def __load_folder(folder, class_name): image_dict = dict() path = ROOT_DIR + '\\dataset\\' + folder + '\\' + class_name + '\\' # Get all files in path for f in glob.iglob(path + '*'): # Is image if re.match('.*\.png$', f): # Put images into dict with file name (without path) as index. Images get normalized, then converted to # PyTorch tensors, then permuted to (Channels, Height, Width) image_dict[f[len(path):]] = torch.from_numpy( normalize(__load_image(f))).permute((2, 0, 1)) out = list() for f in glob.iglob(path + '*'): # Is poses.txt if re.match('.*poses\.txt$', f): lines = open(f, 'r').readlines() for i in range(len(lines) // 2): pose_strings = lines[i * 2 + 1].split() pose = np.array( (float(pose_strings[0]), float(pose_strings[1]), float(pose_strings[2]), float(pose_strings[3]))) out.append((image_dict[lines[i * 2][2:-1]], class_name, pose, path + lines[i * 2][2:-1])) return out
def prepare_data(names, feat_dict): X = np.array([feat_dict[name_i] for name_i in names]) X = norm.normalize(X, 'all') X = np.expand_dims(X, axis=-1) y = [data.parse_name(name_i)[0] - 1 for name_i in names] y = keras.utils.to_categorical(y) return X, y
def infer(): message = request.json sample = message['sample'] result = normalize(sample) print('INPUT: ', sample) print('RESULT: ', result) return send_response({'result': result})
def model(data, n_rules): # numpy and norm x, y = data.dataset.tensors y = y.float() x = x.numpy() x, minimum, maximum = normalize(data=x) x = x.astype(float) # cmeans # como o numero de entradas é constante n de regras = n de funcoes de # pertinencia = numero de centros modelo = cmenas(k=n_rules) modelo.train(data=x, MAX=15, tol=1e-2) centros = modelo.C # denorm centros = denormalize(data=centros, m=minimum, M=maximum) names = [ 'radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean' 'conc_mean', 'points_mean', 'symmetry_mean' ] def mk_var(name, centros, i): return (name, make_gauss_mfs(3, [centros[n, i] for n in range(n_rules)])) invardefs = [mk_var(name, centros, i) for i, name in enumerate(names)] outvars = ['diagnosis'] model = anfis.AnfisNet('breast-cancer', invardefs, outvars) return model
def model(data, n_rules): # numpy and norm x, y = data.dataset.tensors x = x.numpy() x, minimum, maximum = normalize(data=x) # cmeans # como o numero de entradas é constante n de regras = n de funcoes de # pertinencia = numero de centros modelo = cmenas(k=n_rules) modelo.train(data=x, MAX=15, tol=1e-2) centros = modelo.C # denorm centros = denormalize(data=centros, m=minimum, M=maximum) def mk_var(name, centros, i): # de iris_example return (name, make_gauss_mfs(1, [centros[0, i], centros[1, i], centros[2, i]])) def mk_var(name, centros, i): # de iris_example return (name, make_gauss_mfs(1, [centros[n, i] for n in range(n_rules)])) invardefs = [ mk_var(name, centros, i) for i, name in enumerate( ['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']) ] outvars = ['Species'] model = anfis.AnfisNet('iris', invardefs, outvars) return model
def normalize_multi(pair, values): for i in values: normalize(pair, i)
from csvread import readcsv from neuron3to4lyr import NN from norm import normalize ismr = readcsv('ismr.csv') nino3 = readcsv('nino3.csv') ismr_norm = normalize(ismr) nino3_norm = normalize(nino3) no_of_months = len(ismr) ismr_nino3 = [[[None], [None]] for x in xrange(no_of_months)] ismr_nino3_train = [[[None], [None]] for x in xrange(no_of_months - 500)] ismr_nino3_test = [[[None], [None]] for x in xrange(500)] #for i in range(no_of_months): # ismr_nino3[i][0][0] = ismr[i] # ismr_nino3[i][1][0] = nino3[i] # #ismr_nino3_train = ismr_nino3[0:no_of_months-500-1] #ismr_nino3_test = ismr_nino3[no_of_months-500:no_of_months-1] ## create a network with two input, two hidden, and one output nodes #n = NN(1, 4, 2 , 1) ## train it with some patterns #n.train(ismr_nino3_train) ## save a network ## test it #n.test(ismr_nino3_test) # #
def infer(): message = request.json sample = message['sample'] result = normalize(sample) print('INPUT: ', sample) print('RESULT: ', result) return send_response({'result': result}) if __name__ == '__main__': config = configparser.ConfigParser() config.read("conf/config.cfg") # dict abbre_dict = utils.read_txt_two_cols(config['resources']['abbre_path']) try: oov_dict = utils.read_oov(config['resources']['oov_path']) except: oov_dict = {} # init api # app.debug = True # host = os.environ.get('IP', '0.0.0.0') # port = int(os.environ.get('PORT', 11993)) # app.run(host=host, port=port, threaded=True, use_reloader=False) # app.run() while True: inp = input('nhap input vao day: ') result = normalize(inp) print('result: ', result)
def test_fromAndTos(self): self.assertAlmostEqual(normalize(5, 20), 5.011552452941506)