def normalize_uint8_image(image, config='default'): from normalize_config import get_normalize_config mean, std = get_normalize_config(config) image = image - mean if std is not None: image /= std return image
def get_val_data_iterator(args, comm, channels, spatial_size=(224, 224), norm_config='default'): # Pipelines and Iterators for validation mean, std = get_normalize_config(norm_config) if std is None: std = [1., 1., 1.] pad_output = get_pad_output_by_channels(channels) val_pipe = ValPipeline(args.batch_size, args.dali_num_threads, comm.rank, args.val_dir, args.val_list, args.dali_nvjpeg_memory_padding, seed=comm.rank + 1, device_id=int(comm.ctx.device_id), num_shards=comm.n_procs, channel_last=args.channel_last, spatial_size=spatial_size, dtype=args.type_config, mean=list(mean), std=list(std), pad_output=pad_output) vdata = dali_iterator.DaliIterator(val_pipe) vdata.size = int_div_ceil(val_pipe.epoch_size("Reader"), comm.n_procs) return vdata
def get_train_data_iterator(args, comm, channels, norm_config='default'): # Pipelines and Iterators for training mean, std = get_normalize_config(norm_config) if std is None: std = [1., 1., 1.] pad_output = get_pad_output_by_channels(channels) train_pipe = TrainPipeline(args.batch_size, args.dali_num_threads, comm.rank, args.train_dir, args.train_list, args.dali_nvjpeg_memory_padding, seed=comm.rank + 1, num_shards=comm.n_procs, channel_last=args.channel_last, dtype=args.type_config, mean=list(mean), std=list(std), pad_output=pad_output) data = dali_iterator.DaliIterator(train_pipe) data.size = int_div_ceil(train_pipe.epoch_size("Reader"), comm.n_procs) return data