from cmatrix import ConvolutionMatrix from nnet import NNet from verbosePrint import vprint import verbosePrint np.random.seed(1) batch_size = 128 iterations = 300 cm = ConvolutionMatrix(rows=9, cols=16, shapes=((28, 28), (3, 3))) hLen = cm.outputLength() nn = NNet(sizes=[784, hLen, 10], batch_size=batch_size) nn.replaceLayer(0, cm) nn.setActivations(['tanh', 'softmax']) nn.setMaskPr({1: 2}) nn.setAlpha(2) nn.scale(0.01, 0) nn.scale(0.1, 1) # vprint(0, nn, quit=True) # params = (test_images, test_labels) # nn.checkup(*params) for j in range(0, iterations + 1): correct_cnt = 0 for i in range(int(len(images) / batch_size)): batch_start, batch_end = ((i * batch_size), ((i + 1) * batch_size)) prediction = nn.learn(images[batch_start:batch_end], labels[batch_start:batch_end]) # vprint(i, nn, suffix='a', quit=True)
[0, 0], ] inputTraining = inputData targetTraining = targetData # nn = NNet(sizes=[5, 3], bias=True) nn = NNet(sizes=[6, 12, 2], bias=True) # nn = NNet([[[-0.829638, 0.164111, 0.398885], # [-0.603684, -0.603331, -0.819179], # [-0.080592, -0.386044, -0.931615], # [0.762514, -0.142887, -0.737862], # [0.175430, 0.790112, -0.267367], # [-0.732674, -0.825474, 0.232357]]], bias=True) # ]]) nn.setActivations(['relu', 'linear']) nn.setVerbose([]) nn.checkup(inputData, targetData) verbosePrint.vIteration = -1 verbosePrint.stage = '' cycles = 1000 report = cycles / 10 for iteration in range(cycles + 1): vprint(iteration, '~~~~~~~~~~~ Iteration %d ~~~~~~~~~~~' % iteration) combinedError = 0 for row_index in range(len(targetTraining)): datain = inputTraining[row_index:row_index + 1]
from netExamples.lecture.p3of5 import inputData from netExamples.lecture.p3of5 import inputTraining # from lecture.p3of5 import inputData as inputTraining from netExamples.lecture.p3of5 import atLeast as targetData from netExamples.lecture.p3of5 import atLeastTraining as targetTraining # from lecture.p3of5 import atLeast as targetTraining # nn = NNet(sizes=[5, 3], bias=True) nn = NNet( [[[-0.829638, 0.164111, 0.398885], [-0.603684, -0.603331, -0.819179], [-0.080592, -0.386044, -0.931615], [0.762514, -0.142887, -0.737862], [0.175430, 0.790112, -0.267367], [-0.732674, -0.825474, 0.232357]]], bias=True) # ]]) nn.setActivations(['linear']) nn.setVerbose([]) nn.checkup(inputData, targetData) verbosePrint.vIteration = -1 verbosePrint.stage = '' cycles = 80 report = cycles / 10 for iteration in range(cycles + 1): vprint(iteration, '~~~~~~~~~~~ Iteration %d ~~~~~~~~~~~' % iteration) combinedError = 0 for row_index in range(len(targetTraining)): datain = inputTraining[row_index:row_index + 1]
[0, 1, 0], [0, 1, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], ] nn = NNet(sizes=[5, 3], bias=True) nn.setActivations(['sigmoid']) verbosePrint.vIteration = -1 verbosePrint.stage = '' nn.checkup(inputData, targetData) cycles = 40 report = cycles/10 for iteration in range(cycles + 1): vprint(iteration, '~~~~~~~~~~~ Iteration %d ~~~~~~~~~~~' % iteration) combinedError = 0 for row_index in range(len(targetData)): datain = inputData[row_index:row_index + 1] goal_prediction = targetData[row_index:row_index + 1]
from netExamples.lecture.sosb \ import inputData, inputTraining, targetData, targetTraining from nnet import NNet from verbosePrint import vprint import verbosePrint nn = NNet(sizes=[12, 22, 4], bias=True) nn.setActivations(['tanh', 'sigmoid']) verbosePrint.vIteration = -1 verbosePrint.stage = '' cycles = 20 report = max(1, cycles / 10) checkupParams = (inputData, targetData, inputTraining, 25) if cycles > 0: nn.checkup(*checkupParams) for iteration in range(cycles + 1): vprint(iteration, '~~~~~~~~~~~ Iteration %d ~~~~~~~~~~~' % iteration) combinedError = 0 for row_index in range(len(targetTraining)): datain = inputTraining[row_index:row_index + 1] goal_prediction = targetTraining[row_index:row_index + 1] prediction = nn.fire(datain) # print('Prediction:' + str(prediction)) vprint(iteration, nn) error = (goal_prediction - prediction)**2 combinedError += error
from netExamples.lecture.sosb \ import inputData, inputTraining, targetData, targetTraining from cmatrix import ConvolutionMatrix from nnet import NNet from verbosePrint import vprint import verbosePrint nn = NNet(sizes=[12, 40, 4], bias=True) cm = ConvolutionMatrix(rows=3, cols=4, bias=True, shapes=((1, 12), (1, 3))) nn.replaceLayer(0, cm) nn.setActivations(['softMax', 'sigmoid']) verbosePrint.vIteration = -1 verbosePrint.stage = '' cycles = 100 report = max(1, cycles / 10) checkupParams = (inputData, targetData, inputTraining, 25) if cycles > 0: nn.checkup(*checkupParams) for iteration in range(cycles + 1): vprint(iteration, '~~~~~~~~~~~ Iteration %d ~~~~~~~~~~~' % iteration) combinedError = 0 for row_index in range(len(targetTraining)): datain = inputTraining[row_index:row_index + 1] goal_prediction = targetTraining[row_index:row_index + 1] prediction = nn.fire(datain) # print('Prediction:' + str(prediction)) vprint(iteration, nn)
error += np.sum((test_labels[i:i + 1] - layer_2) ** 2) correct_cnt += int(np.argmax(layer_2) == \ np.argmax(test_labels[i:i + 1])) sys.stdout.write( " Test-Err:" + str(error / float(len(test_images)))[0:5] + " Test-Acc:" + str(correct_cnt / float(len(test_images))) ) print() if demo == 82: np.random.seed(1) iterations = 351 nn = NNet(sizes=[784, 40, 10]) nn.setActivations(['brelu', 'linear']) nn.setAlpha(0.005) nn.scale(0.1) nn.fire(images[0:1]) vprint(0, nn) for j in range(iterations): error, correct_cnt = (0.0, 0) for i in range(len(images)): vprint(i, nn, quit=True) prediction = nn.learn(images[i:i+1], labels[i:i+1]) vprint(i, nn, suffix='b', quit=True) error += np.sum((labels[i:i+1] - prediction) ** 2) correct_cnt += int(np.argmax(prediction) == \