예제 #1
0
파일: test.py 프로젝트: topicus/SocialSuaci
def testTweets():
    for i in range(1, 8):
        statuses = api.GetSearch(term=settings_local.USERTRACK, lang="es", page=i, per_page=100)
        for s in statuses:
            t = Normalizator.normalize(s.text)
            if not (t.isspace()):
                if classifier.classify(extract_features(t.split())) == "reclamo":
                    print "\033[91m" + t
                else:
                    print "\033[94m" + t
예제 #2
0
def saveTweetsOf(screen_name, category):
  for i in range(1,4):
    statuses = api.GetSearch(term=settings_local.USERTRACK, lang='es', page=i,per_page=100)
    for s in statuses:
      if(s.text.find('RT',0,2)==-1):
        screen_name = s._user._screen_name
        t = Normalizator.normalize(s.text)
        em = Normalizator.usedPattern(Patterns.DUPLICATED_LETTERS)
        print Normalizator.usedPattern(Patterns.SPECIALCHARS_AND_MENTIONS)
        print smart_str(s.text.lower())
        if (not(t.isspace())):
          selected = raw_input('Es un reclamo?')
          tweets = db[settings_local.CATEGORIES[int(selected)]]          
          tweet = {'normalized_tweet': t,
                   'tweet': s.text,
                   'screen_name': screen_name,
                   'emphatized': em
                   }
          tweets.insert(tweet)
예제 #3
0
파일: test.py 프로젝트: topicus/SocialSuaci
        for s in statuses:
            t = Normalizator.normalize(s.text)
            if not (t.isspace()):
                if classifier.classify(extract_features(t.split())) == "reclamo":
                    print "\033[91m" + t
                else:
                    print "\033[94m" + t


allTweets = []
for c in settings_local.CATEGORIES:
    statuses = db[c].find()

    for s in statuses:
        t = s["normalized_tweet"]
        t = Normalizator.normalize(t)
        if not (t.isspace()):
            allTweets.append((t, c))

tweets = []
for (words, sentiment) in allTweets:
    words_filtered = [e.lower() for e in words.split() if len(e) >= 3]
    tweets.append((words_filtered, sentiment))


def get_words_in_tweets(tweets):
    all_words = []
    for (words, sentiment) in tweets:
        all_words.extend(words)
    return all_words