def __init__(self, cell, n_features=128, n_input=80, n_output=10): super(SNNModel, self).__init__() self.n_features = n_features self.n_input = n_input self.n_output = n_output self.cell = cell(self.n_input, self.n_features) self.readout = LILinearCell(self.n_features, self.n_output)
def __init__(self, num_channels=1, feature_size=28, method="super", dtype=torch.float): super(ConvNet, self).__init__() self.features = int(((feature_size - 4) / 2 - 4) / 2) self.conv1 = torch.nn.Conv2d(num_channels, 20, 5, 1) self.conv2 = torch.nn.Conv2d(20, 50, 5, 1) self.fc1 = torch.nn.Linear(self.features * self.features * 50, 500) self.out = LILinearCell(500, 10) self.lif0 = LIFCell(p=LIFParameters(method=method, alpha=100.0), ) self.lif1 = LIFCell(p=LIFParameters(method=method, alpha=100.0), ) self.lif2 = LIFCell(p=LIFParameters(method=method, alpha=100.0)) self.dtype = dtype
def __init__(self): super(Policy, self).__init__() self.state_dim = 4 self.input_features = 16 self.hidden_features = 128 self.output_features = 2 self.constant_current_encoder = ConstantCurrentLIFEncoder(40) self.lif = LIFRecurrentCell( 2 * self.state_dim, self.hidden_features, p=LIFParameters(method="super", alpha=100.0), ) self.dropout = torch.nn.Dropout(p=0.5) self.readout = LILinearCell(self.hidden_features, self.output_features) self.saved_log_probs = [] self.rewards = []
def __init__(self, num_channels=1, feature_size=28, method="super", dtype=torch.float): super(ConvNet4, self).__init__() self.features = int(((feature_size - 4) / 2 - 4) / 2) self.conv1 = torch.nn.Conv2d(num_channels, 32, 5, 1) self.conv2 = torch.nn.Conv2d(32, 64, 5, 1) self.fc1 = torch.nn.Linear(self.features * self.features * 64, 1024) self.lif0 = LIFCell(p=LIFParameters(method=method, alpha=100.0, v_th=torch.as_tensor(0.7)), ) self.lif1 = LIFCell(p=LIFParameters(method=method, alpha=100.0, v_th=torch.as_tensor(0.7)), ) self.lif2 = LIFCell(p=LIFParameters(method=method, alpha=100.0)) self.out = LILinearCell(1024, 10) self.dtype = dtype
def __init__( self, input_features, output_features, seq_length, is_lsnn, dt=0.01, model="super", ): super(MemoryNet, self).__init__() self.input_features = input_features self.output_features = output_features self.seq_length = seq_length self.is_lsnn = is_lsnn if is_lsnn: p = LSNNParameters(method=model) self.layer = LSNNRecurrentCell(input_features, input_features, p, dt=dt) else: p = LIFParameters(method=model) self.layer = LIFRecurrentCell(input_features, input_features, dt=dt) self.dropout = torch.nn.Dropout(p=0.2) self.readout = LILinearCell(input_features, output_features)
def __init__(self, input_features, output_features, args): super(MemoryNet, self).__init__() self.input_features = input_features self.output_features = output_features self.seq_length = args.seq_length self.optimizer = args.optimizer self.learning_rate = args.learning_rate self.regularization_factor = args.regularization_factor self.regularization_target = args.regularization_target / ( self.seq_length * args.seq_repetitions ) self.log("Neuron model", args.neuron_model) p_lsnn = LSNNParameters( method=args.model, v_th=torch.as_tensor(0.5), tau_adapt_inv=torch.as_tensor(1 / 1200.0), beta=torch.as_tensor(1.8), ) p_lif = LIFParameters( method=args.model, v_th=torch.as_tensor(0.5), ) p_li = LIParameters() if args.neuron_model == "lsnn": self.capture_b = False self.layer = LSNNRecurrentCell(input_features, input_features, p=p_lsnn) elif args.neuron_model == "lsnnlif": self.layer = LSNNLIFNet( input_features, p_lsnn=p_lsnn, p_lif=p_lif, dt=args.dt ) self.capture_b = True else: self.layer = LIFRecurrentCell( input_features, input_features, p=p_lif, dt=args.dt ) self.capture_b = False self.readout = LILinearCell(input_features, output_features, p=p_li) self.scheduler = None
def test_lif_correlation_training(): def generate_random_data( seq_length, batch_size, input_features, device="cpu", dtype=torch.float, dt=0.001, ): freq = 5 prob = freq * dt mask = torch.rand((seq_length, batch_size, input_features), device=device, dtype=dtype) x_data = torch.zeros( (seq_length, batch_size, input_features), device=device, dtype=dtype, requires_grad=False, ) x_data[mask < prob] = 1.0 y_data = torch.tensor(1 * (np.random.rand(batch_size) < 0.5), device=device) return x_data, y_data seq_length = 50 batch_size = 1 input_features = 10 hidden_features = 8 output_features = 2 device = "cpu" x, y_data = generate_random_data( seq_length=seq_length, batch_size=batch_size, input_features=input_features, device=device, ) input_weights = (torch.randn((input_features, hidden_features), device=device).float().t()) recurrent_weights = torch.randn((hidden_features, hidden_features), device=device).float() lif_correlation = LIFCorrelation(input_features, hidden_features) out = LILinearCell(hidden_features, output_features).to(device) log_softmax_fn = torch.nn.LogSoftmax(dim=1) loss_fn = torch.nn.NLLLoss() linear_update = torch.nn.Linear(2 * 10 * 8, 10 * 8) rec_linear_update = torch.nn.Linear(2 * 8 * 8, 8 * 8) optimizer = torch.optim.Adam( list(linear_update.parameters()) + [input_weights, recurrent_weights] + list(out.parameters()), lr=1e-1, ) loss_hist = [] num_episodes = 3 for e in range(num_episodes): s1 = None so = None voltages = torch.zeros(seq_length, batch_size, output_features, device=device) hidden_voltages = torch.zeros(seq_length, batch_size, hidden_features, device=device) hidden_currents = torch.zeros(seq_length, batch_size, hidden_features, device=device) optimizer.zero_grad() for ts in range(seq_length): z1, s1 = lif_correlation( x[ts, :, :], input_weights=input_weights, recurrent_weights=recurrent_weights, state=s1, ) input_weights = correlation_based_update( ts, linear_update, input_weights.detach(), s1.input_correlation_state, 0.01, 10, ) recurrent_weights = correlation_based_update( ts, rec_linear_update, recurrent_weights.detach(), s1.recurrent_correlation_state, 0.01, 10, ) vo, so = out(z1, so) hidden_voltages[ts, :, :] = s1.lif_state.v.detach() hidden_currents[ts, :, :] = s1.lif_state.i.detach() voltages[ts, :, :] = vo m, _ = torch.max(voltages, dim=0) log_p_y = log_softmax_fn(m) loss_val = loss_fn(log_p_y, y_data.long()) loss_val.backward() optimizer.step() loss_hist.append(loss_val.item()) print(f"{e}/{num_episodes}: {loss_val.item()}")