def _main(port): base_model = ShuffleNetV2(32) base_predictor = 'cortexA76cpu_tflite21' transf = [ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip() ] normalize = [ transforms.ToTensor(), transforms.Normalize([0.49139968, 0.48215827, 0.44653124], [0.24703233, 0.24348505, 0.26158768]) ] train_dataset = serialize(CIFAR10, 'data', train=True, download=True, transform=transforms.Compose(transf + normalize)) test_dataset = serialize(CIFAR10, 'data', train=False, transform=transforms.Compose(normalize)) trainer = pl.Classification(train_dataloader=pl.DataLoader(train_dataset, batch_size=64), val_dataloaders=pl.DataLoader(test_dataset, batch_size=64), max_epochs=2, gpus=1) simple_strategy = strategy.Random(model_filter=LatencyFilter(threshold=100, predictor=base_predictor)) exp = RetiariiExperiment(base_model, trainer, strategy=simple_strategy) exp_config = RetiariiExeConfig('local') exp_config.trial_concurrency = 2 exp_config.max_trial_number = 2 exp_config.trial_gpu_number = 1 exp_config.training_service.use_active_gpu = False exp_config.execution_engine = 'base' exp_config.dummy_input = [1, 3, 32, 32] exp.run(exp_config, port) print('Exported models:') for model in exp.export_top_models(formatter='dict'): print(model)
def _main(port): base_model = ShuffleNetV2OneShot(32) base_predictor = 'cortexA76cpu_tflite21' transf = [ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip() ] normalize = [ transforms.ToTensor(), transforms.Normalize([0.49139968, 0.48215827, 0.44653124], [0.24703233, 0.24348505, 0.26158768]) ] # FIXME # CIFAR10 is used here temporarily. # Actually we should load weight from supernet and evaluate on imagenet. train_dataset = serialize(CIFAR10, 'data', train=True, download=True, transform=transforms.Compose(transf + normalize)) test_dataset = serialize(CIFAR10, 'data', train=False, transform=transforms.Compose(normalize)) trainer = pl.Classification(train_dataloader=pl.DataLoader(train_dataset, batch_size=64), val_dataloaders=pl.DataLoader(test_dataset, batch_size=64), max_epochs=2, gpus=1) simple_strategy = strategy.RegularizedEvolution(model_filter=LatencyFilter( threshold=100, predictor=base_predictor), sample_size=1, population_size=2, cycles=2) exp = RetiariiExperiment(base_model, trainer, strategy=simple_strategy) exp_config = RetiariiExeConfig('local') exp_config.trial_concurrency = 2 # exp_config.max_trial_number = 2 exp_config.trial_gpu_number = 1 exp_config.training_service.use_active_gpu = False exp_config.execution_engine = 'base' exp_config.dummy_input = [1, 3, 32, 32] exp.run(exp_config, port) print('Exported models:') for i, model in enumerate(exp.export_top_models(formatter='dict')): print(model) with open(f'architecture_final_{i}.json', 'w') as f: json.dump(get_archchoice_by_model(model), f, indent=4)
def _multi_trial_test(epochs, batch_size, port, benchmark): # initalize dataset. Note that 50k+10k is used. It's a little different from paper transf = [ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip() ] normalize = [ transforms.ToTensor(), transforms.Normalize([0.49139968, 0.48215827, 0.44653124], [0.24703233, 0.24348505, 0.26158768]) ] train_dataset = serialize(CIFAR10, 'data', train=True, download=True, transform=transforms.Compose(transf + normalize)) test_dataset = serialize(CIFAR10, 'data', train=False, transform=transforms.Compose(normalize)) # specify training hyper-parameters training_module = NasBench101TrainingModule(max_epochs=epochs) # FIXME: need to fix a bug in serializer for this to work # lr_monitor = serialize(LearningRateMonitor, logging_interval='step') trainer = pl.Trainer(max_epochs=epochs, gpus=1) lightning = pl.Lightning( lightning_module=training_module, trainer=trainer, train_dataloader=pl.DataLoader(train_dataset, batch_size=batch_size, shuffle=True), val_dataloaders=pl.DataLoader(test_dataset, batch_size=batch_size), ) strategy = Random() model = NasBench101() exp = RetiariiExperiment(model, lightning, [], strategy) exp_config = RetiariiExeConfig('local') exp_config.trial_concurrency = 2 exp_config.max_trial_number = 20 exp_config.trial_gpu_number = 1 exp_config.training_service.use_active_gpu = False if benchmark: exp_config.benchmark = 'nasbench101' exp_config.execution_engine = 'benchmark' exp.run(exp_config, port)
def test_multitrial_experiment(pytestconfig): base_model = Net() evaluator = get_mnist_evaluator() search_strategy = strategy.Random() exp = RetiariiExperiment(base_model, evaluator, strategy=search_strategy) exp_config = RetiariiExeConfig('local') exp_config.trial_concurrency = 1 exp_config.max_trial_number = 1 exp_config._trial_command_params = nas_experiment_trial_params(pytestconfig.rootpath) exp.run(exp_config) ensure_success(exp) assert isinstance(exp.export_top_models()[0], dict) exp.stop()
def _multi_trial_test(epochs, batch_size, port): # initalize dataset. Note that 50k+10k is used. It's a little different from paper transf = [ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip() ] normalize = [ transforms.ToTensor(), transforms.Normalize([x / 255 for x in [129.3, 124.1, 112.4]], [x / 255 for x in [68.2, 65.4, 70.4]]) ] train_dataset = serialize(CIFAR100, 'data', train=True, download=True, transform=transforms.Compose(transf + normalize)) test_dataset = serialize(CIFAR100, 'data', train=False, transform=transforms.Compose(normalize)) # specify training hyper-parameters training_module = NasBench201TrainingModule(max_epochs=epochs) # FIXME: need to fix a bug in serializer for this to work # lr_monitor = serialize(LearningRateMonitor, logging_interval='step') trainer = pl.Trainer(max_epochs=epochs, gpus=1) lightning = pl.Lightning( lightning_module=training_module, trainer=trainer, train_dataloader=pl.DataLoader(train_dataset, batch_size=batch_size, shuffle=True), val_dataloaders=pl.DataLoader(test_dataset, batch_size=batch_size), ) strategy = Random() model = NasBench201() exp = RetiariiExperiment(model, lightning, [], strategy) exp_config = RetiariiExeConfig('local') exp_config.trial_concurrency = 2 exp_config.max_trial_number = 20 exp_config.trial_gpu_number = 1 exp_config.training_service.use_active_gpu = False exp.run(exp_config, port)
def _test_experiment_in_separate_process(rootpath): try: base_model, evaluator = _mnist_net('simple', {'max_epochs': 1}) search_strategy = strategy.Random() exp = RetiariiExperiment(base_model, evaluator, strategy=search_strategy) exp_config = RetiariiExeConfig('local') exp_config.experiment_name = 'mnist_unittest' exp_config.trial_concurrency = 1 exp_config.max_trial_number = 1 exp_config._trial_command_params = nas_experiment_trial_params(rootpath) exp.run(exp_config) ensure_success(exp) assert isinstance(exp.export_top_models()[0], dict) finally: # https://stackoverflow.com/questions/34506638/how-to-register-atexit-function-in-pythons-multiprocessing-subprocess import atexit atexit._run_exitfuncs()
def test_multi_trial(model, pytestconfig): evaluator_kwargs = { 'max_epochs': 1 } base_model, evaluator = _mnist_net(model, evaluator_kwargs) search_strategy = strategy.Random() exp = RetiariiExperiment(base_model, evaluator, strategy=search_strategy) exp_config = RetiariiExeConfig('local') exp_config.experiment_name = 'mnist_unittest' exp_config.trial_concurrency = 1 exp_config.max_trial_number = 1 exp_config._trial_command_params = nas_experiment_trial_params(pytestconfig.rootpath) exp.run(exp_config) ensure_success(exp) assert isinstance(exp.export_top_models()[0], dict) exp.stop()
train_dataset, batch_size=100), val_dataloaders=pl.DataLoader(test_dataset, batch_size=100), max_epochs=1, limit_train_batches=0.2) applied_mutators = [BlockMutator('mutable_0'), BlockMutator('mutable_1')] simple_strategy = TPEStrategy() exp = RetiariiExperiment(base_model, trainer, applied_mutators, simple_strategy) exp_config = RetiariiExeConfig('remote') exp_config.experiment_name = 'darts_search' exp_config.trial_concurrency = 3 exp_config.max_trial_number = 10 exp_config.trial_gpu_number = 1 exp_config.training_service.reuse_mode = True rm_conf = RemoteMachineConfig() rm_conf.host = '127.0.0.1' rm_conf.user = '******' rm_conf.password = '******' rm_conf.port = 22 rm_conf.python_path = '/home/xxx/py38/bin' rm_conf.gpu_indices = [0, 1, 2] rm_conf.use_active_gpu = True rm_conf.max_trial_number_per_gpu = 3 exp_config.training_service.machine_list = [rm_conf]
best_val_ppl ) # reports best validation ppl to nni as final result of one trial if __name__ == "__main__": train_iter = WikiText2(split='train') tokenizer = get_tokenizer('basic_english') vocab = build_vocab_from_iterator(map(tokenizer, train_iter), specials=['<unk>']) vocab.set_default_index(vocab['<unk>']) n_token = len(vocab) base_model = Transformer(n_token) evaluator = FunctionalEvaluator(fit) exp = RetiariiExperiment(base_model, evaluator, [], strategy.Random()) exp_config = RetiariiExeConfig('local') exp_config.experiment_name = 'transformer tuning' exp_config.trial_concurrency = 3 # please change configurations accordingly exp_config.max_trial_number = 25 exp_config.trial_gpu_number = 1 exp_config.training_service.use_active_gpu = False export_formatter = 'dict' exp.run(exp_config, 8081) print('Final model:') for model_code in exp.export_top_models(optimize_mode='minimize', formatter=export_formatter): print(model_code)
# # Launch an Experiment # -------------------- # # After all the above are prepared, it is time to start an experiment to do the model search. An example is shown below. from nni.retiarii.experiment.pytorch import RetiariiExperiment, RetiariiExeConfig exp = RetiariiExperiment(model_space, evaluator, [], search_strategy) exp_config = RetiariiExeConfig('local') exp_config.experiment_name = 'mnist_search' # %% # The following configurations are useful to control how many trials to run at most / at the same time. exp_config.max_trial_number = 4 # spawn 4 trials at most exp_config.trial_concurrency = 2 # will run two trials concurrently # %% # Remember to set the following config if you want to GPU. # ``use_active_gpu`` should be set true if you wish to use an occupied GPU (possibly running a GUI). exp_config.trial_gpu_number = 1 exp_config.training_service.use_active_gpu = True # %% # Launch the experiment. The experiment should take several minutes to finish on a workstation with 2 GPUs. exp.run(exp_config, 8081) # %% # Users can also run Retiarii Experiment with :doc:`different training services </experiment/training_service/overview>`
def _main(): parser = argparse.ArgumentParser("SPOS Evolutional Search") parser.add_argument("--port", type=int, default=8084) parser.add_argument("--imagenet-dir", type=str, default="./data/imagenet") parser.add_argument("--checkpoint", type=str, default="./data/checkpoint-150000.pth.tar") parser.add_argument( "--spos-preprocessing", action="store_true", default=False, help="When true, image values will range from 0 to 255 and use BGR " "(as in original repo).") parser.add_argument("--seed", type=int, default=42) parser.add_argument("--workers", type=int, default=6) parser.add_argument("--train-batch-size", type=int, default=128) parser.add_argument("--train-iters", type=int, default=200) parser.add_argument("--test-batch-size", type=int, default=512) parser.add_argument("--log-frequency", type=int, default=10) parser.add_argument("--label-smoothing", type=float, default=0.1) parser.add_argument("--evolution-sample-size", type=int, default=10) parser.add_argument("--evolution-population-size", type=int, default=50) parser.add_argument("--evolution-cycles", type=int, default=10) parser.add_argument( "--latency-filter", type=str, default=None, help="Apply latency filter by calling the name of the applied hardware." ) parser.add_argument("--latency-threshold", type=float, default=100) args = parser.parse_args() # use a fixed set of image will improve the performance torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) np.random.seed(args.seed) random.seed(args.seed) torch.backends.cudnn.deterministic = True assert torch.cuda.is_available() base_model = ShuffleNetV2OneShot() criterion = CrossEntropyLabelSmooth(1000, args.label_smoothing) if args.latency_filter: latency_filter = LatencyFilter(threshold=args.latency_threshold, predictor=args.latency_filter) else: latency_filter = None evaluator = FunctionalEvaluator(evaluate_acc, criterion=criterion, args=args) evolution_strategy = strategy.RegularizedEvolution( model_filter=latency_filter, sample_size=args.evolution_sample_size, population_size=args.evolution_population_size, cycles=args.evolution_cycles) exp = RetiariiExperiment(base_model, evaluator, strategy=evolution_strategy) exp_config = RetiariiExeConfig('local') exp_config.trial_concurrency = 2 exp_config.trial_gpu_number = 1 exp_config.max_trial_number = args.evolution_cycles exp_config.training_service.use_active_gpu = False exp_config.execution_engine = 'base' exp_config.dummy_input = [1, 3, 224, 224] exp.run(exp_config, args.port) print('Exported models:') for i, model in enumerate(exp.export_top_models(formatter='dict')): print(model) with open(f'architecture_final_{i}.json', 'w') as f: json.dump(get_archchoice_by_model(model), f, indent=4)