, batch_size, resource, self.cost,
                         self.map_strategy)

        options_e = Option(sw_gbuf_bypass=(True, True, True),
                           sw_solve_loopblocking=True,
                           partition_hybrid=True,
                           partition_batch=True,
                           opt_goal='e',
                           ntops=16)
        tops_e, _ = nnd.schedule_search(options_e)
        self.assertTrue(tops_e)

        options_d = Option(sw_gbuf_bypass=(True, True, True),
                           sw_solve_loopblocking=True,
                           partition_hybrid=True,
                           partition_batch=True,
                           opt_goal='d',
                           ntops=16)
        tops_d, _ = nnd.schedule_search(options_d)
        self.assertTrue(tops_d)

        options_ed = Option(sw_gbuf_bypass=(True, True, True),
                            sw_solve_loopblocking=True,
                            partition_hybrid=True,
                            partition_batch=True,
                            opt_goal='ed',
                            ntops=16)
        tops_ed, _ = nnd.schedule_search(options_ed)
        self.assertTrue(tops_ed)

        self.assertLess(tops_e[0].total_cost, tops_d[0].total_cost)
        self.assertLess(tops_e[0].total_cost, tops_ed[0].total_cost)

        self.assertLess(tops_d[0].total_time, tops_e[0].total_time)
        self.assertLess(tops_d[0].total_time, tops_ed[0].total_time)

        # Sum of the smallest ED may not be the smallest; allow for error.
        self.assertLess(tops_ed[0].total_cost * tops_ed[0].total_time,
                        tops_e[0].total_cost * tops_e[0].total_time * 1.05)
        self.assertLess(tops_ed[0].total_cost * tops_ed[0].total_time,
                        tops_d[0].total_cost * tops_d[0].total_time * 1.05)
예제 #2
0
    def test_verbose(self):
        ''' Verbose mode. '''
        network = self.alex_net

        batch_size = 16

        options = Option(sw_gbuf_bypass=(True, True, True),
                         sw_solve_loopblocking=True,
                         verbose=True)

        nnd = NNDataflow(network, batch_size, self.resource, self.cost,
                         self.map_strategy)

        old_stdout = sys.stdout
        old_stderr = sys.stderr
        sys.stdout = stdout = StringIO()
        sys.stderr = stderr = StringIO()

        tops, _ = nnd.schedule_search(options)

        sys.stdout = old_stdout
        sys.stderr = old_stderr
        stdout_value = stdout.getvalue()
        stderr_value = stderr.getvalue()
        stdout.close()
        stderr.close()

        self.assertTrue(tops)

        self.assertFalse(stdout_value)
        for layer in network:
            self.assertIn(layer, stderr_value)
예제 #3
0
    def test_scheduling_failure(self):
        ''' Layer scheduling failure. '''
        network = self.alex_net

        batch_size = 16

        nnd = NNDataflow(network, batch_size, self.resource, self.cost,
                         MapStrategy)

        old_stdout = sys.stdout
        old_stderr = sys.stderr
        sys.stdout = stdout = StringIO()
        sys.stderr = stderr = StringIO()

        with self.assertRaises(NotImplementedError):
            _ = nnd.schedule_search(self.options)

        sys.stdout = old_stdout
        sys.stderr = old_stderr
        stdout_value = stdout.getvalue()
        stderr_value = stderr.getvalue()
        stdout.close()
        stderr.close()

        self.assertFalse(stdout_value)
        self.assertIn('Failed', stderr_value)
    def test_eyeriss_isca16(self):
        network = self.net
        batch_size = 16
        nnd = NNDataflow(network, batch_size, self.resource, self.cost,
                         self.map_strategy)

        tops, cache_stats = nnd.schedule_search(self.options)

        if not tops:
            sys.stderr.write("No valid dataflow found!")
            return None
        dfsch = tops[0]

        ## Write results.

        res_map = OrderedDict()

        res_map['net'] = "MLP_L"
        res_map['batch'] = batch_size
        res_map['resource'] = self.resource._asdict()
        res_map['cost'] = self.cost._asdict()
        res_map['options'] = self.options._asdict()

        res_map['cache_stats'] = cache_stats

        stats = stats_dict(dfsch, self.cost)
        for key, val in stats.items():
            res_map[key] = val

        return res_map
예제 #5
0
    def test_pipelining(self):
        ''' Pipelining. '''
        network = self.alex_net
        batch_size = 1

        options = Option(hw_gbuf_save_writeback=True,
                         partition_interlayer=True)
        nnd = NNDataflow(network, batch_size, self.resource, self.cost,
                         self.map_strategy)

        tops, _ = nnd.schedule_search(options)
        self.assertTrue(tops)
예제 #6
0
    def test_fast_forward_found(self):
        ''' Enter fast forward due to early found. '''
        network = self.simple_net
        batch_size = 1

        # No time overhead limit.
        options = Option(hw_gbuf_save_writeback=True,
                         partition_interlayer=True,
                         layer_pipeline_time_ovhd=float('inf'))
        nnd = NNDataflow(network, batch_size, self.resource, self.cost,
                         self.map_strategy)

        tops, _ = nnd.schedule_search(options)
        self.assertTrue(tops)
예제 #7
0
    def test_no_valid_dataflow(self):
        ''' No valid dataflow is found. '''

        # Very small REGF.
        self.resource = Resource(
            proc_region=NodeRegion(origin=PhyDim2(0, 0),
                                   dim=PhyDim2(4, 4),
                                   type=NodeRegion.PROC),
            dram_region=NodeRegion(origin=PhyDim2(0, 0),
                                   dim=PhyDim2(1, 1),
                                   type=NodeRegion.DRAM),
            src_data_region=NodeRegion(origin=PhyDim2(0, 0),
                                       dim=PhyDim2(4, 4),
                                       type=NodeRegion.DRAM),
            dst_data_region=NodeRegion(origin=PhyDim2(0, 0),
                                       dim=PhyDim2(4, 4),
                                       type=NodeRegion.DRAM),
            dim_array=PhyDim2(16, 16),
            size_gbuf=128 * 1024 // 2,  # 128 kB
            size_regf=2,
            array_bus_width=float('inf'),
            dram_bandwidth=float('inf'),
            no_time_mux=False,
        )

        nnd = NNDataflow(self.alex_net, 4, self.resource, self.cost,
                         self.map_strategy)
        tops, _ = nnd.schedule_search(self.options)

        self.assertFalse(tops)

        # With inter-layer pipelining.
        options = Option(hw_gbuf_save_writeback=True,
                         partition_interlayer=True)
        tops, _ = nnd.schedule_search(options)

        self.assertFalse(tops)
예제 #8
0
    def test_ext_layer(self):
        ''' With external layers. '''
        network = self.alex_net

        network.add_ext('e0', InputLayer(4, 1))
        network.add('l1', FCLayer(1000, 4))
        network.add('l2', FCLayer(8, 4), prevs=('e0', 'l1'))

        batch_size = 16

        options = Option(sw_gbuf_bypass=(True, True, True),
                         sw_solve_loopblocking=True)

        nnd = NNDataflow(network, batch_size, self.resource, self.cost,
                         self.map_strategy)

        tops, _ = nnd.schedule_search(options)

        self.assertTrue(tops)
예제 #9
0
    def test_fmap_fwd(self):
        '''
        Fmap forward with shared mem sources or both on/off-chip destinations.
        '''
        network = self.complex_net
        batch_size = 16

        # Multiple nodes for spatial pipelining.
        resource = self.resource._replace(proc_region=NodeRegion(
            origin=PhyDim2(0, 0), dim=PhyDim2(8, 8), type=NodeRegion.PROC), )

        # No time overhead limit.
        options = Option(hw_gbuf_save_writeback=True,
                         partition_interlayer=True,
                         layer_pipeline_time_ovhd=float('inf'))
        nnd = NNDataflow(network, batch_size, resource, self.cost,
                         self.map_strategy)

        tops, _ = nnd.schedule_search(options)
        self.assertTrue(tops)
예제 #10
0
    def test_no_valid_dataflow(self):
        ''' No valid dataflow is found. '''

        # Very small REGF.
        self.resource = Resource(
            proc_region=NodeRegion(origin=PhyDim2(0, 0),
                                   dim=PhyDim2(1, 1),
                                   type=NodeRegion.PROC),
            data_regions=(NodeRegion(origin=PhyDim2(0, 0),
                                     dim=PhyDim2(1, 1),
                                     type=NodeRegion.DATA), ),
            dim_array=PhyDim2(16, 16),
            size_gbuf=128 * 1024 // 2,  # 128 kB
            size_regf=2,
        )

        nnd = NNDataflow(self.alex_net, 4, self.resource, self.cost,
                         self.map_strategy)
        tops, _ = nnd.schedule_search(self.options)

        self.assertFalse(tops)
예제 #11
0
    def test_fast_forward_infeasible(self):
        ''' Enter fast forward due to infeasible constraint. '''
        network = self.simple_net
        batch_size = 1

        # Very small gbuf size. Small fmap tpart is infeasible.
        resource = self.resource._replace(dim_array=PhyDim2(2, 2),
                                          size_gbuf=16)

        options = Option(hw_gbuf_save_writeback=True,
                         partition_interlayer=True)
        nnd = NNDataflow(network, batch_size, resource, self.cost,
                         self.map_strategy)

        tops, _ = nnd.schedule_search(options)
        self.assertTrue(tops)

        # No pipelining is feasible.
        for dtfl in tops:
            self.assertTupleEqual(dtfl['1'].sched_seq, (0, 0, 0))
            self.assertTupleEqual(dtfl['2'].sched_seq, (1, 0, 0))
예제 #12
0
    def test_fast_forward_frontier(self):
        ''' Enter fast forward due to off-frontier. '''
        network = self.simple_net
        batch_size = 16

        # Multiple nodes for spatial pipelining.
        resource = self.resource._replace(
            proc_region=NodeRegion(origin=PhyDim2(0, 0),
                                   dim=PhyDim2(8, 8),
                                   type=NodeRegion.PROC),
            dim_array=PhyDim2(2, 2),
        )

        # No time overhead limit.
        options = Option(hw_gbuf_save_writeback=True,
                         partition_interlayer=True,
                         layer_pipeline_time_ovhd=float('inf'))
        nnd = NNDataflow(network, batch_size, resource, self.cost,
                         self.map_strategy)

        tops, _ = nnd.schedule_search(options)
        self.assertTrue(tops)
예제 #13
0
    def test_fast_forward_crit_time(self):
        ''' Enter fast forward due to long critical time. '''
        network = self.simple_net
        batch_size = 1

        # Multiple nodes for spatial pipelining.
        resource = self.resource._replace(
            proc_region=NodeRegion(origin=PhyDim2(0, 0),
                                   dim=PhyDim2(8, 8),
                                   type=NodeRegion.PROC),
            dim_array=PhyDim2(1, 1),
        )

        # Very strict time overhead limit.
        # At large fmap tpart, utilization decreases and critical time would
        # increase.
        options = Option(hw_gbuf_save_writeback=True,
                         partition_interlayer=True,
                         layer_pipeline_time_ovhd=1e-3)
        nnd = NNDataflow(network, batch_size, resource, self.cost,
                         self.map_strategy)

        tops, _ = nnd.schedule_search(options)
        self.assertTrue(tops)
예제 #14
0
def do_scheduling(args):
    '''
    Get optimal scheduling for given problem. Return a result schedule.
    '''

    ## Network.

    network = import_network(args.net)
    batch_size = args.batch

    ## Resource.

    dim_nodes = PhyDim2(*args.nodes)
    dim_array = PhyDim2(*args.array)

    # Sizes of gbuf and regf are in words.
    word = (args.word + 7) / 8
    size_gbuf = args.gbuf / word
    size_regf = args.regf / word

    array_bus_width = args.bus_width // args.word
    if not array_bus_width:
        array_bus_width = float('inf')
    dram_bandwidth = args.dram_bw / word

    proc_region = NodeRegion(dim=dim_nodes,
                             origin=PhyDim2(0, 0),
                             type=NodeRegion.PROC)

    if args.mem_type == '2D':
        # Memory nodes are on two sides.
        data_region = NodeRegion(dim=PhyDim2(2, 2),
                                 origin=PhyDim2(0, 0),
                                 dist=dim_nodes - PhyDim2(1, 1),
                                 type=NodeRegion.DRAM)
        assert data_region.rel2abs(PhyDim2(1, 1)) + PhyDim2(1, 1) \
                == proc_region.dim
    elif args.mem_type == '3D':
        # Memory nodes are on the top.
        data_region = NodeRegion(dim=dim_nodes,
                                 origin=PhyDim2(0, 0),
                                 type=NodeRegion.DRAM)

    resource = Resource(proc_region=proc_region,
                        dram_region=data_region,
                        src_data_region=data_region,
                        dst_data_region=data_region,
                        dim_array=dim_array,
                        size_gbuf=size_gbuf,
                        size_regf=size_regf,
                        array_bus_width=array_bus_width,
                        dram_bandwidth=dram_bandwidth,
                        no_time_mux=False)

    ## Cost.

    hier_cost = [0] * me.NUM
    hier_cost[me.DRAM] = args.hier_cost[0]
    hier_cost[me.GBUF] = args.hier_cost[1]
    hier_cost[me.ITCN] = args.hier_cost[2]
    hier_cost[me.REGF] = args.hier_cost[3]
    cost = Cost(mac_op=args.op_cost,
                mem_hier=tuple(hier_cost),
                noc_hop=args.hop_cost,
                idl_unit=args.unit_idle_cost)

    ## Options.

    bypass = [True] * de.NUM
    bypass[de.IFM] = 'i' not in args.disable_bypass
    bypass[de.OFM] = 'o' not in args.disable_bypass
    bypass[de.FIL] = 'f' not in args.disable_bypass
    options = Option(
        sw_gbuf_bypass=tuple(bypass),
        sw_solve_loopblocking=args.solve_loopblocking,
        hw_access_forwarding=args.enable_access_forwarding,
        hw_gbuf_sharing=args.enable_gbuf_sharing,
        hw_gbuf_save_writeback=args.enable_save_writeback,
        partition_hybrid=args.hybrid_partition,
        partition_batch=args.batch_partition,
        partition_ifmaps=args.ifmaps_partition,
        partition_interlayer=args.interlayer_partition,
        layer_pipeline_time_ovhd=args.layer_pipeline_time_overhead,
        layer_pipeline_max_degree=args.layer_pipeline_max_degree,
        layer_pipeline_opt=not args.disable_interlayer_opt,
        opt_goal=args.goal.lower(),
        ntops=args.top,
        nprocesses=args.processes,
        verbose=args.verbose)

    ## Search schedules.

    nnd = NNDataflow(network, batch_size, resource, cost, MapStrategyEyeriss)
    tbeg = time.time()
    tops, cache_stats = nnd.schedule_search(options)
    tend = time.time()
    telapsed = tend - tbeg

    if not tops:
        sys.stderr.write('No valid dataflow found.\n')
        return None

    top = tops[0]

    ## Write results.

    res_map = OrderedDict()

    res_map['version'] = get_version(with_local=True)

    res_map['net'] = args.net
    res_map['batch'] = args.batch

    res_map['resource'] = resource._asdict()
    res_map['cost'] = cost._asdict()
    res_map['options'] = options._asdict()

    res_map['cache_stats'] = cache_stats
    res_map['elapsed'] = telapsed

    stats = stats_dict(top, cost)
    for key, val in stats.items():
        res_map[key] = val

    return res_map
예제 #15
0
    def test_eyeriss_asplos17(self):
        '''
        Reproduce TETRIS ASPLOS'17 paper Figure 8.
        '''
        network = self.alex_net

        batch_size = 16

        ## L-1 configuration.

        resource = Resource(proc_region=NodeRegion(origin=PhyDim2(0, 0),
                                                   dim=PhyDim2(1, 1),
                                                   type=NodeRegion.PROC),
                            dram_region=NodeRegion(
                                origin=PhyDim2(0, 0), dim=PhyDim2(1, 1),
                                type=NodeRegion.DRAM),
                            src_data_region=NodeRegion(
                                origin=PhyDim2(0, 0), dim=PhyDim2(1, 1),
                                type=NodeRegion.DRAM),
                            dst_data_region=NodeRegion(
                                origin=PhyDim2(0, 0), dim=PhyDim2(1, 1),
                                type=NodeRegion.DRAM),
                            dim_array=PhyDim2(16, 16),
                            size_gbuf=576056 // 2,  # 576 kB
                            size_regf=1024 // 2,  # 1 kB
                            array_bus_width=float('inf'),
                            dram_bandwidth=float('inf'),
                            no_time_mux=False,
                           )

        cost = Cost(mac_op=2e-12,
                    mem_hier=(240e-12, 28e-12, 4e-12, 1e-12),  # pJ/16-b
                    noc_hop=0,
                    idl_unit=320e-12)

        nnd = NNDataflow(network, batch_size, resource, cost,
                         self.map_strategy)
        tops, _ = nnd.schedule_search(self.options)
        self.assertTrue(tops)
        dfsch_l1 = tops[0]

        ## T-16 configuration.

        resource = Resource(proc_region=NodeRegion(origin=PhyDim2(0, 0),
                                                   dim=PhyDim2(4, 4),
                                                   type=NodeRegion.PROC),
                            dram_region=NodeRegion(
                                origin=PhyDim2(0, 0), dim=PhyDim2(4, 4),
                                type=NodeRegion.DRAM),
                            src_data_region=NodeRegion(
                                origin=PhyDim2(0, 0), dim=PhyDim2(4, 4),
                                type=NodeRegion.DRAM),
                            dst_data_region=NodeRegion(
                                origin=PhyDim2(0, 0), dim=PhyDim2(4, 4),
                                type=NodeRegion.DRAM),
                            dim_array=PhyDim2(14, 14),
                            size_gbuf=133032 // 2,  # 133 kB
                            size_regf=512 // 2,  # 512 B
                            array_bus_width=float('inf'),
                            dram_bandwidth=float('inf'),
                            no_time_mux=False,
                           )

        cost = Cost(mac_op=2e-12,
                    mem_hier=(80e-12, 14e-12, 4e-12, 0.6e-12),  # pJ/16-b
                    noc_hop=40e-12,
                    idl_unit=200e-12)

        options = Option(sw_gbuf_bypass=(True, True, True),
                         sw_solve_loopblocking=True,
                         partition_hybrid=True)

        nnd = NNDataflow(network, batch_size, resource, cost,
                         self.map_strategy)
        tops, _ = nnd.schedule_search(options)
        self.assertTrue(tops)
        dfsch_t16 = tops[0]

        ## Check results.

        # Same workload.
        self.assertAlmostEqual(dfsch_t16.total_ops, dfsch_l1.total_ops)

        # Performance of T-16 is proportional to PE resource (20% margin).
        self.assertLess(dfsch_t16.total_time,
                        1.2 * dfsch_l1.total_time * (16 * 16) / (14 * 14 * 16))
        # Energy reduced by > 30%.
        # self.assertLess(dfsch_t16.total_cost, dfsch_l1.total_cost * 0.7)
        # With dimension restriction on partitioning, this is slightly violated.
        self.assertLess(dfsch_t16.total_cost, dfsch_l1.total_cost * 0.72)
예제 #16
0
    def test_eyeriss_isscc16(self):
        '''
        Reproduce Eyeriss ISSCC'16 paper Fig. 14.5.6, JSSC'17 paper Table V.
        '''
        network = self.alex_net

        batch_size = 4

        resource = Resource(proc_region=NodeRegion(origin=PhyDim2(0, 0),
                                                   dim=PhyDim2(1, 1),
                                                   type=NodeRegion.PROC),
                            dram_region=NodeRegion(
                                origin=PhyDim2(0, 0), dim=PhyDim2(1, 1),
                                type=NodeRegion.DRAM),
                            src_data_region=NodeRegion(
                                origin=PhyDim2(0, 0), dim=PhyDim2(1, 1),
                                type=NodeRegion.DRAM),
                            dst_data_region=NodeRegion(
                                origin=PhyDim2(0, 0), dim=PhyDim2(1, 1),
                                type=NodeRegion.DRAM),
                            dim_array=PhyDim2(12, 14),
                            size_gbuf=108 * 1024 // 2,  # 108 kB
                            size_regf=261,  # 225 + 12 + 24
                            array_bus_width=float('inf'),
                            dram_bandwidth=float('inf'),
                            no_time_mux=False,
                           )

        cost = Cost(mac_op=2e-12,
                    mem_hier=(460e-12, 15e-12, 4e-12, 1e-12),  # pJ/16-b
                    noc_hop=0,
                    idl_unit=30e-3 / 200e6)  # 30 mW GBUF + REGF

        nnd = NNDataflow(network, batch_size, resource, cost,
                         self.map_strategy)
        tops, _ = nnd.schedule_search(self.options)
        self.assertTrue(tops)
        dfsch = tops[0]

        ## Check results.

        # Results as stats of the rows in the table.
        header = 'Power, Processing Latency, Ops, Active PEs, Filter size'
        stats = {}

        for layer in ['conv{}'.format(i) for i in range(1, 6)]:
            onchip_cost = 0
            time = 0
            ops = 0
            fil_size = 0

            for layer_part in network:
                if not layer_part or not layer_part.startswith(layer):
                    continue
                sr = dfsch[layer_part]
                onchip_cost += sr.total_cost \
                        - sr.total_accesses[me.DRAM] * cost.mem_hier[me.DRAM]
                time += sr.total_time
                ops += sr.total_ops
                fil_size += network[layer_part].total_filter_size()

            power = onchip_cost / (time / 200e6) * 1e3  # mW
            active_pes = int(ops / time)

            stats[layer] = []
            stats[layer].append(power)
            stats[layer].append(time / 200.e3)  # cycles to ms
            stats[layer].append(ops / 1e6)  # to MOPs
            stats[layer].append(active_pes)
            stats[layer].append(fil_size / 1e3)  # to k

        # Check.
        stats_ref = {'conv1': [332, 16.5, 421.66, 151, 34.8],  # Act PE 154
                     'conv2': [288, 39.2, 895.79, 135, 307.2],
                     'conv3': [266, 21.8, 598.1, 156, 884.7],
                     'conv4': [235, 16.0, 448.6, 156, 663.6],
                     'conv5': [236, 10.0, 299.0, 156, 442.4],
                    }
        for layer in stats:
            success = (0.6 * stats_ref[layer][0]
                       < stats[layer][0]
                       < stats_ref[layer][0]) \
                    and (0.8 * stats_ref[layer][1]
                         < stats[layer][1]
                         < stats_ref[layer][1]) \
                    and all(abs(a - b) < 0.1 for a, b
                            in zip(stats[layer][2:], stats_ref[layer][2:]))
            self.assertTrue(success,
                            'test_eyeriss_isscc16: '
                            'stats diff in layer {}.\n'
                            'header: {}\n'
                            'actual: {}\nref: {}'
                            .format(layer, header, stats[layer],
                                    stats_ref[layer]))
예제 #17
0
    def test_eyeriss_isca16(self):
        '''
        Reproduce Eyeriss ISCA'16 paper Fig. 10.
        '''
        network = self.alex_net

        batch_size = 16

        nnd = NNDataflow(network, batch_size, self.resource, self.cost,
                         self.map_strategy)
        tops, _ = nnd.schedule_search(self.options)
        self.assertTrue(tops)
        dfsch = tops[0]

        ## Check results.

        # Results as cost for each component:
        header = 'ALU, DRAM, Buffer, Array, RF'
        cost_bkdn = {}

        for layer in ['conv{}'.format(i) for i in range(1, 6)] \
                + ['fc{}'.format(i) for i in range(1, 4)]:
            op_cost = 0
            access_cost = [0] * me.NUM

            for layer_part in network:
                if not layer_part or not layer_part.startswith(layer):
                    continue
                sr = dfsch[layer_part]
                op_cost += sr.total_ops * self.cost.mac_op
                access_cost = [ac + a * c for ac, a, c
                               in zip(access_cost, sr.total_accesses,
                                      self.cost.mem_hier)]

            cost_bkdn[layer] = []
            # To 1e9.
            cost_bkdn[layer].append(op_cost / 1e9)
            cost_bkdn[layer].append(access_cost[me.DRAM] / 1e9)
            cost_bkdn[layer].append(access_cost[me.GBUF] / 1e9)
            cost_bkdn[layer].append(access_cost[me.ITCN] / 1e9)
            cost_bkdn[layer].append(access_cost[me.REGF] / 1e9)

        # Check the major parts: ALU, DRAM, RF.
        major_cost_bkdn_ref = {'conv1': [1.69, 2.46, 6.75],
                               'conv2': [3.58, 2.27, 14.33],
                               'conv3': [2.39, 2.02, 9.57],
                               'conv4': [1.79, 1.57, 7.18],
                               'conv5': [1.20, 1.05, 4.78],
                               'fc1':   [0.60, 7.78, 2.42],
                               'fc2':   [0.27, 3.39, 1.07],
                               'fc3':   [0.07, 0.84, 0.26],
                              }
        for layer in cost_bkdn:
            success = all(abs(a - b) < 0.1 for a, b
                          in zip(cost_bkdn[layer][:2] + cost_bkdn[layer][-1:],
                                 major_cost_bkdn_ref[layer]))
            self.assertTrue(success,
                            'test_eyeriss_isca16: '
                            'ALU, DRAM, RF cost diff in layer {}.\n'
                            'header: {}\n'
                            'actual: {}\nref: {}'
                            .format(layer, header, cost_bkdn[layer],
                                    major_cost_bkdn_ref[layer]))
예제 #18
0
    def eyerissAsplos17(self):
        '''
        Reproduce TETRIS ASPLOS'17 paper Figure 8.
        '''
        network = self.alex_net

        batch_size = 16

        resource = Resource(
            proc_region=NodeRegion(origin=PhyDim2(0, 0),
                                   dim=PhyDim2(4, 4),
                                   type=NodeRegion.PROC),
            dram_region=NodeRegion(origin=PhyDim2(0, 0),
                                   dim=PhyDim2(4, 4),
                                   type=NodeRegion.DRAM),
            src_data_region=NodeRegion(origin=PhyDim2(0, 0),
                                       dim=PhyDim2(4, 4),
                                       type=NodeRegion.DRAM),
            dst_data_region=NodeRegion(origin=PhyDim2(0, 0),
                                       dim=PhyDim2(4, 4),
                                       type=NodeRegion.DRAM),
            dim_array=PhyDim2(14, 14),
            size_gbuf=133032 // 2,  # 133 kB
            size_regf=512 // 2,  # 512 B
            array_bus_width=float('inf'),
            dram_bandwidth=float('inf'),
            no_time_mux=False,
        )

        cost = Cost(
            mac_op=2e-12,
            mem_hier=(80e-12, 14e-12, 4e-12, 0.6e-12),  # pJ/16-b
            noc_hop=40e-12,
            idl_unit=200e-12)

        options = Option(sw_gbuf_bypass=(True, True, True),
                         sw_solve_loopblocking=True,
                         partition_hybrid=True)

        pdb.set_trace()

        nnd = NNDataflow(network, batch_size, resource, cost,
                         self.map_strategy)
        tops, _ = nnd.schedule_search(options)
        self.assertTrue(tops)
        dfsch_t16 = tops[0]

        ## Check results.

        # Same workload.
        #self.assertAlmostEqual(dfsch_t16.total_ops, dfsch_l1.total_ops)
        print('t16 ops: {}'.format(dfsch_t16.total_ops))

        # Performance of T-16 is proportional to PE resource (20% margin).
        #self.assertLess(dfsch_t16.total_time,
        #                1.2 * dfsch_l1.total_time * (16 * 16) / (14 * 14 * 16))
        print('t16_time: {}'.format(dfsch_t16.total_time))

        # Energy reduced by > 30%.
        # self.assertLess(dfsch_t16.total_cost, dfsch_l1.total_cost * 0.7)
        # With dimension restriction on partitioning, this is slightly violated.
        #self.assertLess(dfsch_t16.total_cost, dfsch_l1.total_cost * 0.72)
        print('t16_energy: {}'.format(dfsch_t16.total_cost))
        for i in dfsch_t16:
            print(str(i) + ',')
        ## Check results.

        # Results as cost for each component:
        header = 'ALU, DRAM, Buffer, Array, RF'
        cost_bkdn = {}

        for layer in dfsch_t16:
            layer = str(layer)
            op_cost = 0
            access_cost = [0] * me.NUM

            for layer_part in network:
                if not layer_part or not layer_part.startswith(layer):
                    continue
                sr = dfsch_t16[layer_part]
                op_cost += sr.total_ops * cost.mac_op
                access_cost = [
                    ac + a * c for ac, a, c in zip(
                        access_cost, sr.total_accesses, cost.mem_hier)
                ]

            cost_bkdn[layer] = []
            # To 1e9.
            cost_bkdn[layer].append(op_cost * 1e12 / 1e9)
            cost_bkdn[layer].append(access_cost[me.DRAM] * 1e12 / 1e9)
            cost_bkdn[layer].append(access_cost[me.GBUF] * 1e12 / 1e9)
            cost_bkdn[layer].append(access_cost[me.ITCN] * 1e12 / 1e9)
            cost_bkdn[layer].append(access_cost[me.REGF] * 1e12 / 1e9)

        for layer in cost_bkdn:
            print(cost_bkdn[layer])
예제 #19
0
def do_scheduling(args):
    '''
    Get optimal scheduling for given problem. Return a result schedule.
    '''

    ## Network.

    network = import_network(args.net)
    batch_size = args.batch

    ## Resource.

    dim_nodes = PhyDim2(*args.nodes)
    dim_array = PhyDim2(*args.array)

    # Sizes of gbuf and regf are in words.
    word = (args.word + 7) / 8
    size_gbuf = args.gbuf / word
    size_regf = args.regf / word

    proc_region = NodeRegion(dim=dim_nodes,
                             origin=PhyDim2(0, 0),
                             type=NodeRegion.PROC)

    if args.mem_type == '2D':
        # Memory nodes are on two sides.
        data_regions = (NodeRegion(dim=PhyDim2(h=dim_nodes.h, w=1),
                                   origin=PhyDim2(h=0, w=0),
                                   type=NodeRegion.DATA),
                        NodeRegion(dim=PhyDim2(h=dim_nodes.h, w=1),
                                   origin=PhyDim2(h=0, w=dim_nodes.w - 1),
                                   type=NodeRegion.DATA))
    elif args.mem_type == '3D':
        # All nodes have memory.
        data_regions = (NodeRegion(dim=dim_nodes,
                                   origin=PhyDim2(0, 0),
                                   type=NodeRegion.DATA), )

    resource = Resource(proc_region=proc_region,
                        data_regions=data_regions,
                        dim_array=dim_array,
                        size_gbuf=size_gbuf,
                        size_regf=size_regf)

    ## Cost.

    hier_cost = [0] * me.NUM
    hier_cost[me.DRAM] = args.hier_cost[0]
    hier_cost[me.GBUF] = args.hier_cost[1]
    hier_cost[me.ITCN] = args.hier_cost[2]
    hier_cost[me.REGF] = args.hier_cost[3]
    cost = Cost(mac_op=args.op_cost,
                mem_hier=tuple(hier_cost),
                noc_hop=args.hop_cost,
                unit_static=args.unit_static_cost)

    ## Options.

    bypass = [True] * de.NUM
    bypass[de.IFM] = 'i' not in args.disable_bypass
    bypass[de.OFM] = 'o' not in args.disable_bypass
    bypass[de.FIL] = 'f' not in args.disable_bypass
    options = Option(sw_gbuf_bypass=tuple(bypass),
                     sw_solve_loopblocking=args.solve_loopblocking,
                     partition_hybrid=args.hybrid_partition,
                     partition_batch=args.batch_partition,
                     partition_ifmaps=args.ifmaps_partition,
                     ntops=args.top,
                     nprocesses=args.processes,
                     verbose=args.verbose)

    ## Search schedules.

    nnd = NNDataflow(network, batch_size, resource, cost, MapStrategyEyeriss)
    tops, cache_stats = nnd.schedule_search(options)

    if not tops:
        sys.stderr.write('No valid dataflow found.\n')
        return None

    top = tops[0]

    ## Write results.

    res_map = OrderedDict()

    res_map['version'] = get_version(with_local=True)

    res_map['net'] = args.net
    res_map['batch'] = args.batch

    res_map['resource'] = resource._asdict()
    res_map['cost'] = cost._asdict()
    res_map['options'] = options._asdict()

    res_map['cache_stats'] = cache_stats

    stats = stats_dict(top, cost)
    for key, val in stats.items():
        res_map[key] = val

    return res_map
예제 #20
0
    def eyerissAsplos17(self):
        '''
        Reproduce TETRIS ASPLOS'17 paper Figure 8.
        '''
        #network = self.alex_net
        network = self.mock_net

        batch_size = 1

        resource = Resource(
            proc_region=NodeRegion(origin=PhyDim2(0, 0),
                                   dim=PhyDim2(4, 4),
                                   type=NodeRegion.PROC),
            dram_region=NodeRegion(origin=PhyDim2(0, 0),
                                   dim=PhyDim2(4, 4),
                                   type=NodeRegion.DRAM),
            src_data_region=NodeRegion(origin=PhyDim2(0, 0),
                                       dim=PhyDim2(4, 4),
                                       type=NodeRegion.DRAM),
            dst_data_region=NodeRegion(origin=PhyDim2(0, 0),
                                       dim=PhyDim2(4, 4),
                                       type=NodeRegion.DRAM),
            dim_array=PhyDim2(14, 14),
            size_gbuf=133032 // 2,  # 133 kB
            size_regf=512 // 2,  # 512 B
            array_bus_width=float('inf'),
            dram_bandwidth=float('inf'),
            no_time_mux=False,
            num_value_pes=256,
        )

        # model values
        print('converting weights')
        q_weight_dict = {}
        weights_dict = read_weights()
        for w_layer in [
                'conv1', 'conv2', 'conv3', 'conv4', 'conv5', 'fc6', 'fc7',
                'fc8'
        ]:
            array = convertToArray(weights_dict, w_layer)
            array_qint8 = quantizeWeights(array, 'qint8')
            q_weight_dict[w_layer] = array_qint8
        #print('''Hey num weights in conv1 are {} '''.format(len(array_qint8)))
        # hardware costs
        mult_cost = readValueMult8Cost()
        #control_cost = readValueControl8Cost()
        print('done converting weights')

        #with open('weights.pickle', 'wb') as f:
        #  pickle.dump(q_weight_dict,f)

        #counter = 0
        #c = 0
        #for m in mult_cost.keys():
        #  c += mult_cost[m]
        #  counter += 1
        #ave = c/counter
        #print('{} '.format(counter))
        #print('average = {}'.format(ave))
        #print('conv3 weights are')
        #for w in q_weight_dict['conv1']:
        #  print(w)
        #exit()

        cost = Cost(
            value_control=1.92e-13,
            value_mult=mult_cost,
            mac_op=2e-12,
            adder_cost=(1.178e-5) / 200000000,
            mem_hier=(80e-12, 14e-12, 4e-12, 0.6e-12),  # pj/16-b
            noc_hop=40e-12,
            idl_unit=200e-12,
            my_weights=q_weight_dict,
            mem_cycles=(200, 6, 2, 1))

        #cost = cost(value_control=control_cost,
        #            value_mult=mult_cost,
        #            mac_op=2e-12,
        #            mem_hier=(80e-12, 14e-12, 4e-12, 0.6e-12),  # pj/16-b
        #            noc_hop=40e-12,
        #            idl_unit=200e-12)

        options = Option(sw_gbuf_bypass=(True, True, True),
                         sw_solve_loopblocking=True,
                         partition_hybrid=True)

        #pdb.set_trace()

        nnd = NNDataflow(network, batch_size, resource, cost,
                         self.map_strategy)
        tops, _ = nnd.schedule_search(options)
        self.assertTrue(tops)
        dfsch_t16 = tops[0]

        ## Check results.

        # Same workload.
        #self.assertAlmostEqual(dfsch_t16.total_ops, dfsch_l1.total_ops)
        print('t16 ops: {}'.format(dfsch_t16.total_ops))

        # Performance of T-16 is proportional to PE resource (20% margin).
        #self.assertLess(dfsch_t16.total_time,
        #                1.2 * dfsch_l1.total_time * (16 * 16) / (14 * 14 * 16))
        print('t16_time: {}'.format(dfsch_t16.total_time))

        # Energy reduced by > 30%.
        # self.assertLess(dfsch_t16.total_cost, dfsch_l1.total_cost * 0.7)
        # With dimension restriction on partitioning, this is slightly violated.
        #self.assertLess(dfsch_t16.total_cost, dfsch_l1.total_cost * 0.72)
        print('t16_energy: {}'.format(dfsch_t16.total_cost))
        for i in dfsch_t16:
            print(str(i) + ',')
        ## Check results.

        # Results as cost for each component:
        header = 'ALU, DRAM, Buffer, Array, RF'
        cost_bkdn = {}

        for layer in dfsch_t16:
            layer = str(layer)
            op_cost = 0
            access_cost = [0] * me.NUM

            for layer_part in network:
                if not layer_part or not layer_part.startswith(layer):
                    continue
                sr = dfsch_t16[layer_part]
                op_cost += sr.total_ops * cost.mac_op
                access_cost = [
                    ac + a * c for ac, a, c in zip(
                        access_cost, sr.total_accesses, cost.mem_hier)
                ]

            cost_bkdn[layer] = []
            # To 1e9.
            cost_bkdn[layer].append(op_cost * 1e12 / 1e9)
            cost_bkdn[layer].append(access_cost[me.DRAM] * 1e12 / 1e9)
            cost_bkdn[layer].append(access_cost[me.GBUF] * 1e12 / 1e9)
            cost_bkdn[layer].append(access_cost[me.ITCN] * 1e12 / 1e9)
            cost_bkdn[layer].append(access_cost[me.REGF] * 1e12 / 1e9)

        for layer in cost_bkdn:
            print(cost_bkdn[layer])