예제 #1
0
def one_layer(image_size,
              filter_size,
              in_chn,
              out_chn,
              block_size,
              ifmap,
              weights,
              bias,
              num_nonzero,
              pruner_name="NaivePruner"):
    os_tb = OSArchTB(image_size, filter_size, in_chn, out_chn, block_size,
                     ifmap, weights, bias, pruner_name, num_nonzero)
    run_tb(os_tb, verbose=False)
    return os_tb.stimulus.ofmap
예제 #2
0
def main(architecture_name, layer_name, mapping_name, bias_data_name,
         weights_data_name, ifmap_data_name, stats_name):
    from nnsim.simulator import run_tb
    # =======================================================================
    print('\t SETTING UP WS DESIGN TESTBENCH...')
    print('##############################################')
    print(' architecture:',   architecture_name, \
          '\n layer:',        layer_name, \
          '\n mapping: ',     mapping_name,\
          '\n bias_data:',    bias_data_name,\
          '\n ifmap_data:',   ifmap_data_name,\
          '\n weights_data:', weights_data_name,\
          '\n stats_name:',   stats_name)
    print('##############################################')
    #==============================================================
    # Instantiate & Configure Testbench
    #==============================================================
    setup = {'architecture_name': architecture_name, \
             'layer_name':        layer_name,\
             'bias_data_name':    bias_data_name,\
             'ifmap_data_name':   ifmap_data_name,\
             'weights_data_name': weights_data_name,\
             'mapping_name':      mapping_name}
    tb = ws_PE_sparse_tb(setup)
    tb.configure()
    # ==============================================================
    # run simulation
    #==============================================================
    # directory for saving the stats (access counts, traces, etc.)
    import os

    os.makedirs(stats_name, exist_ok=True)
    # start simulation
    run_tb(tb, \
           verbose      = False, \
           dump_stats   = True, \
           stats_dir    = stats_name, \
           nticks       = None)
예제 #3
0
파일: run.py 프로젝트: bshimanuki/6.888
             out_chn=6,
             name='conv1',
             activations=(ReLU('name=relu1'),Pool(dh=2,dw=2,name='pool'))
             ),
        Conv(image_size=(4, 4),
             filter_size=(3, 3),
             in_chn=6,
             out_chn=2,
             name='conv2',
             activations=(ReLU('name=relu2'),)
             ),
        FC(input_size=32,
           output_size=11,
           name='fc1',
           activations=(ReLU('name=relu3'),)
           ),
        FC(input_size=11,
           output_size=3,
           name='fc2',
           activations=(ReLU('name=relu4'),)
           ),
    ]

    tb = MetaArchTB(arr_x=8,
                    arr_y=4,
                    chn_per_word=4,
                    layers=layers,
                    batch_size=2
                    )
    run_tb(tb, verbose=False, dump_stats=True)
예제 #4
0
        for tup in noc_multicast_list:
            sub_module, key = tup[0], tup[1]
            noc_multicasts += sub_module.raw_stats[key]

        self.raw_stats['total_noc_multicasts'] = noc_multicasts

        ### scale memory access stats by energy factors to determine the energy stats

        self.raw_stats['dram_energy'] = self.raw_stats[
            'dram_mem_acc'] * DRAM_ENERGY_FACTOR
        self.raw_stats[
            'glb_energy'] = self.raw_stats['glb_mem_acc'] * GLB_ENERGY_FACTOR
        self.raw_stats[
            'rf_energy'] = self.raw_stats['rf_mem_acc'] * RF_ENERGY_FACTOR

        self.raw_stats['data_energy'] = self.raw_stats['dram_energy'] + \
                self.raw_stats['glb_energy'] + self.raw_stats['rf_energy']

        self.raw_stats['comp_energy'] = self.raw_stats[
            'pe_comp_energy'] + self.raw_stats['tr_alu_comp_energy']

        ### total energy = data energy + comp energy
        self.raw_stats['total_energy'] = self.raw_stats[
            'data_energy'] + self.raw_stats['comp_energy']


if __name__ == "__main__":
    from nnsim.simulator import run_tb
    ws_tb = WSArchTB()
    run_tb(ws_tb, verbose=False)
예제 #5
0
def test_fifo_unchecked():
    with pytest.raises(FIFOError):
          fifo_tb = FIFOTB(False)
          sim.run_tb(fifo_tb, 20, True)
예제 #6
0
def test_fifo_checked():
    fifo_tb = FIFOTB(True)
    sim.run_tb(fifo_tb, 20, True)
예제 #7
0
            # send in one extra iteration to flush out last outputs
        print("Stimulus:")
        print("[")
        for i in range(len(self.test_data)-1):
            print(self.test_data[i])
        print("]")

    def tick(self):
        if (self.in_chn.vacancy() and not self.iteration == self.iterations+1):
            imin = self.curr_set*self.input_size
            imax = imin+self.input_size
            data = [self.test_data[self.iteration][i] for i in range(imin, imax)]
            self.in_chn.push(data)

            self.curr_set += 1
            if (self.curr_set == self.in_sets):
                self.curr_set = 0
                self.iteration += 1
        if (self.out_chn.valid()):
            data = self.out_chn.pop()
            print(data)
            #print("out_counter: ", self.out_counter)
            self.out_counter += 1
            if (self.out_counter == self.iterations):
                raise Finish("Check manually")

if __name__ == "__main__":
    from nnsim.simulator import run_tb
    converter_tb = ConverterTB()
    run_tb(converter_tb, verbose=False)
예제 #8
0
def test_channel():
    channel_tb = ChannelTB()
    sim.run_tb(channel_tb, 100, True)
예제 #9
0
def test_reg_rd_wr():
    reg_tb = RegTB()
    sim.run_tb(reg_tb, 10, True)