예제 #1
0
    def runTest(self):
        TPool = pools.GetGlobalMultithreadingPool()
        self.assertIsNotNone(TPool)

        runFunctionOnPool(self, TPool, Func=SquareTheNumberWithDelay)
        runFileIOOnPool(self,
                        TPool,
                        CreateFunc=CreateFileWithDelay,
                        ReadFunc=ReadFileWithDelay)
        runEvenDistributionOfWorkTestOnThePool(self, TPool)
예제 #2
0
    def Clear(self):
        '''Sets attributes to None to encourage garbage collection'''
        self._image = None
        self._centerDistanceImage = None
        self._source_space_scale = None
        self._target_space_scale = None
        self._transform = None

        if not self._centerDistanceImage_path is None or not self._image_path is None:
            pool = nornir_pools.GetGlobalMultithreadingPool()
            pool.add_task(self._image_path,
                          TransformedImageData._RemoveTempFiles,
                          self._centerDistanceImage_path, self._image_path,
                          self._tempdir)
def ScoreMosaicQuality(transforms, imagepaths, imageScale=None):
    '''
    Walk each overlapping region between tiles.  Subtract the 
    '''

    tiles = nornir_imageregistration.tile.CreateTiles(transforms, imagepaths)

    if imageScale is None:
        imageScale = tileset.MostCommonScalar(transforms, imagepaths)

    list_tiles = list(tiles.values())
    total_score = 0
    total_pixels = 0

    pool = nornir_pools.GetGlobalMultithreadingPool()
    tasks = list()

    for tile_overlap in nornir_imageregistration.tile_overlap.IterateTileOverlaps(
            list_tiles, imageScale=imageScale):
        # (downsampled_overlapping_rect_A, downsampled_overlapping_rect_B, OffsetAdjustment) = nornir_imageregistration.tile.Tile.Calculate_Overlapping_Regions(tile_overlap.A, tile_overlap.B, imageScale)

        # __AlignmentScoreRemote(A.ImagePath, B.ImagePath, downsampled_overlapping_rect_A, downsampled_overlapping_rect_B)

        t = pool.add_task(
            "Score %d -> %d" % (tile_overlap.ID[0], tile_overlap.ID[1]),
            __AlignmentScoreRemote, tile_overlap.A.ImagePath,
            tile_overlap.B.ImagePath,
            tile_overlap.scaled_overlapping_source_rect_A,
            tile_overlap.scaled_overlapping_source_rect_B)
        tasks.append(t)


#         OverlappingRegionA = __get_overlapping_image(A.Image, downsampled_overlapping_rect_A, excess_scalar=1.0)
#         OverlappingRegionB = __get_overlapping_image(B.Image, downsampled_overlapping_rect_B, excess_scalar=1.0)
#
#         OverlappingRegionA -= OverlappingRegionB
#         absoluteDiff = np.fabs(OverlappingRegionA)
#         score = np.sum(absoluteDiff.flat)

    pool.wait_completion()

    for t in tasks:
        # (score, num_pixels) = t.wait_return()
        score = t.wait_return()
        total_score += score
        # total_pixels += np.prod(num_pixels)

    # return total_score / total_pixels
    return total_score / len(tasks)
예제 #4
0
    def AssembleImage(self,
                      tilesPath,
                      FixedRegion=None,
                      usecluster=False,
                      target_space_scale=None,
                      source_space_scale=None):
        '''Create a single image of the mosaic for the requested region.
        :param str tilesPath: Directory containing tiles referenced in our transform
        :param array FixedRegion: Rectangle object or [MinY MinX MaxY MaxX] boundary of image to assemble
        :param boolean usecluster: Offload work to other threads or nodes if true
        :param float target_space_scale: Scalar for target space, used to adjust size of assembled image
        :param float source_space_scale: Optimization parameter, eliminates need for function to compare input images with transform boundaries to determine scale
        '''

        # Left off here, I need to split this function so that FixedRegion has a consistent meaning

        # Ensure that all transforms map to positive values
        # self.TranslateToZeroOrigin()

        if not FixedRegion is None:
            spatial.RaiseValueErrorOnInvalidBounds(FixedRegion)

        # Allocate a buffer for the tiles
        tilesPathList = self.CreateTilesPathList(tilesPath)

        if usecluster and len(tilesPathList) > 1:
            cpool = nornir_pools.GetGlobalMultithreadingPool()
            return at.TilesToImageParallel(
                self._TransformsSortedByKey(),
                tilesPathList,
                pool=cpool,
                TargetRegion=FixedRegion,
                target_space_scale=target_space_scale,
                source_space_scale=source_space_scale)
        else:
            # return at.TilesToImageParallel(self.ImageToTransform.values(), tilesPathList)
            return at.TilesToImage(self._TransformsSortedByKey(),
                                   tilesPathList,
                                   TargetRegion=FixedRegion,
                                   target_space_scale=target_space_scale,
                                   source_space_scale=source_space_scale)
예제 #5
0
def __InvokeFunctionOnImageList__(listfilenames, Function=None, Pool=None, **kwargs):
    '''Return a number indicating how interesting the image is using SciPy
       '''

    if Pool is None:
        TPool = nornir_pools.GetGlobalMultithreadingPool()
    else:
        TPool = Pool

    TileToScore = dict()
    tasklist = []
    for filename in listfilenames:
        task = TPool.add_task('Calc Feature Score: ' + os.path.basename(filename), Function, filename, **kwargs)
        task.filename = filename
        tasklist.append(task)

    TPool.wait_completion()

    numTasks = len(tasklist)
    iTask = 0
    for task in tasklist:
        Result = task.wait_return()
        iTask = iTask + 1
        if Result is None:
            PrettyOutput.LogErr('No return value for ' + task.filename)
            continue

#         if Result[0] is None:
#             PrettyOutput.LogErr('No filename for ' + task.name)
#             continue

        PrettyOutput.CurseProgress("ImageStats", iTask, numTasks)

        filename = task.filename
        TileToScore[filename] = Result

    return TileToScore
예제 #6
0
    def runTest(self):
        numThreadsInTest = 100

        CreateFile(self.TestOutputPath, 0)
        ExpectedPath = os.path.join(self.TestOutputPath,
                                    TestThreadPool.FilenameTemplate % 0)
        self.assertTrue(
            os.path.exists(ExpectedPath),
            "Function we are testing threads with does not seem to work")
        os.remove(ExpectedPath)

        # Create a 100 threads and have them create files
        TPool = pools.GetGlobalMultithreadingPool()
        self.assertIsNotNone(TPool)

        VerifyExceptionBehaviour(self, TPool)

        runFunctionOnPool(self, TPool)
        runFileIOOnPool(self, TPool)
        runEvenDistributionOfWorkTestOnThePool(self, TPool)

        TPool = pools.GetMultithreadingPool("Test multithreading pool")
        self.assertIsNotNone(TPool)
        runFileIOOnPool(self, TPool)
def _FindTileOffsets(tile_overlaps,
                     excess_scalar,
                     imageScale=None,
                     existing_layout=None):
    '''Populates the OffsetToTile dictionary for tiles
    :param list tile_overlaps: List of all tile overlaps or dictionary whose values are tile overlaps
    :param float imageScale: downsample level if known.  None causes it to be calculated.
    :param float excess_scalar: How much additional area should we pad the overlapping rectangles with.
    :return: A layout object describing the optimal adjustment for each tile to align with each neighboring tile
    '''

    if imageScale is None:
        imageScale = 1.0

    downsample = 1.0 / imageScale

    # idx = tileset.CreateSpatialMap([t.FixedBoundingBox for t in tiles], tiles)

    CalculationCount = 0

    # _CalculateImageFFTs(tiles)

    #pool = nornir_pools.GetGlobalSerialPool()
    pool = nornir_pools.GetGlobalMultithreadingPool()
    tasks = list()

    layout = existing_layout
    if layout is None:
        layout = nornir_imageregistration.layout.Layout()

    list_tile_overlaps = tile_overlaps
    if isinstance(tile_overlaps, dict):
        list_tile_overlaps = list(tile_overlaps.values())

    assert (isinstance(list_tile_overlaps, list))

    for t in list_tile_overlaps:
        if not layout.Contains(t.A.ID):
            layout.CreateNode(t.A.ID, t.A.FixedBoundingBox.Center)

        if not layout.Contains(t.B.ID):
            layout.CreateNode(t.B.ID, t.B.FixedBoundingBox.Center)

    print("Starting tile alignment")
    for tile_overlap in list_tile_overlaps:
        t = pool.add_task(
            "Align %d -> %d" % (tile_overlap.ID[0], tile_overlap.ID[1]),
            __tile_offset_remote, tile_overlap.A.ImagePath,
            tile_overlap.B.ImagePath,
            tile_overlap.scaled_overlapping_source_rect_A,
            tile_overlap.scaled_overlapping_source_rect_B,
            tile_overlap.scaled_offset, excess_scalar)

        t.tile_overlap = tile_overlap
        tasks.append(t)
        CalculationCount += 1
        # print("Start alignment %d -> %d" % (A.ID, B.ID))

    for t in tasks:
        try:
            offset = t.wait_return()
        except FloatingPointError as e:  # Very rarely the overlapping region is entirely one color and this error is thrown.
            print(
                "FloatingPointError: %d -> %d = %s -> Using stage coordinates."
                % (t.tile_overlap.A.ID, t.tile_overlap.B.ID, str(e)))

            # Create an alignment record using only stage position and a weight of zero
            offset = nornir_imageregistration.AlignmentRecord(
                peak=t.tile_overlap.scaled_offset, weight=0)

        tile_overlap = t.tile_overlap
        # Figure out what offset we found vs. what offset we expected
        PredictedOffset = tile_overlap.B.FixedBoundingBox.Center - tile_overlap.A.FixedBoundingBox.Center
        ActualOffset = offset.peak * downsample

        diff = ActualOffset - PredictedOffset
        distance = np.sqrt(np.sum(diff**2))
        f_score = min(tile_overlap.feature_scores)
        final_weight = offset.weight * f_score
        print(
            "%d -> %d = feature score: %.04g align score: %.04g Final Weight: %.04g Dist: %.04g"
            % (tile_overlap.A.ID, tile_overlap.B.ID, f_score, offset.weight,
               final_weight, distance))

        layout.SetOffset(tile_overlap.A.ID, tile_overlap.B.ID, ActualOffset,
                         final_weight)

    pool.wait_completion()

    print(("Total offset calculations: " + str(CalculationCount)))

    return layout
def TilesToImageParallel(transforms,
                         imagepaths,
                         TargetRegion=None,
                         target_space_scale=None,
                         source_space_scale=None,
                         pool=None):
    '''Assembles a set of transforms and imagepaths to a single image using parallel techniques.
    :param tuple TargetRegion: (MinX, MinY, Width, Height) or Rectangle class.  Specifies the SourceSpace to render from
    :param float target_space_scale: Scalar for the target space coordinates.  Used to downsample or upsample the output image.  Changes the coordinates of the target space control points of the transform. 
    :param float target_space_scale: Scalar for the source space coordinates.  Must match the change in scale of input images relative to the transform source space coordinates.  So if downsampled by
    4 images are used, this value should be 0.25.  Calculated to be correct if None.  Specifying is an optimization to reduce I/O of reading image files to calculate.
    '''

    assert (len(transforms) == len(imagepaths))

    logger = logging.getLogger('TilesToImageParallel')

    if pool is None:
        pool = nornir_pools.GetGlobalMultithreadingPool()

    # pool = nornir_pools.GetGlobalSerialPool()

    tasks = []
    if source_space_scale is None:
        source_space_scale = tiles.MostCommonScalar(transforms, imagepaths)

    if target_space_scale is None:
        target_space_scale = source_space_scale

    original_fixed_rect_floats = None

    if not TargetRegion is None:
        if isinstance(TargetRegion, spatial.Rectangle):
            original_fixed_rect_floats = TargetRegion
        else:
            original_fixed_rect_floats = spatial.Rectangle.CreateFromPointAndArea(
                (TargetRegion[0], TargetRegion[1]),
                (TargetRegion[2] - TargetRegion[0],
                 TargetRegion[3] - TargetRegion[1]))
    else:
        original_fixed_rect_floats = tutils.FixedBoundingBox(transforms)

    scaled_targetRect = nornir_imageregistration.Rectangle.scale_on_origin(
        original_fixed_rect_floats, target_space_scale)
    scaled_targetRect = nornir_imageregistration.Rectangle.SafeRound(
        scaled_targetRect)
    targetRect = nornir_imageregistration.Rectangle.scale_on_origin(
        scaled_targetRect, 1.0 / target_space_scale)
    (fullImage,
     fullImageZbuffer) = __CreateOutputBufferForArea(scaled_targetRect.Height,
                                                     scaled_targetRect.Width,
                                                     target_space_scale)

    CheckTaskInterval = 16

    for i, transform in enumerate(transforms):
        regionToRender = None
        original_transform_target_rect = spatial.Rectangle(
            transform.FixedBoundingBox)
        transform_target_rect = nornir_imageregistration.Rectangle.SafeRound(
            original_transform_target_rect)

        regionToRender = nornir_imageregistration.Rectangle.Intersect(
            targetRect, transform_target_rect)
        if regionToRender is None:
            continue

        if regionToRender.Area == 0:
            continue

        scaled_region_rendered = nornir_imageregistration.Rectangle.scale_on_origin(
            regionToRender, target_space_scale)
        scaled_region_rendered = nornir_imageregistration.Rectangle.SafeRound(
            scaled_region_rendered)

        imagefullpath = imagepaths[i]

        task = pool.add_task("TransformTile" + imagefullpath,
                             TransformTile,
                             transform=transform,
                             imagefullpath=imagefullpath,
                             distanceImage=None,
                             target_space_scale=target_space_scale,
                             TargetRegion=regionToRender,
                             SingleThreadedInvoke=False)
        task.transform = transform
        task.regionToRender = regionToRender
        task.scaled_region_rendered = scaled_region_rendered
        task.transform_fixed_rect = transform_target_rect
        tasks.append(task)

        if not i % CheckTaskInterval == 0:
            continue

        if len(tasks) > multiprocessing.cpu_count():
            iTask = len(tasks) - 1
            while iTask >= 0:
                t = tasks[iTask]
                if t.iscompleted:
                    transformedImageData = t.wait_return()
                    __AddTransformedTileTaskToComposite(
                        t, transformedImageData, fullImage, fullImageZbuffer,
                        scaled_targetRect)
                    del transformedImageData
                    del tasks[iTask]

                iTask -= 1

    logger.info('All warps queued, integrating results into final image')

    while len(tasks) > 0:
        t = tasks.pop(0)
        transformedImageData = t.wait_return()
        __AddTransformedTileTaskToComposite(t, transformedImageData, fullImage,
                                            fullImageZbuffer,
                                            scaled_targetRect)
        del transformedImageData
        del t

        # Pass through the entire loop and eliminate completed tasks in case any finished out of order
        iTask = len(tasks) - 1
        while iTask >= 0:
            t = tasks[iTask]
            if t.iscompleted:
                transformedImageData = t.wait_return()
                __AddTransformedTileTaskToComposite(t, transformedImageData,
                                                    fullImage,
                                                    fullImageZbuffer,
                                                    scaled_targetRect)
                del transformedImageData
                del tasks[iTask]

            iTask -= 1

    logger.info('Final image complete, building mask')

    mask = fullImageZbuffer < __MaxZBufferValue(fullImageZbuffer.dtype)
    del fullImageZbuffer

    fullImage[fullImage < 0] = 0
    # Checking for > 1.0 makes sense for floating point images.  During the DM4 migration
    # I was getting images which used 0-255 values, and the 1.0 check set them to entirely black
    # fullImage[fullImage > 1.0] = 1.0

    logger.info('Assemble complete')

    if isinstance(fullImage, np.memmap):
        fullImage.flush()

    return (fullImage, mask)
def _RunRefineTwoImagesIteration(Transform,
                                 target_image,
                                 source_image,
                                 target_mask=None,
                                 source_mask=None,
                                 cell_size=(256, 256),
                                 grid_spacing=(256, 256),
                                 finalized=None,
                                 angles_to_search=None,
                                 min_alignment_overlap=0.5):
    '''
    Places a regular grid of control points across the target image.  These corresponding points on the
    source image are then adjusted to create a mapping from Source To Fixed Space for the source image. 
    :param transform transform: Transform that maps from source to target space
    :param ndarray target_image: Target image to serve as reference
    :param ndarray source_image: Source image to be transformed
    :param ndarray target_mask: Source image mask, True where valid pixels exist, can be None
    :param ndarray source_mask: Target image mask, True where valid pixels exist, can be None
    :param tuple cell_size: (width, height) area of image around control points to use for registration
    :param tuple grid_spacing: (width, height) of separation between control points on the grid
    :param dict finalized: A dictionary of points, indexed by Target Space Coordinates, that are finalized and do not need to be checked
    :param array angles_to_search: An array of floats or None.  Images are rotated by the degrees indicated in the array.  The single best alignment across all angles is selected.
    :param float min_alighment_overlap: Limits how far control points can be translated.  The cells from fixed and target space must overlap by this minimum amount.    
    '''

    if isinstance(Transform, str):
        Transform = nornir_imageregistration.transforms.factory.LoadTransform(
            Transform, 1)

    grid_spacing = np.asarray(grid_spacing, np.int32)
    cell_size = np.asarray(cell_size, np.int32)

    target_image = nornir_imageregistration.ImageParamToImageArray(
        target_image, dtype=np.float32)
    source_image = nornir_imageregistration.ImageParamToImageArray(
        source_image, dtype=np.float32)

    if target_mask is not None:
        target_mask = nornir_imageregistration.ImageParamToImageArray(
            target_mask, dtype=np.bool)
        target_image = nornir_imageregistration.RandomNoiseMask(
            target_image, target_mask)

    if source_mask is not None:
        source_mask = nornir_imageregistration.ImageParamToImageArray(
            source_mask, dtype=np.bool)
        source_image = nornir_imageregistration.RandomNoiseMask(
            source_image, source_mask)

#     shared_fixed_image  = nornir_imageregistration.npArrayToReadOnlySharedArray(target_image)
#     shared_fixed_image.mode = 'r'
#     shared_warped_image = nornir_imageregistration.npArrayToReadOnlySharedArray(source_image)
#     shared_warped_image.mode = 'r'

# Mark a grid along the fixed image, then find the points on the warped image

# grid_data = nornir_imageregistration.grid_subdivision.CenteredGridRefinementCells(target_image.shape, cell_size)
    grid_data = nornir_imageregistration.ITKGridDivision(
        source_image.shape, cell_size=cell_size, grid_spacing=grid_spacing)

    # grid_dims = nornir_imageregistration.TileGridShape(target_image.shape, grid_spacing)

    if angles_to_search is None:
        angles_to_search = [0]
    # angles_to_search = np.linspace(-7.5, 7.5, 11)

    # Create the grid coordinates
#    coords = [np.asarray((iRow, iCol), dtype=np.int32) for iRow in range(grid_data.grid_dims[0]) for iCol in range(grid_data.grid_dims[1])]
#    coords = np.vstack(coords)

# Create
#    TargetPoints = coords * grid_spacing  # [np.asarray((iCol * grid_spacing[0], iRow * grid_spacing[1]), dtype=np.int32) for (iRow, iCol) in coords]

# Grid dimensions round up, so if we are larger than image find out by how much and adjust the points so they are centered on the image
#    overage = ((grid_dims * grid_spacing) - target_image.shape) / 2.0
#    TargetPoints = np.round(TargetPoints - overage).astype(np.int64)
# TODO, ensure fixedPoints are within the bounds of target_image
    grid_data.FilterOutofBoundsSourcePoints(source_image.shape)
    grid_data.RemoveCellsUsingSourceImageMask(source_mask, 0.45)
    #nornir_imageregistration.views.grid_data.PlotGridPositionsAndMask(grid_data.SourcePoints, source_mask, OutputFilename=None)

    grid_data.PopulateTargetPoints(Transform)
    grid_data.RemoveCellsUsingTargetImageMask(target_mask, 0.45)

    #nornir_imageregistration.views.grid_data.PlotGridPositionsAndMask(grid_data.TargetPoints, target_mask, OutputFilename=None)
    # grid_data.ApplyWarpedImageMask(source_mask)
    #     valid_inbounds = np.logical_and(np.all(FixedPoi4nts >= np.asarray((0, 0)), 1), np.all(TargetPoints < target_mask.shape, 1))
    #     TargetPoints = TargetPoints[valid_inbounds, :]
    #     coords = coords[valid_inbounds, :]
    #
    if finalized is not None:
        found = [
            tuple(grid_data.SourcePoints[i, :]) not in finalized
            for i in range(grid_data.coords.shape[0])
        ]
        valid = np.asarray(found, np.bool)
        grid_data.RemoveMaskedPoints(valid)

#         TargetPoints = TargetPoints[valid, :]
#         coords = coords[valid, :]
#
#     # Filter Fixed Points falling outside the mask
#     if target_mask is not None:
#         valid = nornir_imageregistration.index_with_array(target_mask, TargetPoints)
#         TargetPoints = TargetPoints[valid, :]
#         coords = coords[valid, :]
#
#     SourcePoints = Transform.InverseTransform(TargetPoints).astype(np.int32)
#     if source_mask is not None:
#         valid = np.logical_and(np.all(SourcePoints >= np.asarray((0, 0)), 1), np.all(SourcePoints < source_mask.shape, 1))
#         SourcePoints = SourcePoints[valid, :]
#         TargetPoints = TargetPoints[valid, :]
#         coords = coords[valid, :]
#
#         valid = nornir_imageregistration.index_with_array(source_mask, SourcePoints)
#         SourcePoints = SourcePoints[valid, :]
#         TargetPoints = TargetPoints[valid, :]
#         coords = coords[valid, :]

    pool = nornir_pools.GetGlobalMultithreadingPool()
    #pool = nornir_pools.GetGlobalThreadPool()
    tasks = list()
    alignment_records = list()

    rigid_transforms = ApproximateRigidTransform(
        input_transform=Transform, target_points=grid_data.TargetPoints)

    for (i, coord) in enumerate(grid_data.coords):

        AlignTask = StartAttemptAlignPoint(
            pool,
            "Align %d,%d" % (coord[0], coord[1]),
            rigid_transforms[i],
            #Transform,
            target_image,
            source_image,
            grid_data.TargetPoints[i, :],
            cell_size,
            anglesToSearch=angles_to_search,
            min_alignment_overlap=min_alignment_overlap)

        if AlignTask is None:
            continue

#         AlignTask = pool.add_task("Align %d,%d" % (coord[0], coord[1]),
#                                   AttemptAlignPoint,
#                                   Transform,
#                                   shared_fixed_image,
#                                   shared_warped_image,
#                                   TargetPoints[i,:],
#                                   cell_size,
#                                   anglesToSearch=AnglesToSearch)

        AlignTask.ID = i
        AlignTask.coord = coord
        tasks.append(AlignTask)

    #             arecord.iRow = iRow
#             arecord.iCol = iCol
#             arecord.TargetPoint = TargetPoint
#             arecord.WarpedPoint = WarpedPoint
#             arecord.AdjustedWarpedPoint = WarpedPoint + arecord.peak
#
#             alignment_records.append(arecord)

    for t in tasks:
        arecord = t.wait_return()

        erec = nornir_imageregistration.EnhancedAlignmentRecord(
            ID=t.coord,
            TargetPoint=grid_data.TargetPoints[t.ID],
            SourcePoint=grid_data.SourcePoints[t.ID],
            peak=arecord.peak,
            weight=arecord.weight,
            angle=arecord.angle,
            flipped_ud=arecord.flippedud)

        erec.TargetROI = t.TargetROI
        erec.SourceROI = t.SourceROI

        #erec.TargetPSDScore = nornir_imageregistration.image_stats.ScoreImageWithPowerSpectralDensity(t.TargetROI)
        #erec.SourcePSDScore = nornir_imageregistration.image_stats.ScoreImageWithPowerSpectralDensity(t.SourceROI)

        #erec.PSDDelta = abs(erec.TargetPSDScore - erec.SourcePSDScore)
        erec.PSDDelta = (erec.TargetROI - np.mean(erec.TargetROI.flat)) - (
            erec.SourceROI - np.mean(erec.SourceROI.flat))
        erec.PSDDelta = np.sum(np.abs(erec.PSDDelta))
        # erec.CalculatedWarpedPoint = Transform.InverseTransform(erec.AdjustedTargetPoint).reshape(2)
        # arecord.ID = (iRow, iCol)
        # arecord.TargetPoint = t.TargetPoint
        # arecord.WarpedPoint = t.WarpedPoint
        # arecord.AdjustedWarpedPoint = t.WarpedPoint + arecord.peak

        alignment_records.append(erec)


#
#     del shared_warped_image
#     del shared_fixed_image

    return alignment_records
def RefineMosaic(transforms,
                 imagepaths,
                 imageScale=None,
                 subregion_shape=None):
    '''
    Locate overlapping regions between tiles in a mosaic and align multiple small subregions within.  This generates a set of control points. 
    
    More than one tile may overlap, for example corners.  To solve this the set of control points is merged into a KD tree.  Points closer than a set distance (less than subregion size) are averaged to create a single offset. 
    
    Using the remaining points a mesh transform is generated for the tile. 
    '''

    if imageScale is None:
        imageScale = 1.0

    if subregion_shape is None:
        subregion_shape = np.array([128, 128])

    #downsample = 1.0 / imageScale

    tiles = nornir_imageregistration.tile.CreateTiles(transforms, imagepaths)
    list_tiles = list(tiles.values())
    pool = nornir_pools.GetGlobalMultithreadingPool()
    tasks = list()

    if imageScale is None:
        imageScale = nornir_imageregistration.tileset.MostCommonScalar(
            transforms, imagepaths)

    layout = nornir_imageregistration.layout.Layout()
    for t in list_tiles:
        layout.CreateNode(t.ID, t.FixedBoundingBox.Center)

    for tile_overlap in nornir_imageregistration.IterateTileOverlaps(
            list_tiles, minOverlap=0.03):
        # OK... add some small neighborhoods and register those...
        #(downsampled_overlapping_rect_A, downsampled_overlapping_rect_B, OffsetAdjustment) = nornir_imageregistration.tile.Tile.Calculate_Overlapping_Regions(A, B, imageScale)
        #
        task = pool.add_task("Align %d -> %d" % (A.ID, B.ID),
                             __RefineTileAlignmentRemote, tile_overlap.A,
                             tile_overlap.B,
                             tile_overlap.scaled_overlapping_source_rect_A,
                             tile_overlap.scaled_overlapping_source_rect_B,
                             tile_overlap.scaled_offset, imageScale,
                             subregion_shape)
        task.A = tile_overlap.A
        task.B = tile_overlap.B
        task.OffsetAdjustment = tile_overlap.scaled_offset
        tasks.append(task)


#
#         (point_pairs, net_offset) = __RefineTileAlignmentRemote(A, B, downsampled_overlapping_rect_A, downsampled_overlapping_rect_B, OffsetAdjustment, imageScale)
#         offset = net_offset[0:2] + OffsetAdjustment
#         weight = net_offset[2]
#
#         print("%d -> %d : %s" % (A.ID, B.ID, str(net_offset)))
#
#         layout.SetOffset(A.ID, B.ID, offset, weight)

# print(str(net_offset))

    for t in tasks:
        try:
            (point_pairs, _) = t.wait_return()
        except Exception as e:
            print("Could not register %d -> %d" % (t.A.ID, t.B.ID))
            print("%s" % str(e))
            continue

        SplitDisplacements(t.A, t.B, point_pairs)
        # offset = net_offset[0:2] + (t.OffsetAdjustment * downsample)
        # weight = net_offset[2]
        # layout.SetOffset(t.A.ID, t.B.ID, offset, weight)

        # Figure out what offset we found vs. what offset we expected
        # PredictedOffset = t.B.FixedBoundingBox.Center - t.A.ControlBoundingBox.Center

        # diff = offset - PredictedOffset
        # distance = np.sqrt(np.sum(diff ** 2))

        # print("%d -> %d = %g" % (t.A.ID, t.B.ID, distance))

    pool.wait_completion()

    return (layout, tiles)
예제 #11
0
def TransformImage(transform, fixedImageShape, warpedImage, CropUndefined):
    '''Cut image into tiles, assemble small chunks
    :param transform transform: Transform to apply to point to map from warped image to fixed space
    :param ndarray fixedImageShape: Width and Height of the image to create
    :param ndarray warpedImage: Image to transform to fixed space
    :param bool CropUndefined: If true exclude areas outside the convex hull of the transform, if it exists
    :return: An ndimage array of the transformed image
    '''

    if CropUndefined:
        transform = triangulation.Triangulation(pointpairs=transform.points)

    tilesize = [2048, 2048]

    fixedImageShape = fixedImageShape.astype(dtype=np.int64)
    height = int(fixedImageShape[0])
    width = int(fixedImageShape[1])

    # print('\nConverting image to ' + str(self.NumCols) + "x" + str(self.NumRows) + ' grid of OpenGL textures')

    tasks = []

    grid_shape = nornir_imageregistration.TileGridShape(
        warpedImage.shape, tilesize)

    if np.all(grid_shape == np.array([1, 1])):
        # Single threaded
        return WarpedImageToFixedSpace(transform,
                                       fixedImageShape,
                                       warpedImage,
                                       botleft=np.array([0, 0]),
                                       area=fixedImageShape,
                                       extrapolate=not CropUndefined)
    else:
        outputImage = np.zeros(fixedImageShape, dtype=np.float32)
        sharedWarpedImage = nornir_imageregistration.npArrayToReadOnlySharedArray(
            warpedImage)
        mpool = nornir_pools.GetGlobalMultithreadingPool()

        for iY in range(0, height, int(tilesize[0])):

            end_iY = iY + tilesize[0]
            if end_iY > height:
                end_iY = height

            for iX in range(0, width, int(tilesize[1])):

                end_iX = iX + tilesize[1]
                if end_iX > width:
                    end_iX = width

                task = mpool.add_task(str(iX) + "x_" + str(iY) + "y",
                                      WarpedImageToFixedSpace,
                                      transform,
                                      fixedImageShape,
                                      sharedWarpedImage,
                                      botleft=[iY, iX],
                                      area=[end_iY - iY, end_iX - iX],
                                      extrapolate=not CropUndefined)
                task.iY = iY
                task.end_iY = end_iY
                task.iX = iX
                task.end_iX = end_iX

                tasks.append(task)

                # registeredTile = WarpedImageToFixedSpace(transform, fixedImageShape, warpedImage, botleft=[iY, iX], area=[end_iY - iY, end_iX - iX])
                # outputImage[iY:end_iY, iX:end_iX] = registeredTile
        mpool.wait_completion()

        for task in tasks:
            registeredTile = task.wait_return()
            outputImage[task.iY:task.end_iY,
                        task.iX:task.end_iX] = registeredTile

        del sharedWarpedImage

    return outputImage
예제 #12
0
def RelaxLayout(layout_obj,
                max_tension_cutoff=None,
                max_iter=None,
                vector_scale=None,
                plotting_output_path=None,
                plotting_interval=None):
    ''' 
    :param layout_obj: Layout to refine
    :param float max_tension_cutoff: Stop iteration after the maximum tension vector has a magnitude below this value
    :param int max_iter: Maximum number of iterations
    '''

    max_tension = layout_obj.MaxWeightedNetTensionMagnitude[1]

    if max_tension_cutoff is None:
        max_tension_cutoff = 0.1

    if max_iter is None:
        max_iter = 500

    if plotting_interval is None:
        plotting_interval = 10

    i = 0
    min_plotting_tension = max_tension_cutoff * 20
    plotting_max_tension = max(min_plotting_tension, max_tension)

    #         MovieImageDir = os.path.join(self.TestOutputPath, "relax_movie")
    #         if not os.path.exists(MovieImageDir):
    #             os.makedirs(MovieImageDir)
    pool = None
    if plotting_output_path is not None:
        os.makedirs(plotting_output_path, exist_ok=True)
        pool = nornir_pools.GetGlobalMultithreadingPool()

    print("Relax Layout")

    while max_tension > max_tension_cutoff and i < max_iter:
        print("\t%d %g" % (i, max_tension))
        Layout.RelaxNodes(layout_obj, vector_scalar=vector_scale)
        max_tension = layout_obj.MaxWeightedNetTensionMagnitude[1]

        plotting_max_tension = max(min_plotting_tension, max_tension)

        if plotting_output_path is not None and (i % plotting_interval == 0
                                                 or i < 10):
            filename = os.path.join(plotting_output_path, "%d.svg" % i)
            #             nornir_imageregistration.views.plot_layout(
            #                            layout_obj=layout_obj.copy(),
            #                            OutputFilename=filename,
            #                            max_tension=plotting_max_tension)
            pool.add_task("Plot step #%d" % (i),
                          nornir_imageregistration.views.plot_layout,
                          layout_obj=layout_obj.copy(),
                          OutputFilename=filename,
                          max_tension=plotting_max_tension)

        # node_distance = setup_imagetest.array_distance(node_movement[:,1:3])
        # max_distance = np.max(node_distance,0)
        i += 1

        # nornir_shared.plot.VectorField(layout_obj.GetPositions(), layout_obj.NetTensionVectors(), OutputFilename=filename)
        # pool.add_task("Plot step #%d" % (i), nornir_shared.plot.VectorField,layout_obj.GetPositions(), layout_obj.WeightedNetTensionVectors(), OutputFilename=filename)

    return layout_obj
예제 #13
0
def FindBestAngle(imFixed,
                  imWarped,
                  AngleList,
                  MinOverlap=0.75,
                  SingleThread=False,
                  Cluster=False):
    '''Find the best angle to align two images.  This function can be very memory intensive.
       Setting SingleThread=True makes debugging easier'''

    Debug = False
    pool = None

    # Temporarily disable until we have  cluster pool working again.  Leaving this on eliminates shared memory which is a big optimization
    Cluster = False

    if len(AngleList) <= 1:
        SingleThread = True

    if not SingleThread:
        if Debug:
            pool = nornir_pools.GetThreadPool(Poolname=None, num_threads=3)
        elif Cluster:
            pool = nornir_pools.GetGlobalClusterPool()
        else:
            pool = nornir_pools.GetGlobalMultithreadingPool()

    AngleMatchValues = list()
    taskList = list()

    (fixedStats, warpedStats) = GetFixedAndWarpedImageStats(imFixed, imWarped)

    #    MaxRotatedDimension = max([max(imFixed), max(imWarped)]) * 1.4143
    #    MinRotatedDimension = max(min(imFixed), min(imWarped))
    #
    #    SmallPaddedFixed = PadImageForPhaseCorrelation(imFixed, MaxOffset=0.1)
    #    LargePaddedFixed = PadImageForPhaseCorrelation(imFixed, MaxOffset=0.1)

    PaddedFixed = nornir_imageregistration.PadImageForPhaseCorrelation(
        imFixed,
        MinOverlap=MinOverlap,
        ImageMedian=fixedStats.median,
        ImageStdDev=fixedStats.std)

    # Create a shared read-only memory map for the Padded fixed image

    if not (Cluster or SingleThread):
        temp_padded_fixed_memmap = nornir_imageregistration.CreateTemporaryReadonlyMemmapFile(
            PaddedFixed)
        temp_shared_warp_memmap = nornir_imageregistration.CreateTemporaryReadonlyMemmapFile(
            imWarped)

        temp_padded_fixed_memmap.mode = 'r'  #We do not want functions we pass the memmap modifying the original data
        temp_shared_warp_memmap.mode = 'r'  #We do not want functions we pass the memmap modifying the original data

        # SharedPaddedFixed = nornir_imageregistration.npArrayToReadOnlySharedArray(PaddedFixed)
        # SharedWarped = nornir_imageregistration.npArrayToReadOnlySharedArray(imWarped)
        # SharedPaddedFixed = np.save(PaddedFixed, )
    else:
        SharedPaddedFixed = PaddedFixed
        SharedWarped = imWarped

    CheckTaskInterval = 16

    fixed_shape = imFixed.shape
    warped_shape = imWarped.shape

    for i, theta in enumerate(AngleList):

        if SingleThread:
            record = ScoreOneAngle(SharedPaddedFixed,
                                   SharedWarped,
                                   fixed_shape,
                                   warped_shape,
                                   theta,
                                   fixedStats=fixedStats,
                                   warpedStats=warpedStats,
                                   MinOverlap=MinOverlap)
            AngleMatchValues.append(record)
        else:
            task = pool.add_task(str(theta),
                                 ScoreOneAngle,
                                 temp_padded_fixed_memmap,
                                 temp_shared_warp_memmap,
                                 fixed_shape,
                                 warped_shape,
                                 theta,
                                 fixedStats=fixedStats,
                                 warpedStats=warpedStats,
                                 MinOverlap=MinOverlap)
            taskList.append(task)

        if not i % CheckTaskInterval == 0:
            continue

        # I don't like this, but it lets me delete tasks before filling the queue which may save some memory.
        # No sense checking unless we've already filled the queue though
        if len(taskList) > multiprocessing.cpu_count() * 1.5:
            for iTask in range(len(taskList) - 1, -1, -1):
                if taskList[iTask].iscompleted:
                    record = taskList[iTask].wait_return()
                    AngleMatchValues.append(record)
                    del taskList[iTask]

        # TestOneAngle(SharedPaddedFixed, SharedWarped, angle, None, MinOverlap)

# taskList.sort(key=tpool.Task.name)

    while len(taskList) > 0:
        for iTask in range(len(taskList) - 1, -1, -1):
            if taskList[iTask].iscompleted:
                record = taskList[iTask].wait_return()
                AngleMatchValues.append(record)
                del taskList[iTask]

        if len(taskList) > 0:
            # Wait a bit before checking the task list
            sleep(0.5)

        # print(str(record.angle) + ' = ' + str(record.peak) + ' weight: ' + str(record.weight) + '\n')

        # ShowGrayscale(NormCorrelationImage)

    # print str(AngleMatchValues)

    # Delete the pool to ensure extra python threads do not stick around
    if pool is not None:
        pool.wait_completion()

    del PaddedFixed

    if not (Cluster or SingleThread):
        os.remove(temp_shared_warp_memmap.path)
        os.remove(temp_padded_fixed_memmap.path)
        # del SharedPaddedFixed
        # del SharedWarped

    BestMatch = max(AngleMatchValues,
                    key=nornir_imageregistration.AlignmentRecord.WeightKey)
    return BestMatch
예제 #14
0
def HTMLFromLogDataNode(DataNode,
                        htmlpaths,
                        MaxImageWidth=None,
                        MaxImageHeight=None,
                        **kwargs):

    if MaxImageWidth is None:
        MaxImageWidth = 1024

    if MaxImageHeight is None:
        MaxImageHeight = 1024

    if not DataNode.Name == 'Log':
        return None

    TableEntries = {}

    logFilePath = DataNode.FullPath
    if os.path.exists(logFilePath):

        Data = serialemlog.SerialEMLog.Load(logFilePath)

        RelPath = htmlpaths.GetSubNodeRelativePath(DataNode)

        TableEntries["2"] = __ExtractLogDataText(Data)

        TPool = nornir_pools.GetGlobalMultithreadingPool()

        LogSrcFullPath = os.path.join(RelPath, DataNode.Path)

        DriftSettleThumbnailFilename = GetTempFileSaltString(
        ) + "DriftSettle.png"
        DriftSettleImgSrcPath = os.path.join(htmlpaths.ThumbnailRelative,
                                             DriftSettleThumbnailFilename)
        DriftSettleThumbnailOutputFullPath = os.path.join(
            htmlpaths.ThumbnailDir, DriftSettleThumbnailFilename)

        # nfiles.RemoveOutdatedFile(logFilePath, DriftSettleThumbnailOutputFullPath)
        # if not os.path.exists(DriftSettleThumbnailOutputFullPath):
        TPool.add_task(DriftSettleThumbnailFilename,
                       serialemlog.PlotDriftSettleTime, logFilePath,
                       DriftSettleThumbnailOutputFullPath)

        DriftGridThumbnailFilename = GetTempFileSaltString() + "DriftGrid.png"
        DriftGridImgSrcPath = os.path.join(htmlpaths.ThumbnailRelative,
                                           DriftGridThumbnailFilename)
        DriftGridThumbnailOutputFullPath = os.path.join(
            htmlpaths.ThumbnailDir, DriftGridThumbnailFilename)

        # nfiles.RemoveOutdatedFile(logFilePath, DriftGridThumbnailFilename)
        # if not os.path.exists(DriftGridThumbnailFilename):
        TPool.add_task(DriftGridThumbnailFilename, serialemlog.PlotDriftGrid,
                       logFilePath, DriftGridThumbnailOutputFullPath)

        # Build a histogram of drift settings
        #        x = []
        #        y = []
        #        for t in Data.tileData.values():
        #            if not (t.dwellTime is None or t.drift is None):
        #                x.append(t.dwellTime)
        #                y.append(t.drift)
        #
        #        ThumbnailFilename = GetTempFileSaltString() + "Drift.png"
        #        ImgSrcPath = os.path.join(ThumbnailDirectoryRelPath, ThumbnailFilename)
        #        ThumbnailOutputFullPath = os.path.join(ThumbnailDirectory, ThumbnailFilename)

        # PlotHistogram.PolyLinePlot(lines, Title="Stage settle time, max drift %g" % maxdrift, XAxisLabel='Dwell time (sec)', YAxisLabel="Drift (nm/sec)", OutputFilename=ThumbnailOutputFullPath)
        HTMLDriftSettleImage = HTMLImageTemplate % {
            'src': DriftSettleImgSrcPath,
            'AltText': 'Drift scatterplot',
            'ImageWidth': MaxImageWidth,
            'ImageHeight': MaxImageHeight
        }
        HTMLDriftSettleAnchor = HTMLAnchorTemplate % {
            'href': DriftSettleImgSrcPath,
            'body': HTMLDriftSettleImage
        }

        HTMLDriftGridImage = HTMLImageTemplate % {
            'src': DriftGridImgSrcPath,
            'AltText': 'Drift scatterplot',
            'ImageWidth': MaxImageWidth,
            'ImageHeight': MaxImageHeight
        }
        HTMLDriftGridAnchor = HTMLAnchorTemplate % {
            'href': DriftGridImgSrcPath,
            'body': HTMLDriftGridImage
        }

        TableEntries["1"] = HTMLAnchorTemplate % {
            'href': LogSrcFullPath,
            'body': "Log File"
        }
        TableEntries["3"] = ColumnList(
            [HTMLDriftSettleAnchor, HTMLDriftGridAnchor])
    else:
        TableEntries = []

        if 'AverageTileDrift' in DataNode.attrib:
            TableEntries.append([
                'Average tile drift:',
                '%.3g nm/sec' % float(DataNode.AverageTileDrift)
            ])

        if 'MinTileDrift' in DataNode.attrib:
            TableEntries.append([
                'Min tile drift:',
                '%.3g nm/sec' % float(DataNode.MinTileDrift)
            ])

        if 'MaxTileDrift' in DataNode.attrib:
            TableEntries.append([
                'Max tile drift:',
                '%.3g nm/sec' % float(DataNode.MaxTileDrift)
            ])

        if 'AverageTileTime' in DataNode.attrib:
            TableEntries.append([
                'Average tile time:',
                '%.3g' % float(DataNode.AverageTileTime)
            ])

        if 'FastestTileTime' in DataNode.attrib:
            dtime = datetime.timedelta(seconds=float(DataNode.FastestTileTime))
            TableEntries.append(['Fastest tile time:', str(dtime)])

        if 'CaptureTime' in DataNode.attrib:
            dtime = datetime.timedelta(seconds=float(DataNode.CaptureTime))
            TableEntries.append(['Total capture time:', str(dtime)])

    if len(TableEntries) == 0:
        return None

    # HTML = MatrixToTable(TableEntries)
    return TableEntries
    def _Relax_Layout(self,
                      layout_obj,
                      max_tension_cutoff=None,
                      max_iter=None,
                      dirname_postfix=None):

        if max_tension_cutoff is None:
            max_tension_cutoff = 1.0

        if max_iter is None:
            max_iter = 100

        if dirname_postfix is None:
            dirname_postfix = ""

        max_tension = layout_obj.MaxWeightedNetTensionMagnitude[1]
        min_plotting_tension = max_tension_cutoff * 20
        plotting_max_tension = max(min_plotting_tension, max_tension)
        i = 0

        pool = nornir_pools.GetGlobalMultithreadingPool()

        MovieImageDir = os.path.join(self.TestOutputPath,
                                     "relax_movie" + dirname_postfix)
        if not os.path.exists(MovieImageDir):
            os.makedirs(MovieImageDir)

        while max_tension > max_tension_cutoff and i < max_iter:
            print("%d %g" % (i, max_tension))
            node_movement = nornir_imageregistration.layout.Layout.RelaxNodes(
                layout_obj)
            max_tension = layout_obj.MaxWeightedNetTensionMagnitude[1]
            plotting_max_tension = max_tension
            plotting_max_tension = max(min_plotting_tension, max_tension)
            # node_distance = setup_imagetest.array_distance(node_movement[:,1:3])
            # max_distance = np.max(node_distance,0)

            filename = os.path.join(MovieImageDir, "%d.png" % i)

            #pool.add_task("Plot step #%d" % (i), nornir_imageregistration.views.plot_layout,
            #                           layout_obj=layout_obj,
            #                           OutputFilename=filename,
            #                           max_tension=plotting_max_tension)

            if i % 10 == 0:
                #                 nornir_imageregistration.views.plot_layout(
                #                            layout_obj=layout_obj,
                #                            OutputFilename=filename,
                #                            max_tension=plotting_max_tension)

                pool.add_task("Plot step #%d" % (i),
                              nornir_imageregistration.views.plot_layout,
                              layout_obj=layout_obj.copy(),
                              OutputFilename=filename,
                              max_tension=plotting_max_tension)

#             nornir_shared.plot.VectorField(Points=layout_obj.GetPositions(),
#                                            Offsets=layout_obj.WeightedNetTensionVectors(),
#                                            weights=nornir_imageregistration.array_distance(layout_obj.WeightedNetTensionVectors()) / layout_obj.MaxWeightedNetTensionMagnitude,
#                                            OutputFilename=filename)
            i += 1
#
        return layout_obj