예제 #1
0
def test_block_grad():
    x = sym.Variable("x")
    y = sym.block_grad(x)

    def forward(x):
        return x

    def backward(head_grads, x):
        return [np.zeros_like(head_grads)]

    dtype = "float32"
    inputs = [('x', (3, 4, 5), x)]
    helper(y, inputs, dtype, forward, backward, need_head_grads=False)
예제 #2
0
def test_block_grad():
    x = sym.Variable("x")
    y = sym.block_grad(x)

    def forward(x):
        return x

    def backward(head_grads, x):
        return [np.zeros_like(head_grads)]

    shape = {'x': (3, 4, 5)}
    # Numerical grad checking would fail for this function
    check_function(y, forward, backward, shape=shape, numerical_grads=False)
def test_multi_loss_graph_gradients():
    # input data
    shape1 = (1000, 100)
    data1 = sym.Variable('data1', shape=(1000, 100), dtype=0)

    # fake non-sparse label
    label = sym.full(fill_value=3)

    # square loss
    sub1 = sym.elemwise_sub(data1, label, name="sub1")
    square_loss = sym.sum(data=sub1**2, axis=1, name="square_loss")

    # fake loss1
    shape2 = (1000, )
    data2 = sym.Variable('data2', shape=shape2, dtype=0)
    loss1 = sym.sqrt(data2, name="loss1")

    # fake loss2
    loss2 = sym.relu(data1, name='loss2')

    # block loss1
    total_loss = sym.elemwise_sum(sym.block_grad(loss1),
                                  square_loss,
                                  num_args=2,
                                  name="total_loss")

    # grad_g.symbol.list_output_names()
    # >> ['loss1_grad_0_output', 'grad_sum_output']
    grad_g = graph_util.get_gradient_graph([total_loss, loss2],
                                           total_loss.list_input_variables())
    # infer shape
    in_shapes, out_shapes = graph_util.infer_shape(grad_g)
    assert out_shapes == [list(shape2), list(shape1)]

    # grad_data1 is elemwise_sum of grad_loss2, grad_square_loss
    grad_data1 = grad_g.symbol[1]
    assert grad_data1.list_attr()['num_args'] == '2'

    # block grad should return zero grad
    grad_data2 = grad_g.symbol[0]
    assert 'zeros_like' in grad_g.ir()

    # test reverse infer shape for label
    assert grad_g.apply('InferShape').json_attr('shape_num_unknown_nodes') == 0

    # infer type
    in_dtypes, out_dtypes = graph_util.infer_dtype(grad_g)
    assert out_dtypes == ['float32', 'float32']

    # test reverse infer type for label
    assert grad_g.apply('InferType').json_attr('dtype_num_unknown_nodes') == 0
예제 #4
0
def test_multi_loss_graph_gradients():
    # input data
    shape1 = (1000, 100)
    data1 = sym.Variable('data1', shape=(1000, 100), dtype=0)

    # fake non-sparse label
    label = sym.full(fill_value=3)

    # square loss
    sub1 = sym.elemwise_sub(data1, label, name="sub1")
    square_loss = sym.sum(data=sub1**2, axis=1, name="square_loss")

    # fake loss1
    shape2 = (1000, )
    data2 = sym.Variable('data2', shape=shape2, dtype=0)
    loss1 = sym.sqrt(data2, name="loss1")

    # fake loss2
    loss2 = sym.relu(data1, name='loss2')

    # block loss1
    total_loss = sym.elemwise_sum(
        sym.block_grad(loss1),
        square_loss,
        num_args=2,
        name="total_loss")

    # grad_g.symbol.list_output_names()
    # >> ['loss1_grad_0_output', 'grad_sum_output']
    grad_g = graph_util.get_gradient_graph([total_loss, loss2], total_loss.list_input_variables())
    # infer shape
    in_shapes, out_shapes = graph_util.infer_shape(grad_g)
    assert out_shapes == [list(shape2), list(shape1)]

    # grad_data1 is elemwise_sum of grad_loss2, grad_square_loss
    grad_data1 = grad_g.symbol[1]
    assert grad_data1.list_attr()['num_args'] == '2'

    # block grad should return zero grad
    grad_data2 = grad_g.symbol[0]
    assert 'zeros_like' in grad_g.ir()

    # test reverse infer shape for label
    assert grad_g.apply('InferShape').json_attr('shape_num_unknown_nodes') == 0

    # infer type
    in_dtypes, out_dtypes = graph_util.infer_dtype(grad_g)
    assert out_dtypes == ['float32', 'float32']
    
    # test reverse infer type for label
    assert grad_g.apply('InferType').json_attr('dtype_num_unknown_nodes') == 0
예제 #5
0
def test_block_grad():
    x = sym.Variable("x")
    y = sym.block_grad(x)

    def forward(x):
        return x

    def backward(head_grads, x):
        return [np.zeros_like(head_grads)]


    shape = {'x': (3, 4, 5)}
    # Numerical grad checking would fail for this function
    check_function(y, forward, backward, shape=shape, numerical_grads=False)
def test_check_function():
    # test the testing function

    x = sym.Variable("x")
    y = sym.Variable("y")

    # different styles of returning gradients from the backward function
    check_function(x + 2 * y,
                   lambda x, y: x + 2 * y,
                   lambda x, y, head_grads: [head_grads, 2 * head_grads],
                   shape={
                       'x': (1, 2),
                       y: (1, 2)
                   },
                   dtype='float32')
    check_function(x + 2 * y,
                   lambda x, y: x + 2 * y,
                   lambda x, y, head_grads: (head_grads, 2 * head_grads),
                   shape={
                       'x': (1, 2),
                       y: (1, 2)
                   },
                   dtype='float32')
    check_function(x + 2 * y,
                   lambda x, y: x + 2 * y,
                   lambda x, y, head_grads: {
                       'x': head_grads,
                       'y': 2 * head_grads
                   },
                   shape={
                       'x': (1, 2),
                       y: (1, 2)
                   },
                   dtype='float32')
    check_function(x + 2 * y,
                   lambda x, y: x + 2 * y,
                   lambda x, y, head_grads: {'y': 2 * head_grads},
                   shape={
                       'x': (1, 2),
                       y: (1, 2)
                   },
                   dtype='float32')
    check_function(x + 2 * y,
                   lambda x, y: x + 2 * y,
                   lambda x, y, head_grads: [2 * head_grads],
                   grad_input_vars=[y],
                   shape={
                       'x': (1, 2),
                       y: (1, 2)
                   },
                   dtype='float32')
    check_function(x + 2 * y,
                   lambda x, y: x + 2 * y,
                   lambda x, y, head_grads: 2 * head_grads,
                   grad_input_vars=[y],
                   shape={
                       'x': (1, 2),
                       y: (1, 2)
                   },
                   dtype='float32')
    check_function(x + 2 * y,
                   lambda x, y: x + 2 * y,
                   lambda x, y, head_grads: 2 * head_grads,
                   grad_input_vars=[y],
                   shape={
                       'x': (1, 2),
                       y: (1, 2)
                   },
                   dtype='float64')

    # test just numerical gradients
    # different styles of shape and dtype passing
    check_function(x + 2 * y,
                   shape={
                       'x': (1, 2),
                       y: (1, 2)
                   },
                   numerical_grads=True)
    check_function(x + 2 * y,
                   shape={
                       'x': (1, 2),
                       y: (1, 2)
                   },
                   dtype='float32',
                   numerical_grads=True)
    check_function(x + 2 * y,
                   shape={
                       'x': (1, 2),
                       y: (1, 2)
                   },
                   dtype={
                       x: 'float32',
                       'y': 'float32'
                   },
                   numerical_grads=True)
    check_function(x + 2 * y,
                   shape=(1, 2),
                   dtype='float32',
                   numerical_grads=True)

    # specifying variable attributes on variable creation
    # (in this case type codes must be used)
    x = sym.Variable("x", dtype=0, shape=(1, 2))
    check_function(x + 2 * y,
                   shape={y: (1, 2)},
                   dtype={'y': 'float32'},
                   numerical_grads=True)
    y = sym.Variable("y", dtype=0, shape=(1, 2))

    # shape overriding
    def _fwd1(x, y):
        assert x.shape == (1, 1)
        assert y.shape == (1, 2)
        return x + 2 * y

    check_function(x + 2 * y, _fwd1, shape={x: (1, 1)})

    # in_range
    def _fwd2(x, y):
        assert x.shape == (100, )
        assert (x <= 0.9).all()
        assert (x >= 0.8).all()
        return x + 2 * y

    check_function(x + 2 * y,
                   _fwd2,
                   shape=(100, ),
                   in_range=(0.8, 0.9),
                   numerical_grads=False)
    check_function(x + 2 * y,
                   _fwd2,
                   shape=(100, ),
                   in_range={'x': (0.8, 0.9)},
                   numerical_grads=False)
    check_function(x + 2 * y,
                   backward=lambda x, y, head_grads: [1.0, 2.0],
                   in_range={'head_grads_0': (1.0, 1.0)})
    # explicit passing of values
    check_function(x + 2 * y,
                   backward=lambda x, y, head_grads: [1.0, 2.0],
                   values={'head_grads_0': np.full((1, 2), 1.0)})

    # check that the function reports errors
    def _check_function_must_fail(*args, **kwargs):
        error = AssertionError
        if 'error' in kwargs:
            error = kwargs['error']
            del kwargs['error']
        try:
            check_function(*args, quiet=True, **kwargs)
        except error:
            pass
        else:
            raise AssertionError("check_function didn't raise an exception")

    _check_function_must_fail(x + 2 * y, error=ValueError)
    _check_function_must_fail(x + 2 * y, lambda x, y: x + y)
    _check_function_must_fail(x + 2 * y,
                              backward=lambda x, y, head_grads: [1.0, 2.0])
    _check_function_must_fail(sym.block_grad(x + 2 * y), numerical_grads=True)
    _check_function_must_fail(x * x,
                              numerical_grads=True,
                              numerical_grads_params={
                                  'atol': 0.0,
                                  'rtol': 0.0
                              })
    _check_function_must_fail(sym.log(-x * x),
                              numerical_grads=True,
                              error=ValueError)

    # different styles of returning results from the forward function
    check_function(x + 2 * y, lambda x, y: [x + 2 * y], numerical_grads=False)
    _check_function_must_fail(x + 2 * y,
                              lambda x, y: [x + 2 * y, x],
                              numerical_grads=False,
                              error=ValueError)
    _check_function_must_fail(x + 2 * y,
                              lambda x, y: [],
                              numerical_grads=False,
                              error=ValueError)

    # multiple outputs
    z = sym.Group([2 * x + y, x + 2 * y])
    check_function(z, lambda x, y: [2 * x + y, x + 2 * y])
    check_function(z, lambda x, y: (2 * x + y, x + 2 * y))
    check_function(
        z,
        backward=lambda x, y, head_grads:
        [2 * head_grads[0] + head_grads[1], head_grads[0] + 2 * head_grads[1]])
    _check_function_must_fail(z,
                              backward=lambda x, y, head_grads:
                              [2 * head_grads[0], 2 * head_grads[1]])
    check_function(
        z,
        backward=lambda x, y, head_grads: [head_grads[1], 2 * head_grads[1]],
        in_range={'head_grads_0': (0, 0)})
    check_function(z, numerical_grads=True)

    z = sym.Group([sym.block_grad(2 * x + y), x + 2 * y])
    check_function(z,
                   lambda x, y: [2 * x + y, x + 2 * y],
                   numerical_grads=False)
    _check_function_must_fail(z, lambda x, y: [2 * x + y, x + 2 * y])
    _check_function_must_fail(z, numerical_grads=True)

    z = sym.Group([2 * x + y, sym.block_grad(x + 2 * y)])
    _check_function_must_fail(z, numerical_grads=True)

    z = sym.Group([2 * x + y, x + 2 * y, x, y, sym.sum(x)])
    check_function(z, lambda x, y: [2 * x + y, x + 2 * y, x, y, np.sum(x)])

    # passing additional parameters to forward and backward
    def _fwd3(x, p):
        assert p == 'v'
        return x + 1

    def _bwd3(x, p, head_grads):
        assert p == 'v'
        return head_grads

    check_function(x + 1, _fwd3, _bwd3, additional_params={'p': 'v'})

    # implicitly created variables and shape/dtype inference for inputs
    x = sym.Variable("x", shape=(2, 3), dtype=0)
    b = sym.Variable("b")
    y = sym.dense(data=x, bias=b, units=4)
    # Don't check gradients on cuda because is doesn't yet support ewise after reduce
    check_function(y, exclude_targets={'cuda'}, numerical_grads=True)
    check_function(y,
                   shape={'x': (3, 4)},
                   exclude_targets={'cuda'},
                   numerical_grads=True)
    check_function(y,
                   dtype={'x': 'float64'},
                   exclude_targets={'cuda'},
                   numerical_grads=True)

    x = sym.Variable("x")
    b = sym.Variable("b")
    w = sym.Variable("w")
    y = sym.dense(data=x, bias=b, weight=w, units=4)

    def _fwd_dense(x, w, b):
        return np.dot(x, w.T) + b

    check_function(y,
                   _fwd_dense,
                   shape={'x': (1, 2)},
                   dtype={'x': 'float32'},
                   numerical_grads=False)
    check_function(y,
                   _fwd_dense,
                   shape={'x': (1, 2)},
                   dtype={'w': 'float64'},
                   numerical_grads=False)
    _check_function_must_fail(y,
                              _fwd_dense,
                              shape={'x': (1, 2)},
                              dtype={
                                  'w': 'float64',
                                  'b': 'float32'
                              },
                              numerical_grads=False,
                              error=nnvm._base.NNVMError)
    # fails because no shape
    _check_function_must_fail(y,
                              _fwd_dense,
                              numerical_grads=False,
                              error=ValueError)
    # ok because type is float32 by default
    check_function(y, _fwd_dense, shape={'x': (1, 2)}, numerical_grads=False)
예제 #7
0
def test_check_function():
    # test the testing function

    x = sym.Variable("x")
    y = sym.Variable("y")

    # different styles of returning gradients from the backward function
    check_function(x + 2*y, lambda x, y: x + 2*y,
                   lambda x, y, head_grads: [head_grads, 2*head_grads],
                   shape={'x': (1, 2), y: (1, 2)}, dtype='float32')
    check_function(x + 2*y, lambda x, y: x + 2*y,
                   lambda x, y, head_grads: (head_grads, 2*head_grads),
                   shape={'x': (1, 2), y: (1, 2)}, dtype='float32')
    check_function(x + 2*y, lambda x, y: x + 2*y,
                   lambda x, y, head_grads: {'x': head_grads, 'y': 2*head_grads},
                   shape={'x': (1, 2), y: (1, 2)}, dtype='float32')
    check_function(x + 2*y, lambda x, y: x + 2*y,
                   lambda x, y, head_grads: {'y': 2*head_grads},
                   shape={'x': (1, 2), y: (1, 2)}, dtype='float32')
    check_function(x + 2*y, lambda x, y: x + 2*y,
                   lambda x, y, head_grads: [2*head_grads],
                   grad_input_vars=[y],
                   shape={'x': (1, 2), y: (1, 2)}, dtype='float32')
    check_function(x + 2*y, lambda x, y: x + 2*y,
                   lambda x, y, head_grads: 2*head_grads,
                   grad_input_vars=[y],
                   shape={'x': (1, 2), y: (1, 2)}, dtype='float32')
    check_function(x + 2*y, lambda x, y: x + 2*y,
                   lambda x, y, head_grads: 2*head_grads,
                   grad_input_vars=[y],
                   shape={'x': (1, 2), y: (1, 2)}, dtype='float64')

    # test just numerical gradients
    # different styles of shape and dtype passing
    check_function(x + 2*y, shape={'x': (1, 2), y: (1, 2)},
                   numerical_grads=True)
    check_function(x + 2*y, shape={'x': (1, 2), y: (1, 2)}, dtype='float32',
                   numerical_grads=True)
    check_function(x + 2*y, shape={'x': (1, 2), y: (1, 2)}, dtype={x: 'float32', 'y': 'float32'},
                   numerical_grads=True)
    check_function(x + 2*y, shape=(1, 2), dtype='float32',
                   numerical_grads=True)

    # specifying variable attributes on variable creation
    # (in this case type codes must be used)
    x = sym.Variable("x", dtype=0, shape=(1, 2))
    check_function(x + 2*y, shape={y: (1, 2)}, dtype={'y': 'float32'}, numerical_grads=True)
    y = sym.Variable("y", dtype=0, shape=(1, 2))

    # shape overriding
    def _fwd1(x, y):
        assert x.shape == (1, 1)
        assert y.shape == (1, 2)
        return x + 2*y
    check_function(x + 2*y, _fwd1, shape={x: (1, 1)})

    # in_range
    def _fwd2(x, y):
        assert x.shape == (100,)
        assert (x <= 0.9).all()
        assert (x >= 0.8).all()
        return x + 2*y
    check_function(x + 2*y, _fwd2, shape=(100,), in_range=(0.8, 0.9), numerical_grads=False)
    check_function(x + 2*y, _fwd2, shape=(100,), in_range={'x': (0.8, 0.9)}, numerical_grads=False)
    check_function(x + 2*y, backward=lambda x, y, head_grads: [1.0, 2.0],
                   in_range={'head_grads_0': (1.0, 1.0)})
    # explicit passing of values
    check_function(x + 2*y, backward=lambda x, y, head_grads: [1.0, 2.0],
                   values={'head_grads_0': np.full((1, 2), 1.0)})

    # check that the function reports errors
    def _check_function_must_fail(*args, **kwargs):
        error = AssertionError
        if 'error' in kwargs:
            error = kwargs['error']
            del kwargs['error']
        try:
            check_function(*args, quiet=True, **kwargs)
        except error:
            pass
        else:
            raise AssertionError("check_function didn't raise an exception")

    _check_function_must_fail(x + 2*y, error=ValueError)
    _check_function_must_fail(x + 2*y, lambda x, y: x + y)
    _check_function_must_fail(x + 2*y, backward=lambda x, y, head_grads: [1.0, 2.0])
    _check_function_must_fail(sym.block_grad(x + 2*y), numerical_grads=True)
    _check_function_must_fail(x*x, numerical_grads=True,
                              numerical_grads_params={'atol': 0.0, 'rtol': 0.0})
    _check_function_must_fail(sym.log(-x*x), numerical_grads=True, error=ValueError)

    # different styles of returning results from the forward function
    check_function(x + 2*y, lambda x, y: [x + 2*y], numerical_grads=False)
    _check_function_must_fail(x + 2*y, lambda x, y: [x + 2*y, x], numerical_grads=False,
                              error=ValueError)
    _check_function_must_fail(x + 2*y, lambda x, y: [], numerical_grads=False,
                              error=ValueError)

    # multiple outputs
    z = sym.Group([2*x + y, x + 2*y])
    check_function(z, lambda x, y: [2*x + y, x + 2*y])
    check_function(z, lambda x, y: (2*x + y, x + 2*y))
    check_function(z, backward=lambda x, y, head_grads: [2*head_grads[0] + head_grads[1],
                                                         head_grads[0] + 2*head_grads[1]])
    _check_function_must_fail(z, backward=lambda x, y, head_grads: [2*head_grads[0],
                                                                    2*head_grads[1]])
    check_function(z, backward=lambda x, y, head_grads: [head_grads[1], 2*head_grads[1]],
                   in_range={'head_grads_0': (0, 0)})
    check_function(z, numerical_grads=True)

    z = sym.Group([sym.block_grad(2*x + y), x + 2*y])
    check_function(z, lambda x, y: [2*x + y, x + 2*y], numerical_grads=False)
    _check_function_must_fail(z, lambda x, y: [2*x + y, x + 2*y])
    _check_function_must_fail(z, numerical_grads=True)

    z = sym.Group([2*x + y, sym.block_grad(x + 2*y)])
    _check_function_must_fail(z, numerical_grads=True)

    z = sym.Group([2*x + y, x + 2*y, x, y, sym.sum(x)])
    check_function(z, lambda x, y: [2*x + y, x + 2*y, x, y, np.sum(x)])

    # passing additional parameters to forward and backward
    def _fwd3(x, p):
        assert p == 'v'
        return x + 1
    def _bwd3(x, p, head_grads):
        assert p == 'v'
        return head_grads
    check_function(x + 1, _fwd3, _bwd3, additional_params={'p': 'v'})

    # implicitly created variables and shape/dtype inference for inputs
    x = sym.Variable("x", shape=(2, 3), dtype=0)
    b = sym.Variable("b")
    y = sym.dense(data=x, bias=b, units=4)
    # Don't check gradients on cuda because is doesn't yet support ewise after reduce
    check_function(y, exclude_targets={'cuda'}, numerical_grads=True)
    check_function(y, shape={'x': (3, 4)}, exclude_targets={'cuda'}, numerical_grads=True)
    check_function(y, dtype={'x': 'float64'}, exclude_targets={'cuda'}, numerical_grads=True)

    x = sym.Variable("x")
    b = sym.Variable("b")
    w = sym.Variable("w")
    y = sym.dense(data=x, bias=b, weight=w, units=4)
    def _fwd_dense(x, w, b):
        return np.dot(x, w.T) + b
    check_function(y, _fwd_dense, shape={'x': (1,2)}, dtype={'x': 'float32'}, numerical_grads=False)
    check_function(y, _fwd_dense, shape={'x': (1,2)}, dtype={'w': 'float64'}, numerical_grads=False)
    _check_function_must_fail(y, _fwd_dense, shape={'x': (1,2)},
                              dtype={'w': 'float64', 'b': 'float32'},
                              numerical_grads=False,
                              error=nnvm._base.NNVMError)
    # fails because no shape
    _check_function_must_fail(y, _fwd_dense, numerical_grads=False, error=ValueError)
    # ok because type is float32 by default
    check_function(y, _fwd_dense, shape={'x': (1,2)}, numerical_grads=False)