def proc_perlins(m): matrix = m data['img_name'] = 'perlins' n1 = noise.Noise(2, octaves=var['octaves']['var'], tile=(var['density']['var'], var['density']['var']), unbias=True, seed=8675309) n2 = noise.Noise(2, octaves=var['octaves']['var'], tile=(var['density']['var'], var['density']['var']), unbias=True, seed=var['seed']['var']) for y in range(var['height']['var']): for x in range(var['width']['var']): index = (y * var['width']['var']) + x mod1 = n1.get_plain_noise(x / (var['scale']['var'] * .1), y / (var['scale']['var'] * .1)) mod2 = n2.get_plain_noise(x / (var['pack']['var'] * .1), y / (var['pack']['var'] * .1)) R = int(var['r']['var'] * (mod1 * (var['strength']['var'] * .1))) G = int(var['g']['var'] * (mod1 * (var['strength']['var'] * .1))) B = int(var['b']['var'] * (mod1 * (var['strength']['var'] * .1))) r = int(var['R']['var'] * (mod2 * (var['texture']['var'] * .1))) g = int(var['G']['var'] * (mod2 * (var['texture']['var'] * .1))) b = int(var['B']['var'] * (mod2 * (var['texture']['var'] * .1))) matrix[index] = (data['blnd'][var['blend']['var']]((R, G, B), (r, g, b))) matrix = overlay_img(matrix) return matrix
def initMap(self): mynoise = noise.Noise(self.mapw, self.maph, self.tw) mylist = mynoise.generate() # pprint(mylist) self.maprect = pygame.Rect(0, 0, self.mapw, self.maph) for z in range(self.zlevels): for x in range(self.mapw): for y in range(self.maph): if self.firstnum(mylist[x][y]) == z: # tile on the current layer # print "grass" # self.mapdata[z][x][y] = maptile.MapTile(random.randint(1, 4)) if self.secondnum(mylist[x][y]) < 7: self.mapdata[z][x][y] = maptile.MapTile( random.randint(1, 4) ) else: self.mapdata[z][x][y] = maptile.MapTile(7) # put some ground elif self.firstnum(mylist[x][y]) > z: # tiles on the layers above # print "dirt" self.mapdata[z][x][y] = maptile.MapTile(0) # dirt elif self.firstnum(mylist[x][y]) < z: # tiles below the z level # print "nothing" self.mapdata[z][x][y] = maptile.MapTile(5) else: print("x:", x) print(" y:", y) print("z:", z) print("BOMBED") exit()
def __init__(self, log, exp, corr=True): #Store passed parameters self.exp = exp self.corr = corr #Generate classes for calculating self.ph = ph.Physics() self.nse = ns.Noise()
def __init__(self, v): self.v = v self.offset_x = 0 self.offset_y = 0 self.selected_polygon = None self.selected_neighbors = None self.noise = noise.Noise(0.25, self.v.chunk_database.seed)
def get_noisestats(self, conf): nlnm_model = noise.Noise(ratio_nhnm=0., units='ACC') prange = [] data = load_noisepdf(self.channel, conf) if data != None: for p in conf['periods']: prange = Prange(p) d = prange.contains_values(data) p, nlnm = nlnm_model.calculate(d[:, 0]) setattr(self, 'mean' + prange.label, np.mean(d[:, 1])) setattr(self, 'std' + prange.label, np.mean(d[:, 2])) setattr(self, 'skew' + prange.label, np.mean(d[:, 3])) setattr(self, 'nlnm' + prange.label, np.mean(d[:, 1]) - np.mean(nlnm))
def estimate_noise(self, method="ROBUST", show=False, timer=False, verbose=False): """ Estimate the noise (currently in one dimension). Saves the results to a noise object linked to the data. """ self.noise = noise.Noise(self) self.noise.calc_1d(method=method, show=show, timer=timer, verbose=verbose)
def __init__(self, exp, corr=False): #***** Private variables ***** self.__ph = phy.Physics() self.__nse = nse.Noise() self.__exp = exp self.__corr = corr #Unit conversions self.__GHz = 1.e-09 self.__mm = 1.e+03 self.__pct = 1.e+02 self.__pW = 1.e+12 self.__aWrtHz = 1.e+18 self.__uK = 1.e+06 self.__uK2 = 1.e-12 #Directory for writing result tables self.__dir = self.__exp.dir+'/TXT/'
def proc_perlin(m): matrix = m data['img_name'] = 'perlin' n = noise.Noise(2, octaves=var['octaves']['var'], tile=(var['pack']['var'], var['pack']['var']), unbias=True, seed=var['seed']['var']) for y in range(var['height']['var']): for x in range(var['width']['var']): index = (y * var['width']['var']) + x mod = n.get_plain_noise(x / (var['density']['var'] * .1), y / (var['density']['var'] * .1)) R = int(var['r']['var'] * (mod * (var['strength']['var'] * .1))) G = int(var['g']['var'] * (mod * (var['strength']['var'] * .1))) B = int(var['b']['var'] * (mod * (var['strength']['var'] * .1))) matrix[index] = data['blnd'][var['blend']['var']]( (var['R']['var'], var['G']['var'], var['B']['var']), (R, G, B)) matrix = overlay_img(matrix) return matrix
def __init__(self, log, exp, corr=True): self.__ph = ph.Physics() self.__nse = ns.Noise() self.__exp = exp self.__corr = corr