def _control(): shape = [SMALL_Y, SMALL_X, 1] control = generators.multires(shape=shape, freq=FREQ, octaves=OCTAVES, refract_range=.5) erode_kwargs = { "alpha": .025, "density": 40, "iterations": 20, "inverse": True, } iterations = 5 for i in range(iterations): control = effects.erode(control, shape, **erode_kwargs) control = effects.convolve(constants.ValueMask.conv2d_blur, control, shape) post_shape = [LARGE_Y, LARGE_X, 1] control = effects.resample(control, post_shape) iterations = 2 for i in range(iterations): control = effects.erode(control, post_shape, **erode_kwargs) control = effects.convolve(constants.ValueMask.conv2d_blur, control, post_shape) control = effects.convolve(constants.ValueMask.conv2d_sharpen, control, post_shape) control = effects.normalize(control) with tf.Session().as_default(): save(control, CONTROL_FILENAME)
def clouds(input_filename): tensor = tf.image.convert_image_dtype(load(input_filename), tf.float32) pre_shape = [SMALL_Y, SMALL_X, 1] post_shape = [LARGE_Y, LARGE_X, 1] control_kwargs = { "freq": FREQ * 2, "lattice_drift": 1, "octaves": OCTAVES, "ridges": True, "shape": pre_shape, "warp_freq": 3, "warp_range": .25, "warp_octaves": 2, } control = generators.multires(**control_kwargs) layer_0 = tf.ones(pre_shape) layer_1 = tf.zeros(pre_shape) combined = effects.blend_layers(control, pre_shape, 1.0, layer_0, layer_1) shadow = effects.offset(combined, pre_shape, random.randint(-15, 15), random.randint(-15, 15)) shadow = tf.minimum(shadow * 2.5, 1.0) shadow = effects.convolve(effects.ConvKernel.blur, shadow, pre_shape) shadow = effects.convolve(effects.ConvKernel.blur, shadow, pre_shape) shadow = effects.convolve(effects.ConvKernel.blur, shadow, pre_shape) shadow = effects.resample(shadow, post_shape) combined = effects.resample(combined, post_shape) tensor = effects.blend(tensor, tf.zeros(post_shape), shadow * .5) tensor = effects.blend(tensor, tf.ones(post_shape), combined) post_shape = [LARGE_Y, LARGE_X, 3] tensor = effects.shadow(tensor, post_shape, alpha=.25) tensor = effects.bloom(tensor, post_shape, .333) tensor = recipes.dither(tensor, post_shape, .075) combined = tf.image.adjust_contrast(combined, 1.125) with tf.Session().as_default(): save(tensor, FINAL_FILENAME)
def clouds(tensor, shape, time=0.0, speed=1.0): """Top-down cloud cover effect""" pre_shape = [int(shape[0] * .25) or 1, int(shape[1] * .25) or 1, 1] control_kwargs = { "freq": random.randint(2, 4), "lattice_drift": 1, "octaves": 8, "ridges": True, "speed": speed, "shape": pre_shape, "time": time, "warp_freq": 3, "warp_range": .125, "warp_octaves": 2, "distrib": ValueDistribution.simplex, } control = multires(**control_kwargs) layer_0 = tf.ones(pre_shape) layer_1 = tf.zeros(pre_shape) combined = effects.blend_layers(control, pre_shape, 1.0, layer_0, layer_1) shadow = effects.offset(combined, pre_shape, random.randint(-15, 15), random.randint(-15, 15)) shadow = tf.minimum(shadow * 2.5, 1.0) for _ in range(3): shadow = effects.convolve(ValueMask.conv2d_blur, shadow, pre_shape) post_shape = [shape[0], shape[1], 1] shadow = effects.resample(shadow, post_shape) combined = effects.resample(combined, post_shape) tensor = effects.blend(tensor, tf.zeros(shape), shadow * .75) tensor = effects.blend(tensor, tf.ones(shape), combined) tensor = effects.shadow(tensor, shape, alpha=.5) return tensor
def basic(ctx, width, height, input_dir, name, control_filename, retro_upscale): shape = [height, width, 3] # Any shape you want, as long as it's [1024, 1024, 3] filenames = [] for root, _, files in os.walk(input_dir): for filename in files: if filename.endswith(('.png', '.jpg')): filenames.append(os.path.join(root, filename)) collage_count = min(random.randint(4, 6), len(filenames)) collage_images = [] for i in range(collage_count + 1): index = random.randint(0, len(filenames) - 1) input_filename = os.path.join(input_dir, filenames[index]) collage_input = tf.image.convert_image_dtype(util.load(input_filename, channels=3), dtype=tf.float32) input_shape = effects.shape_from_file(input_filename) if retro_upscale: input_shape = [ input_shape[0] * 2, input_shape[1] * 2, input_shape[2] ] collage_input = effects.resample(collage_input, input_shape, spline_order=0) collage_input = effects.square_crop_and_resize(collage_input, input_shape, 1024) collage_images.append(collage_input) base = generators.basic(freq=random.randint(2, 5), shape=shape, lattice_drift=random.randint(0, 1), hue_range=random.random()) if control_filename: control = tf.image.convert_image_dtype(util.load(control_filename, channels=1), dtype=tf.float32) control = effects.square_crop_and_resize( control, effects.shape_from_file(control_filename), 1024) control = effects.value_map(control, shape, keep_dims=True) else: control = effects.value_map(collage_images.pop(), shape, keep_dims=True) control = effects.convolve(effects.ValueMask.conv2d_blur, control, [height, width, 1]) with tf.Session().as_default(): # sort collage images by brightness collage_images = [ j[1] for j in sorted([(tf.reduce_sum(i).eval(), i) for i in collage_images]) ] tensor = effects.blend_layers(control, shape, random.random() * .5, *collage_images) tensor = effects.blend(tensor, base, .125 + random.random() * .125) tensor = effects.bloom(tensor, shape, alpha=.25 + random.random() * .125) tensor = effects.shadow(tensor, shape, alpha=.25 + random.random() * .125, reference=control) tensor = tf.image.adjust_brightness(tensor, .05) tensor = tf.image.adjust_contrast(tensor, 1.25) save(tensor, name) print('mashup')
def frame(ctx, input_dir, frame, seed, name): generators.set_seed(seed) shape = [512, 512, 3] dirnames = [ d for d in os.listdir(input_dir) if os.path.isdir(os.path.join(input_dir, d)) ] if not dirnames: click.echo("Couldn't determine directory names inside of input dir " + input_dir) sys.exit(1) collage_count = min(random.randint(4, 6), len(dirnames)) collage_images = [] for i in range(collage_count + 1): index = random.randint(0, len(dirnames) - 1) dirname = dirnames[index] filenames = [ f for f in sorted( os.listdir(os.path.join(input_dir, dirnames[index]))) if f.endswith('.png') ] if not filenames: continue input_filename = os.path.join(input_dir, dirnames[index], filenames[frame]) collage_images.append( tf.image.convert_image_dtype(util.load(input_filename, channels=3), dtype=tf.float32)) base = generators.basic(freq=random.randint(2, 4), shape=shape, hue_range=random.random(), time=frame / 30.0, speed=0.125, distrib="simplex") control = effects.value_map(collage_images.pop(), shape, keep_dims=True) control = effects.convolve(effects.ValueMask.conv2d_blur, control, [512, 512, 1]) with tf.Session().as_default(): tensor = effects.blend_layers(control, shape, random.random() * .5, *collage_images) tensor = effects.blend(tensor, base, .125 + random.random() * .125) tensor = effects.bloom(tensor, shape, alpha=.25 + random.random() * .125) tensor = effects.shadow(tensor, shape, alpha=.25 + random.random() * .125, reference=control) tensor = tf.image.adjust_brightness(tensor, .05) tensor = tf.image.adjust_contrast(tensor, 1.25) util.save(tensor, name)