class GenerateTwoPartSecondSpecies:
    def __init__(self,
                 length: int = None,
                 mode: ModeOption = None,
                 octave: int = 4,
                 orientation: Orientation = Orientation.ABOVE):
        self._orientation = orientation
        self._mode = mode or MODES_BY_INDEX[math.floor(random() * 6)]
        self._length = length or 8 + math.floor(
            random() * 5)  #todo: replace with normal distribution
        self._octave = octave
        self._mr = ModeResolver(self._mode)
        gcf = GenerateCantusFirmus(self._length, self._mode, self._octave)
        cf = None
        #if the Cantus Firmus doesn't generate, we have to try again
        #also, if we are below the Cantus Firmus, the Cantus Firmus must end stepwise
        while cf is None or (
                cf.get_note(self._length - 2).get_scale_degree_interval(
                    cf.get_note(self._length - 1)) < -2
                and orientation == Orientation.BELOW):
            cf = gcf.generate_cf()
        self._cantus_object = cf
        self._cantus = cf.get_notes()

        #determined through two randomly generated booleans if we will start on the offbeat
        #or onbeat and whether the penultimate measure will be divided
        #IMPORTANT: define these in the constructor rather than at initialization otherwise we'll get length mismatches among solutions
        self._start_on_beat = True if random() > .5 else False
        self._penult_is_whole = True if random() > .5 else False

        #keep track of which measures are divided
        self._divided_measures = set([
            i for i in range(self._length -
                             2 if self._penult_is_whole else self._length - 1)
        ])

        #keep track of all indices of notes (they will be in the form (measure, beat))
        #assume measures are four beats and beats are quarter notes
        indices = [(0, 0), (0, 2)] if self._start_on_beat else [(0, 2)]
        for i in range(1, self._length):
            indices += [(i, 0),
                        (i, 2)] if i in self._divided_measures else [(i, 0)]
        self._all_indices = indices

    def print_counterpoint(self):
        print("  CANTUS FIRMUS:       COUNTERPOINT:")
        for i in range(self._length):
            cntpt_note = self._counterpoint[(i, 0)] if (
                i, 0) in self._counterpoint else "REST"
            print("  " + str(self._cantus[i]) + "  " + str(cntpt_note))
            if i in self._divided_measures:
                print("                       " +
                      str(self._counterpoint[(i, 2)]))

    def get_optimal(self):
        if len(self._solutions) == 0:
            return None
        optimal = self._solutions[0]
        self._map_solution_onto_counterpoint_dict(optimal)
        sol = [Note(1, 0, 4, ScaleOption.REST), self._counterpoint[(0, 2)]
               ] if not self._start_on_beat else [
                   self._counterpoint[(0, 0)], self._counterpoint[(0, 2)]
               ]
        for i in range(1, self._length):
            sol.append(self._counterpoint[(i, 0)])
            if i in self._divided_measures:
                sol.append(self._counterpoint[(i, 2)])
        return [sol, self._cantus]

    def generate_2p2s(self):
        start_time = time()
        print("MODE = ", self._mode.value["name"])
        self._solutions = []

        @timeout_decorator.timeout(5)
        def attempt():
            initialized = self._initialize()
            while not initialized:
                initialized = self._initialize()
            self._backtrack()

        attempts = 0
        while len(self._solutions) < 30 and time() - start_time < 7:
            try:
                attempt()
                attempts += 1
            except:
                print("timed out")
        print("number of attempts:", attempts)
        print("number of solutions:", len(self._solutions))
        if len(self._solutions) > 0:
            solutions = self._solutions[:100]
            solutions.sort(key=lambda sol: self._score_solution(sol))
            self._solutions = solutions

    def _initialize(self) -> bool:
        #initialize counterpoint data structure, that will map indices to notes
        counterpoint = {}
        for index in self._all_indices:
            counterpoint[index] = None

        #initialize range to 8.  we'll modify it based on probability
        vocal_range = 8
        range_alteration = random()
        if range_alteration < .1: vocal_range -= math.floor(random() * 3)
        elif range_alteration > .5: vocal_range += math.floor(random() * 3)

        cantus_final = self._cantus[0]
        cantus_first_interval = cantus_final.get_scale_degree_interval(
            self._cantus[1])
        cantus_last_interval = self._cantus[-2].get_scale_degree_interval(
            self._cantus[-1])

        first_note, last_note, penult_note = None, None, None
        highest_so_far, lowest_so_far = None, None
        lowest, highest = None, None
        if self._orientation == Orientation.ABOVE:
            start_interval_options = [
                1, 5, 8
            ] if cantus_first_interval < 0 and self._cantus_object.get_upward_range(
            ) < 3 else [5, 8]
            shuffle(start_interval_options)
            start_interval = start_interval_options[0]
            first_note = self._get_default_note_from_interval(
                cantus_final, start_interval)
            highest_so_far, lowest_so_far = first_note, first_note
            last_interval_options = [1, 1, 5] if start_interval == 1 else [
                8, 8, 5
            ] if start_interval == 8 else [1, 1, 8, 8, 5]
            if self._cantus[-2].get_scale_degree_interval(
                    self._cantus[-1]) < 0:
                if 1 in last_interval_options: last_interval_options.remove(1)
            if cantus_last_interval == 5:
                last_interval_options = [5]
            if cantus_last_interval in [2, 4]:
                if 5 in last_interval_options: last_interval_options.remove(5)
                if len(last_interval_options) == 0:
                    last_interval_options = [8]
                    first_note = self._get_default_note_from_interval(
                        cantus_final, 8)
                    highest_so_far, lowest_so_far = first_note, first_note
            shuffle(last_interval_options)
            last_interval = last_interval_options[0]
            last_note = self._get_default_note_from_interval(
                cantus_final, last_interval)
            if highest_so_far.get_scale_degree_interval(last_note) > 1:
                highest_so_far = last_note
            if lowest_so_far.get_scale_degree_interval(last_note) < 0:
                lowest_so_far = last_note
            penult_note = self._get_leading_tone_of_note(
                last_note
            ) if cantus_last_interval == -2 else self._get_default_note_from_interval(
                last_note, 2)
            if last_interval == 5:
                self._mr.make_default_scale_option(penult_note)
            if highest_so_far.get_scale_degree_interval(penult_note) > 1:
                highest_so_far = penult_note
            if lowest_so_far.get_scale_degree_interval(penult_note) < 0:
                lowest_so_far = penult_note
            #we have to figure out how many lower notes it is possible to assign
            gap_so_far = self._cantus_object.get_highest_note(
            ).get_scale_degree_interval(lowest_so_far)
            leeway = vocal_range - lowest_so_far.get_scale_degree_interval(
                highest_so_far) + 1
            allowance = 1 if first_note.get_scale_degree_interval(
                last_note) == 1 and penult_note.get_scale_degree_interval(
                    last_note) > 0 else 0
            max_available_lower_scale_degrees = min(
                max(1, gap_so_far + 2 if gap_so_far > 0 else gap_so_far + 4),
                leeway - allowance)
            interval_to_lowest = math.ceil(random() *
                                           max_available_lower_scale_degrees)
            lowest = self._get_default_note_from_interval(
                lowest_so_far, interval_to_lowest *
                -1) if interval_to_lowest > 1 else lowest_so_far
            highest = self._get_default_note_from_interval(lowest, vocal_range)
            if vocal_range == 8:
                highest.set_accidental(lowest.get_accidental())
            while (lowest.get_chromatic_interval(first_note) % 12 == 6
                   or first_note.get_chromatic_interval(highest) % 12 == 6
                   or lowest.get_chromatic_interval(last_note) % 12 == 6
                   or last_note.get_chromatic_interval(highest) % 12 == 6
                   or lowest.get_chromatic_interval(highest) % 12 == 6):
                interval_to_lowest = math.ceil(
                    random() * max_available_lower_scale_degrees)
                lowest = self._get_default_note_from_interval(
                    lowest_so_far, interval_to_lowest *
                    -1) if interval_to_lowest > 1 else lowest_so_far
                highest = self._get_default_note_from_interval(
                    lowest, vocal_range)
                if vocal_range == 8:
                    highest.set_accidental(lowest.get_accidental())

        if self._orientation == Orientation.BELOW:
            if self._cantus_object.get_downward_range(
            ) >= 3 or cantus_first_interval < 0 or cantus_last_interval < 0 or random(
            ) > .5:
                first_note = self._get_default_note_from_interval(
                    cantus_final, -8)
            else:
                first_note = self._get_default_note_from_interval(
                    cantus_final, -8)
            last_note = first_note
            if cantus_last_interval > 0:
                penult_note = self._get_default_note_from_interval(
                    last_note, 2)
                lowest_so_far, highest_so_far = last_note, penult_note
            else:
                penult_note = self._get_leading_tone_of_note(last_note)
                lowest_so_far, highest_so_far = penult_note, last_note
            leeway = vocal_range - 1
            gap_so_far = highest_so_far.get_scale_degree_interval(
                self._cantus_object.get_lowest_note())
            max_available_higher_scale_degrees = min(
                leeway,
                max(1, gap_so_far + 2 if gap_so_far > 0 else gap_so_far + 4))
            allowance = 1 if cantus_last_interval > 0 else 0
            interval_to_highest = math.floor(
                random() * (max_available_higher_scale_degrees -
                            allowance)) + 1 + allowance
            highest = self._get_default_note_from_interval(
                highest_so_far, interval_to_highest)
            lowest = self._get_default_note_from_interval(
                highest, vocal_range * -1)
            if lowest.get_scale_degree_interval(penult_note) == 1:
                penult_note.set_accidental(lowest.get_accidental())
            while (lowest.get_chromatic_interval(first_note) % 12 == 6
                   or first_note.get_chromatic_interval(highest) % 12 == 6
                   or lowest.get_chromatic_interval(highest) % 12 == 6):
                interval_to_highest = math.floor(
                    random() * (max_available_higher_scale_degrees -
                                allowance)) + 1 + allowance
                highest = self._get_default_note_from_interval(
                    highest_so_far, interval_to_highest)
                lowest = self._get_default_note_from_interval(
                    highest, vocal_range * -1)
                if lowest.get_scale_degree_interval(penult_note) == 1:
                    penult_note.set_accidental(lowest.get_accidental())

        #add counterpoint dict and remaining indices
        first_note.set_duration(4)
        last_note.set_duration(16)
        if self._length - 2 in self._divided_measures:
            penult_note.set_duration(4)
        counterpoint[self._all_indices[0]] = first_note
        counterpoint[self._all_indices[-2]] = penult_note
        counterpoint[self._all_indices[-1]] = last_note
        self._counterpoint = counterpoint
        self._remaining_indices = self._all_indices[1:-2]

        #generate valid pitches
        valid_pitches = [lowest]
        for i in range(2, vocal_range):  #we don't include the highest note
            valid_pitches += self._get_notes_from_interval(lowest, i)
        self._valid_pitches = valid_pitches

        #add highest and lowest notes if they're not already present
        if highest_so_far.get_scale_degree_interval(highest) != 1:
            if not self._place_highest(highest):
                return False
        if lowest.get_scale_degree_interval(lowest_so_far) != 1:
            if not self._place_lowest(lowest):
                return False
        self._remaining_indices.sort(reverse=True)
        return True

    def _place_highest(self, note: Note) -> bool:
        possible_indices = self._remaining_indices[:]
        if self._length % 2 == 1:
            possible_indices.remove((math.floor(self._length / 2), 0))
        shuffle(possible_indices)
        index = None
        while len(possible_indices) > 0:
            index = possible_indices.pop()
            if not self._passes_insertion_check(note, index):
                continue
            #if it passes insertion checks, make sure last two intervals are not invalid
            next_note = self._get_next_note(index)
            if next_note is not None:
                last_note = self._counterpoint[(self._length - 1, 0)]
                if next_note.get_scale_degree_interval(
                        last_note
                ) == -2 and note.get_scale_degree_interval(next_note) < -2:
                    continue
            break
        if len(possible_indices) == 0:
            return False
        self._counterpoint[index] = note
        self._remaining_indices.remove(index)
        return True

    def _place_lowest(self, note: Note) -> bool:
        possible_indices = self._remaining_indices[:]
        shuffle(possible_indices)
        index = None
        while len(possible_indices) > 0:
            index = possible_indices.pop()
            if not self._passes_insertion_check(note, index):
                continue
            #if it passes insertion checks, find a span it may be attached to and evaluate
            span = [note]
            lower_index, upper_index = self._get_prev_index(
                index), self._get_next_index(index)
            while lower_index is not None and self._counterpoint[
                    lower_index] is not None:
                span = [self._counterpoint[lower_index]] + span
                lower_index = self._get_prev_index(lower_index)
            while upper_index is not None and self._counterpoint[
                    upper_index] is not None:
                span.append(self._counterpoint[upper_index])
                upper_index = self._get_next_index(upper_index)
            if not self._span_is_valid(
                    span, check_beginning=False, check_ending=False):
                continue
            break
        if len(possible_indices) == 0:
            return False
        self._counterpoint[index] = note
        self._remaining_indices.remove(index)
        return True

    def _backtrack(self) -> None:
        if len(self._solutions) >= 50: return
        if len(self._remaining_indices) == 0:
            sol = []
            for i in range(len(self._all_indices)):
                sol.append(self._counterpoint[self._all_indices[i]])
            if self._passes_final_checks(sol):
                self._solutions.append(sol)
            return
        index = self._remaining_indices.pop()
        candidates = list(
            filter(lambda n: self._passes_insertion_check(n, index),
                   self._valid_pitches))
        for candidate in candidates:
            self._counterpoint[index] = candidate
            if self._current_chain_is_legal():
                self._backtrack()
        self._counterpoint[index] = None
        self._remaining_indices.append(index)

    def _get_leading_tone_of_note(self, note: Note) -> Note:
        lt = self._get_default_note_from_interval(note, -2)
        if lt.get_scale_degree() in [
                1, 4, 5
        ] or (lt.get_scale_degree() == 2 and self._mode == ModeOption.AEOLIAN):
            lt.set_accidental(ScaleOption.SHARP)
        if lt.get_scale_degree() == 7:
            lt.set_accidental(ScaleOption.NATURAL)
        return lt

    def _get_default_note_from_interval(self, note: Note,
                                        interval: int) -> Note:
        candidates = self._get_notes_from_interval(note, interval)
        if len(candidates) == 0: return None
        note = candidates[0]
        self._mr.make_default_scale_option(note)
        return note

    #returns valid notes, if any, at the specified interval.  "3" returns a third above.  "-5" returns a fifth below
    def _get_notes_from_interval(self, note: Note,
                                 interval: int) -> list[Note]:
        sdg = note.get_scale_degree()
        octv = note.get_octave()
        adjustment_value = -1 if interval > 0 else 1
        new_sdg, new_octv = sdg + interval + adjustment_value, octv
        if new_sdg < 1:
            new_octv -= 1
            new_sdg += 7
        else:
            while new_sdg > 7:
                new_octv += 1
                new_sdg -= 7
        new_note = Note(new_sdg, new_octv, 8)
        valid_notes = [new_note]
        if (self._mode == ModeOption.DORIAN
                or self._mode == ModeOption.LYDIAN) and new_sdg == 7:
            valid_notes.append(
                Note(new_sdg, new_octv, 8, accidental=ScaleOption.FLAT))
        if self._mode == ModeOption.AEOLIAN and new_sdg == 2:
            valid_notes.append(
                Note(new_sdg, new_octv, 8, accidental=ScaleOption.SHARP))
        if new_sdg in [1, 4, 5]:
            valid_notes.append(
                Note(new_sdg, new_octv, 8, accidental=ScaleOption.SHARP))
        return valid_notes

    def _is_valid_adjacent(self, note1: Note, note2: Note) -> bool:
        sdg_interval = note1.get_scale_degree_interval(note2)
        if (note1.get_accidental() == ScaleOption.SHARP
                or note2.get_accidental()
                == ScaleOption.SHARP) and abs(sdg_interval) > 3:
            return False
        #if a sharp is not followed by a step up, we'll give it an arbitrary 50% chance of passing
        is_leading_tone = note1.get_accidental == ScaleOption.SHARP or (
            note1.get_scale_degree() == 7
            and self._mode in [ModeOption.DORIAN, ModeOption.LYDIAN])
        if sdg_interval != 2 and is_leading_tone and random() > .5:
            return False

        chro_interval = note1.get_chromatic_interval(note2)
        if (sdg_interval in LegalIntervals["adjacent_melodic_scalar"] and
                chro_interval in LegalIntervals["adjacent_melodic_chromatic"]
                and (sdg_interval, chro_interval)
                not in LegalIntervals["forbidden_combinations"]):
            return True
        return False

    def _is_valid_outline(self, note1: Note, note2: Note) -> bool:
        sdg_interval = note1.get_scale_degree_interval(note2)
        chro_interval = note1.get_chromatic_interval(note2)
        if (sdg_interval in LegalIntervals["outline_melodic_scalar"] and
                chro_interval in LegalIntervals["outline_melodic_chromatic"]
                and (sdg_interval, chro_interval)
                not in LegalIntervals["forbidden_combinations"]):
            return True
        return False

    def _is_valid_harmonically(self, note1: Note, note2: Note) -> bool:
        sdg_interval = note1.get_scale_degree_interval(note2)
        chro_interval = note1.get_chromatic_interval(note2)
        if (sdg_interval in LegalIntervals["harmonic_scalar"]
                and chro_interval in LegalIntervals["harmonic_chromatic"]
                and (sdg_interval, chro_interval)
                not in LegalIntervals["forbidden_combinations"]):
            return True
        return False

    def _is_unison(self, note1: Note, note2: Note) -> bool:
        return note1.get_scale_degree_interval(
            note2) == 1 and note1.get_chromatic_interval(note2) == 0

    def _get_prev_note(self, index: tuple) -> Note:
        prev_index = self._get_prev_index(index)
        return None if prev_index is None else self._counterpoint[prev_index]

    def _get_next_note(self, index: tuple) -> Note:
        next_index = self._get_next_index(index)
        return None if next_index is None else self._counterpoint[next_index]

    def _get_prev_index(self, index: tuple) -> tuple:
        i = self._all_indices.index(index)
        if i == 0: return None
        return self._all_indices[i - 1]

    def _get_next_index(self, index: tuple) -> tuple:
        i = self._all_indices.index(index)
        if i == len(self._all_indices) - 1: return None
        return self._all_indices[i + 1]

    def _passes_insertion_check(self, note: Note, index: tuple) -> bool:
        (i, j) = index
        prev_note, next_note = self._get_prev_note(index), self._get_next_note(
            index)
        if prev_note is not None and not self._is_valid_adjacent(
                prev_note, note):
            return False
        if next_note is not None and not self._is_valid_adjacent(
                note, next_note):
            return False
        if not self._valid_harmonic_insertion(note, index): return False
        if not self._doesnt_create_parallels(note, index): return False
        if not self._no_large_parallel_leaps(note, index): return False
        if not self._no_cross_relations_with_cantus_firmus(note, index):
            return False
        if not self._no_octave_leap_with_perfect_harmonic_interval(
                note, index):
            return False
        return True

    def _valid_harmonic_insertion(self, note: Note, index: tuple) -> bool:
        (i, j) = index
        cf_note = self._cantus[i]
        if self._is_valid_harmonically(note, cf_note):
            if j == 0:
                prev_note, cf_prev = self._counterpoint[(i - 1,
                                                         2)], self._cantus[i -
                                                                           1]
                if prev_note is not None and not self._is_valid_harmonically(
                        prev_note, cf_prev):
                    if (i - 1, 0) in self._counterpoint and self._counterpoint[
                        (i - 1, 0)].get_scale_degree_interval(
                            prev_note) != prev_note.get_scale_degree_interval(
                                note):
                        return False
            return True
        if j == 0: return False
        if cf_note.get_chromatic_interval(note) == 0: return True
        prev_note = self._counterpoint[(i, 0)]
        if prev_note is None:
            return False  #the highest or lowest note cannot be a passing tone
        if abs(prev_note.get_scale_degree_interval(note)) != 2: return False
        next_note = self._counterpoint[(i + 1, 0)]
        if next_note is None: return True
        return note.get_scale_degree_interval(
            next_note) == prev_note.get_scale_degree_interval(note)

    def _doesnt_create_parallels(self, note: Note, index: tuple) -> bool:
        (i, j) = index
        cf_note, next_note, cf_next = self._cantus[i], self._counterpoint[(
            i + 1, 0)], self._cantus[i + 1]
        if next_note is not None and abs(
                next_note.get_chromatic_interval(cf_next)) in [0, 7, 12, 19]:
            #next measure is a perfect interval.  check for parallels first
            if note.get_chromatic_interval(
                    cf_note) == next_note.get_chromatic_interval(cf_next):
                return False
            #check for hidden intervals
            if (j == 2 and
                ((note.get_scale_degree_interval(next_note) > 0
                  and cf_note.get_scale_degree_interval(cf_next) > 0) or
                 (note.get_scale_degree_interval(next_note) < 0
                  and cf_note.get_scale_degree_interval(cf_next) < 0))):
                return False
        #if j is 2 we don't have to check what comes before
        if j == 0 and abs(
                note.get_chromatic_interval(cf_note)) in [0, 7, 12, 19]:
            cf_prev = self._cantus[i - 1]
            #check previous downbeat if it exists
            if i - 1 != 0 or self._start_on_beat:
                prev_downbeat = self._counterpoint[(i - 1, 0)]
                if prev_downbeat is not None and note.get_chromatic_interval(
                        cf_note) == prev_downbeat.get_chromatic_interval(
                            cf_prev):
                    return False
            #previous weak beat will always exist when we check an insertion
            prev_note = self._counterpoint[(i - 1, 2)]
            if prev_note is not None and note.get_chromatic_interval(
                    cf_note) == prev_note.get_chromatic_interval(cf_prev):
                return False
            #check for hiddens
            if (prev_note is not None and
                ((prev_note.get_scale_degree_interval(note) > 0
                  and cf_prev.get_scale_degree_interval(cf_note) > 0) or
                 (prev_note.get_scale_degree_interval(note) < 0
                  and cf_prev.get_scale_degree_interval(cf_note) < 0))):
                return False
        return True

    def _no_large_parallel_leaps(self, note: Note, index: tuple) -> bool:
        (i, j) = index
        cf_prev, cf_note, cf_next = self._cantus[
            i - 1], self._cantus[i], self._cantus[i + 1]
        if j == 2:
            next_note = self._counterpoint[(i + 1, 0)]
            if next_note is not None:
                next_interval, cf_next_interval = note.get_scale_degree_interval(
                    next_note), cf_note.get_scale_degree_interval(cf_next)
                if ((abs(next_interval) > 2 and abs(cf_next_interval) > 2
                     and (abs(next_interval) > 4 or abs(cf_next_interval) > 4)
                     and ((next_interval > 0 and cf_next_interval > 0) or
                          (next_interval < 0 and cf_next_interval < 0)))):
                    return False
        else:
            prev_note = self._counterpoint[(
                i - 1, 2)]  #this index will always exist when we check this
            if prev_note is not None:
                prev_interval, cf_prev_interval = prev_note.get_scale_degree_interval(
                    note), cf_prev.get_scale_degree_interval(cf_note)
                if ((abs(prev_interval) > 2 and abs(cf_prev_interval) > 2
                     and (abs(prev_interval) > 4 or abs(cf_prev_interval) > 4)
                     and ((prev_interval > 0 and cf_prev_interval > 0) or
                          (prev_interval < 0 and cf_prev_interval < 0)))):
                    return False
        return True

    def _no_cross_relations_with_cantus_firmus(self, note: Note,
                                               index: tuple) -> bool:
        (i, j) = index
        cf_note = self._cantus[i - 1 if j == 0 else i + 1]
        if abs(cf_note.get_scale_degree_interval(note)) in [1, 8]:
            return cf_note.get_accidental() == note.get_accidental()
        return True

    def _no_octave_leap_with_perfect_harmonic_interval(self, note: Note,
                                                       index: tuple) -> bool:
        (i, j) = index
        if i not in self._divided_measures or abs(
                self._cantus[i].get_scale_degree_interval(note)) not in [
                    1, 5, 8, 12
                ]:
            return True
        other_note = self._counterpoint[(i, 0 if j == 2 else 2)]
        if other_note is not None and abs(
                note.get_scale_degree_interval(other_note)) == 8:
            return False
        return True

    def _current_chain_is_legal(self) -> bool:
        current_chain = []
        index = (0, 0) if self._start_on_beat else (0, 2)
        while index is not None and self._counterpoint[index] is not None:
            current_chain.append(self._counterpoint[index])
            index = self._get_next_index(index)
        result = self._span_is_valid(current_chain)
        return result

    def _span_is_valid(self,
                       span: list[Note],
                       check_beginning: bool = True,
                       check_ending: bool = False) -> bool:
        if len(span) < 3: return True
        if self._remaining_indices == 0: check_ending = True
        if not self._segments_and_chains_are_legal(span, check_beginning,
                                                   check_ending):
            return False
        if not self._no_illegal_repetitions(span): return False
        if not self._ascending_intervals_handled(span): return False
        if not self._no_nearby_cross_relations(span): return False
        return True

    def _segments_and_chains_are_legal(self, span: list[Note],
                                       check_beggining: bool,
                                       check_ending: bool) -> bool:
        intervals = [
            span[i - 1].get_scale_degree_interval(span[i])
            for i in range(1, len(span))
        ]
        for i in range(1, len(intervals)):
            if ((intervals[i - 1] > 0 and intervals[i] > 0) or
                (intervals[i - 1] < 0
                 and intervals[i] < 0)) and intervals[i] > intervals[i - 1]:
                return False
        span_indices_ending_segments = [0] if check_beggining else []
        for i in range(1, len(intervals)):
            if ((intervals[i - 1] > 0 and intervals[i] < 0)
                    or (intervals[i - 1] < 0 and intervals[i] > 0)):
                span_indices_ending_segments.append(i)
        span_indices_ending_segments += [len(span) - 1] if check_ending else []
        for i in range(1, len(span_indices_ending_segments)):
            start_note, end_note = span[span_indices_ending_segments[
                i - 1]], span[span_indices_ending_segments[i]]
            if not self._is_valid_outline(start_note, end_note): return False
        #next check leap chains
        chains = []
        prev_interval = None
        for i in range(len(intervals)):
            if abs(intervals[i]) > 2:
                if prev_interval is None or abs(prev_interval) <= 2:
                    chains.append([span[i], span[i + 1]])
                else:
                    chains[-1].append(span[i + 1])
            prev_interval = intervals[i]
        for chain in chains:
            for i in range(len(chain) - 2):
                for j in range(i + 2, len(chain)):
                    if not self._is_valid_outline(chain[i], chain[j]):
                        return False
        return True

    def _no_illegal_repetitions(self, span: list[Note]) -> bool:
        for i in range(len(span) - 5):
            count = 1
            for j in range(i + 1, i + 6):
                if span[i].get_scale_degree_interval(span[j]) == 1: count += 1
            if count >= 3: return False
        for i in range(len(span) - 3):
            if span[i].get_scale_degree_interval(
                    span[i + 2]) == 1 and span[i +
                                               1].get_scale_degree_interval(
                                                   span[i + 3]) == 1:
                return False
        return True

    def _no_nearby_cross_relations(self, span: list[Note]) -> bool:
        for i in range(len(span) - 2):
            if span[i].get_scale_degree_interval(
                    span[i + 2]) == 1 and span[i].get_chromatic_interval(
                        span[i + 2]):
                return False
        return True

    def _ascending_intervals_handled(self, span: list[Note]) -> bool:
        for i in range(1, len(span) - 1):
            if span[i - 1].get_chromatic_interval(
                    span[i]) == 8 and span[i].get_chromatic_interval(
                        span[i + 1]) != -1:
                return False
            elif span[i - 1].get_scale_degree_interval(
                    span[i]) > 3 and span[i].get_scale_degree_interval(
                        span[i + 1]) != -2 and random() > .5:
                return False
        return True

    def _passes_final_checks(self, solution: list[Note]) -> bool:
        return self._leaps_filled_in(solution) and self._handles_sequences(
            solution)

    def _leaps_filled_in(self, solution: list[Note]) -> bool:
        for i in range(1, len(solution) - 1):
            interval = solution[i - 1].get_scale_degree_interval(solution[i])
            if interval > 2:
                filled_in = False
                for j in range(i + 1, len(solution)):
                    if solution[i].get_scale_degree_interval(
                            solution[j]) == -2:
                        filled_in = True
                        break
                if not filled_in: return False
            #for leaps down, we either need the note below the top note or any higher note
            if interval < -2:
                handled = False
                for j in range(i + 1, len(solution)):
                    if solution[i - 1].get_scale_degree_interval(
                            solution[j]) >= -2:
                        handled = True
                        break
                if not handled: return False
        return True

    def _handles_sequences(self, solution: list[Note]) -> bool:
        #check if an intervalic sequence of four or more notes repeats
        intervals = []
        for i in range(1, len(solution)):
            intervals.append(solution[i - 1].get_scale_degree_interval(
                solution[i]))
        for i in range(len(solution) - 6):
            seq = intervals[i:i + 3]
            for j in range(i + 3, len(solution) - 4):
                possible_match = intervals[j:j + 3]
                if seq == possible_match:
                    return False
        #check to remove pattern leap down -> step up -> step down -> leap up
        for i in range(len(solution) - 4):
            if intervals[i] < -2 and intervals[i + 1] == 2 and intervals[
                    i + 2] == -2 and intervals[i + 3] > 2:
                if random() < .8:
                    return False
        #check if three exact notes repeat
        for i in range(len(solution) - 5):
            for j in range(i + 3, self._length - 2):
                if solution[i].get_chromatic_interval(
                        solution[j]) == 0 and solution[
                            i + 1].get_chromatic_interval(
                                solution[j + 1]) == 0 and solution[
                                    i + 2].get_chromatic_interval(
                                        solution[j + 2]) == 0:
                    return False
        return True

    def _map_solution_onto_counterpoint_dict(self,
                                             solution: list[Note]) -> None:
        for i, note in enumerate(solution):
            (measure, beat) = self._all_indices[i]
            if measure in self._divided_measures:
                note = Note(note.get_scale_degree(), note.get_octave(), 4,
                            note.get_accidental())
            self._counterpoint[(measure, beat)] = note

    def _score_solution(self, solution: list[Note]) -> int:
        score = 0  #violations will result in increases to score
        #start by determining ratio of steps
        num_steps = 0
        num_leaps = 0
        for i in range(1, len(solution)):
            if abs(solution[i - 1].get_scale_degree_interval(
                    solution[i])) == 2:
                num_steps += 1
            elif abs(solution[i - 1].get_scale_degree_interval(
                    solution[i])) > 3:
                num_leaps += 1
        ratio = num_steps / (len(solution) - 1)
        if ratio > .712: score += math.floor((ratio - .712) * 20)
        elif ratio < .712: score += math.floor((.712 - ratio) * 100)
        if num_leaps == 0: score += 15

        #next, find the frequency of the most repeated note
        most_frequent = 1
        for i, note in enumerate(solution):
            freq = 1
            for j in range(i + 1, len(solution)):
                if note.get_chromatic_interval(solution[j]) == 0:
                    freq += 1
            most_frequent = max(most_frequent, freq)
        max_acceptable = MAX_ACCEPTABLE_REPITITIONS_BASED_ON_LENGTH[len(
            solution)]
        if most_frequent > max_acceptable:
            score += (most_frequent - max_acceptable) * 15

        #finally, assess the number of favored harmonic intervals
        # if len(solution) != len(self._all_indices):
        #     self.print_counterpoint()
        #     print(self._all_indices)
        for i, note in enumerate(solution):
            (measure, beat) = self._all_indices[i]
            if beat == 0:
                harmonic_interval = abs(solution[i].get_scale_degree_interval(
                    self._cantus[measure]))
                if harmonic_interval in [5, 12]: score += 40
                if harmonic_interval in [1, 8]: score += 10
        return score
class GenerateTwoPartFirstSpecies:
    def __init__(self,
                 length: int = None,
                 mode: ModeOption = None,
                 octave: int = 4,
                 orientation: Orientation = Orientation.ABOVE):
        self._orientation = orientation
        self._mode = mode or MODES_BY_INDEX[math.floor(random() * 6)]
        self._length = length or 8 + math.floor(
            random() * 5)  #todo: replace with normal distribution
        self._octave = octave
        self._mr = ModeResolver(self._mode)
        gcf = GenerateCantusFirmus(self._length, self._mode, self._octave)
        self._cf = None
        #if the Cantus Firmus doesn't generate, we have to try again
        #also, if we are below the Cantus Firmus, the Cantus Firmus must end stepwise
        while self._cf is None or (
                self._cf.get_note(self._length - 2).get_scale_degree_interval(
                    self._cf.get_note(self._length - 1)) < -2
                and orientation == Orientation.BELOW):
            self._cf = gcf.generate_cf()

    def print_counterpoint(self) -> None:
        print("  CANTUS FIRMUS:       COUNTERPOINT:")
        for i in range(self._length):
            print("  " + str(self._cf.get_note(i)) + "  " +
                  str(self._counterpoint[i]))

    def get_optimal(self) -> list[list[Note]]:
        if self._solutions is None or len(self._solutions) == 0:
            return None
        return [self._cf.get_notes(), self._solutions[0]]

    def get_worst(self) -> list[list[Note]]:
        if self._solutions is None or len(self._solutions) == 0:
            return None
        return [self._cf.get_notes(), self._solutions[-1]]

    def generate_2p1s(self):
        print("MODE = ", self._mode.value["name"])
        self._solutions = []

        def attempt():
            initialized = self._initialize()
            while not initialized:
                initialized = self._initialize()
            self._backtrack()

        attempt()
        attempts = 1
        while len(self._solutions) < 30 and attempts < 1000:
            attempts += 1
            attempt()
        print("number of attempts:", attempts)
        print("number of solutions:", len(self._solutions))
        if len(self._solutions) > 0:
            self._solutions.sort(key=lambda sol: self._score_solution(sol))
            optimal = self._solutions[0]
            worst = self._solutions[-1]
            self._counterpoint = optimal
            self.print_counterpoint()

    #create the list we will backtrack through, find first, last, highest and lowest notes
    def _initialize(self) -> bool:
        #initializae the list we will use to store our counterpoint
        self._counterpoint = [None] * self._length
        starting_interval_candidates = [
            5, 8
        ] if self._orientation == Orientation.ABOVE else [-8]
        cf_first = self._cf.get_note(0)
        cf_second = self._cf.get_note(1)
        cf_penult = self._cf.get_note(self._length - 2)
        cf_last = self._cf.get_note(self._length - 1)
        cf_first_interval = cf_first.get_scale_degree_interval(cf_second)
        cf_last_interval = cf_penult.get_scale_degree_interval(cf_last)
        cf_highest = self._cf.get_highest_note()
        cf_lowest = self._cf.get_lowest_note()
        if self._orientation == Orientation.BELOW:
            if cf_first_interval > 0 and cf_last_interval < 0 and cf_first.get_scale_degree_interval(
                    cf_lowest) >= -2:
                starting_interval_candidates.append(1)
        else:
            if cf_first_interval < 0 and cf_first.get_scale_degree_interval(
                    cf_highest) <= 2:
                starting_interval_candidates.append(1)
        starting_interval = starting_interval_candidates[math.floor(
            random() * len(starting_interval_candidates))]
        ending_interval = None
        end_to_penult_interval = None
        if self._orientation == Orientation.BELOW:
            ending_interval = starting_interval
        else:
            ending_interval_candidates = []
            if cf_last_interval == 5:
                ending_interval_candidates = [5]
            elif cf_last_interval == 4 or cf_last_interval == 2:
                ending_interval_candidates = [
                    starting_interval
                ] if starting_interval != 5 else [1, 8]
            else:
                ending_interval_candidates = [
                    5
                ] if starting_interval == 1 else [5, 8]
            ending_interval = ending_interval_candidates[math.floor(
                random() * len(ending_interval_candidates))]
        if Orientation == Orientation.BELOW:
            end_to_penult_interval = cf_last_interval
        else:
            if cf_last_interval == 4:
                end_to_penult_interval = 2 if random() > .5 else -2
            elif cf_last_interval > 0:
                end_to_penult_interval = 2
            elif random() > .85 and ending_interval == 8 and self._mode.value[
                    "most_common"] == 4:
                end_to_penult_interval = -5
            else:
                end_to_penult_interval = -2
        first_note = self._get_default_note_from_interval(
            cf_first, starting_interval)
        last_note = self._get_default_note_from_interval(
            cf_last, ending_interval)
        penult_note = self._get_default_note_from_interval(
            last_note, end_to_penult_interval)
        range_so_far = max(
            max(abs(first_note.get_scale_degree_interval(last_note)),
                abs(first_note.get_scale_degree_interval(penult_note))),
            abs(penult_note.get_scale_degree_interval(last_note)))

        #adjust penult_note
        if end_to_penult_interval == -2 and ending_interval != 5:  #that is, if we're approaching the mode final from below
            if self._mode in [
                    ModeOption.DORIAN, ModeOption.MIXOLYDIAN,
                    ModeOption.AEOLIAN
            ] and random() > .5:
                penult_note.set_accidental(ScaleOption.SHARP)

        #find lowest note so far
        lowest_so_far = first_note if (
            starting_interval < ending_interval and end_to_penult_interval > -5
        ) else last_note if end_to_penult_interval > 0 else penult_note
        #get possible lowest notes
        lowest_note_candidates = [lowest_so_far]
        for i in range(1, 8 - range_so_far):
            candidate = self._get_default_note_from_interval(
                lowest_so_far, (i + 1) * -1)
            if self._valid_outline(first_note,
                                   candidate) and self._valid_outline(
                                       last_note, candidate):
                if self._orientation == Orientation.BELOW or cf_highest.get_scale_degree_interval(
                        candidate) >= -3:
                    lowest_note_candidates.append(candidate)
        lowest_note = lowest_note_candidates[math.floor(
            random() * len(lowest_note_candidates))]
        range_so_far += lowest_note.get_scale_degree_interval(
            lowest_so_far) - 1
        #find highest note so far
        highest_so_far = first_note if starting_interval > ending_interval else penult_note if end_to_penult_interval > 0 else last_note
        #get possible highest notes
        highest_note_candidates = [highest_so_far] if (
            (starting_interval > ending_interval or end_to_penult_interval > 0)
            and range_so_far >= 6
        ) or self._orientation == Orientation.BELOW else []
        for i in range(max(6 - range_so_far, 0), 8 - range_so_far):
            candidate = self._get_default_note_from_interval(
                highest_so_far, i + 1)
            if candidate.get_accidental(
            ) != ScaleOption.SHARP and self._valid_range(
                    lowest_note, candidate) and self._valid_outline(
                        first_note, candidate) and self._valid_outline(
                            last_note, candidate):
                if self._orientation == Orientation.ABOVE or cf_lowest.get_scale_degree_interval(
                        candidate) <= -3:
                    if not (self._mode == ModeOption.DORIAN and
                            candidate.get_accidental() == ScaleOption.NATURAL
                            and candidate.get_scale_degree() == 7):
                        highest_note_candidates.append(candidate)
        highest_note = highest_note_candidates[math.floor(
            random() * len(highest_note_candidates))]

        #initialize list of remaining indices
        remaining_indices = list(range(1, self._length - 2))
        remaining_indices.reverse()
        self._remaining_indices = remaining_indices

        #find all valid notes (include lowest, but don't include highest)
        valid_notes = [lowest_note]

        #define the filter function that eliminates cross relations
        def remove_cross_relations(candidate: Note) -> bool:
            for fixed in [
                    first_note, penult_note, last_note, highest_note,
                    lowest_note
            ]:
                if fixed.get_scale_degree_interval(
                        candidate
                ) == 1 and fixed.get_chromatic_interval(candidate) != 0:
                    return False
            return True

        for i in range(2, lowest_note.get_scale_degree_interval(highest_note)):
            valid_notes += self._get_notes_from_interval(lowest_note, i)
        self._valid_notes = list(filter(remove_cross_relations, valid_notes))

        #add three notes to counterpoint
        self._counterpoint[0] = first_note
        self._counterpoint[-2] = penult_note
        self._counterpoint[-1] = last_note

        #add highest and lowest notes if they're not already in
        if highest_so_far.get_chromatic_interval(highest_note) != 0:
            added_high_note = self._add_highest(highest_note)
            if not added_high_note:
                return False
        if lowest_note.get_chromatic_interval(lowest_so_far) != 0:
            added_low_note = self._add_lowest(lowest_note)
            if not added_low_note:
                return False
        return True

    def _add_highest(self, note: Note) -> bool:
        remaining_indices = self._remaining_indices[:]
        if self._length % 2 == 1:
            remaining_indices.remove(math.floor(self._length / 2))
        shuffle(remaining_indices)
        index = None
        while len(remaining_indices) > 0:
            index = remaining_indices.pop()
            #we will need to see if the position works 1. harmonically, 2. melooically, 3. does not create parallels
            prev_note = self._counterpoint[index - 1]
            next_note = self._counterpoint[index + 1]
            cf_note = self._cf.get_note(index)
            #check if placement is melodically valid
            if prev_note is not None and not self._valid_adjacent(
                    prev_note, note):
                continue
            if next_note is not None and not self._valid_adjacent(
                    note, next_note):
                continue
            #check if placement is harmonically valid
            if not self._valid_harmonically(note, cf_note):
                continue
            #check if placement creates parallel or hidden fifths or octaves
            if not self._doesnt_create_hiddens_or_parallels(note, index):
                continue
            #check that placement doesn't create an illegal segment
            if next_note is not None:
                note_after_next = self._counterpoint[index + 2]
                if next_note.get_scale_degree_interval(
                        note_after_next
                ) < 0 and not self._segment_has_legal_shape(
                    [note, next_note, note_after_next]):
                    continue
            break
        if len(remaining_indices) == 0:
            return False
        self._remaining_indices.remove(index)
        self._counterpoint[index] = note
        return True

    def _add_lowest(self, note: Note) -> bool:
        remaining_indices = self._remaining_indices[:]
        shuffle(remaining_indices)
        index = None
        while len(remaining_indices) > 0:
            index = remaining_indices.pop()
            #we will need to see if the position works 1. harmonically, 2. melooically, 3. does not create parallels
            prev_note = self._counterpoint[index - 1]
            next_note = self._counterpoint[index + 1]
            cf_note = self._cf.get_note(index)
            #check if placement is melodically valid
            if prev_note is not None and not self._valid_adjacent(
                    prev_note, note):
                continue
            if next_note is not None and not self._valid_adjacent(
                    note, next_note):
                continue
            #check if placement is harmonically valid
            if not self._valid_harmonically(note, cf_note):
                continue
            #check if placement creates parallel or hidden fifths or octaves
            if not self._doesnt_create_hiddens_or_parallels(note, index):
                continue
            #get total span of consecutive notes
            start_index, end_index = index, index + 1
            while start_index != 0 and self._counterpoint[start_index -
                                                          1] is not None:
                start_index -= 1
            while end_index < self._length and self._counterpoint[
                    end_index] is not None:
                end_index += 1
            #will have maximum length of 4
            span = self._counterpoint[start_index:end_index]
            span[index - start_index] = note
            if len(span) < 3:
                break
            leap_chain = [span[0], span[1]] if abs(
                span[0].get_scale_degree_interval(span[1])) > 2 else [span[1]]
            for i in range(2, len(span)):
                if abs(span[i - 1].get_scale_degree_interval(span[i])) <= 2:
                    break
                leap_chain.append(span[i])
            if not self._leap_chain_is_legal(leap_chain):
                continue
            first_interval, second_interval = span[
                0].get_scale_degree_interval(
                    span[1]), span[1].get_scale_degree_interval(span[2])
            segment = [
                span[0], span[1]
            ] if (first_interval > 0 and second_interval > 0) or (
                first_interval < 0 and second_interval < 0) else [span[1]]
            for i in range(2, len(span)):
                ith_interval = span[i - 1].get_scale_degree_interval(span[i])
                if not (second_interval > 0 and ith_interval > 0) and not (
                        second_interval < 0 and ith_interval < 0):
                    break
                segment.append(span[i])
            if not self._segment_has_legal_shape(segment):
                continue
            break
        if len(remaining_indices) == 0:
            return False
        self._remaining_indices.remove(index)
        self._counterpoint[index] = note
        return True

    def _backtrack(self) -> None:
        if len(self._remaining_indices) == 0:
            if self._passes_final_checks():
                self._solutions.append(self._counterpoint[:])
            return
        index = self._remaining_indices.pop()
        against = self._cf.get_note(index)
        prev_note = self._counterpoint[index - 1]
        next_note = self._counterpoint[index + 1]
        #filter out notes that are 1. not harmonically valid, 2. not melodically valid, 3. create parallels and 4. create a cross relation with an already added note
        possible_notes = self._valid_notes[:]
        possible_notes = list(
            filter(lambda n: self._valid_harmonically(n, against),
                   possible_notes))
        possible_notes = list(
            filter(lambda n: self._valid_adjacent(prev_note, n),
                   possible_notes))
        if next_note is not None:
            possible_notes = list(
                filter(lambda n: self._valid_adjacent(n, next_note),
                       possible_notes))
        possible_notes = list(
            filter(
                lambda n: self._doesnt_create_hiddens_or_parallels(n, index),
                possible_notes))
        possible_notes = list(
            filter(lambda n: self._no_large_parallel_leaps(n, index),
                   possible_notes))
        possible_notes = list(
            filter(lambda n: self._no_cross_relations_with_previously_added(n),
                   possible_notes))

        #we will find all solutions so sorting possible_notes isn't necessary
        for candidate in possible_notes:
            self._counterpoint[index] = candidate
            if self._current_chain_is_legal():
                self._backtrack()
        self._counterpoint[index] = None
        self._remaining_indices.append(index)

    def _current_chain_is_legal(self) -> bool:
        #check for the following:
        #1. no dissonant intervals outlined in "segments" (don't check last segment)
        #2. no dissonant intervals outlined in "leap chains"
        #3. ascending minor sixths followed by descending minor seconds
        #4. in each segment, intervals must become progressively smaller (3 -> 2 or -2 -> -3, etc)
        #5. check if ascending leaps greater than a fourth are followed by descending second (to high degree of proability)
        #6. make sure there are no sequences of two notes that are immediately repeated

        #start by getting current chain of notes
        current_chain = []
        for i in range(self._length):
            if self._counterpoint[i] is None: break
            current_chain.append(self._counterpoint[i])

        #next, get the segments (consecutive notes that move in the same direction)
        #and the leap chains (consecutive notes separated by leaps)
        segments = [[current_chain[0]]]
        leap_chains = [[current_chain[0]]]
        prev_interval = None
        for i in range(1, len(current_chain)):
            note = current_chain[i]
            prev_note = current_chain[i - 1]
            current_interval = prev_note.get_scale_degree_interval(note)
            if prev_interval is None or (prev_interval > 0 and current_interval
                                         > 0) or (prev_interval < 0
                                                  and current_interval < 0):
                segments[-1].append(note)
            else:
                segments.append([prev_note, note])
            if abs(current_interval) <= 2:
                leap_chains.append([note])
            else:
                leap_chains[-1].append(note)
            prev_interval = current_interval

        #check segments
        for i, seg in enumerate(segments):
            #check for dissonant intervals except in last segment unless we're checking the completed Cantus Firmus
            if i < len(segments) - 1 or len(current_chain) == self._length:
                if not self._segment_outlines_legal_interval(seg):
                    return False
            if not self._segment_has_legal_shape(seg):
                return False

        #check leap chains
        for chain in leap_chains:
            if not self._leap_chain_is_legal(chain):
                return False

        #check for ascending intervals
        for i in range(1, len(current_chain) - 1):
            first_interval = current_chain[i - 1].get_scale_degree_interval(
                current_chain[i])
            if first_interval == 6:
                second_interval_chromatic = current_chain[
                    i].get_chromatic_interval(current_chain[i + 1])
                if second_interval_chromatic != -1:
                    return False
            if first_interval > 3:
                second_interval_sdg = current_chain[
                    i].get_scale_degree_interval(current_chain[i + 1])
                if second_interval_sdg != -2 and random() > .5:
                    return False

        #check for no sequences
        for i in range(3, len(current_chain)):
            if current_chain[i - 3].get_chromatic_interval(
                    current_chain[i - 1]) == 0 and current_chain[
                        i - 2].get_chromatic_interval(current_chain[i]) == 0:
                return False
        return True

    def _passes_final_checks(self) -> bool:
        return self._no_intervalic_sequences(
        ) and self._ascending_intervals_handled(
        ) and self._no_extended_parallel_motion()

    def _no_intervalic_sequences(self) -> bool:
        #check if an intervalic sequence of four or more notes repeats
        intervals = []
        for i in range(1, self._length):
            intervals.append(self._counterpoint[i -
                                                1].get_scale_degree_interval(
                                                    self._counterpoint[i]))
        for i in range(self._length - 6):
            seq = intervals[i:i + 3]
            for j in range(i + 3, self._length - 4):
                possible_match = intervals[j:j + 3]
                if seq == possible_match:
                    return False

        #check to remove pattern leap down -> step up -> step down -> leap up
        for i in range(self._length - 4):
            if intervals[i] < -2 and intervals[i + 1] == 2 and intervals[
                    i + 2] == -2 and intervals[i + 3] > 2:
                if random() < .8:
                    return False
        #check if three exact notes repeat
        for i in range(self._length - 5):
            for j in range(i + 3, self._length - 2):
                if self._counterpoint[i].get_chromatic_interval(
                        self._counterpoint[j]
                ) == 0 and self._counterpoint[i + 1].get_chromatic_interval(
                        self._counterpoint[j + 1]) == 0 and self._counterpoint[
                            i + 2].get_chromatic_interval(
                                self._counterpoint[j + 2]) == 0:
                    return False
        return True

    def _ascending_intervals_handled(self) -> bool:
        for i in range(1, self._length - 1):
            interval = self._counterpoint[i - 1].get_scale_degree_interval(
                self._counterpoint[i])
            if interval > 2:
                filled_in = False
                for j in range(i + 1, self._length):
                    if self._counterpoint[i].get_scale_degree_interval(
                            self._counterpoint[j]) == -2:
                        filled_in = True
                        break
                if not filled_in: return False
        return True

    def _no_extended_parallel_motion(self) -> bool:
        prev_harmonic_interval = None
        count = 0
        for i in range(self._length):
            cur_harmonic_interval = self._counterpoint[
                i].get_scale_degree_interval(self._cf.get_note(i))
            if cur_harmonic_interval == prev_harmonic_interval:
                count += 1
            else:
                count = 0
            if count == 4:
                print("too much parallel motion")
                return False
        return True

    def _valid_adjacent(self, note1: Note, note2: Note) -> bool:
        chro_interval = note1.get_chromatic_interval(note2)
        sdg_interval = note1.get_scale_degree_interval(note2)
        if chro_interval in VALID_MELODIC_INTERVALS_CHROMATIC and (
                abs(sdg_interval),
                abs(chro_interval)) not in FORBIDDEN_INTERVAL_COMBINATIONS:
            if note1.get_accidental(
            ) == ScaleOption.NATURAL or note2.get_accidental(
            ) == ScaleOption.NATURAL or abs(chro_interval) == 2:
                return True
        return False

    def _valid_outline(self, note1: Note, note2: Note) -> bool:
        chro_interval = note1.get_chromatic_interval(note2)
        sdg_interval = note1.get_scale_degree_interval(note2)
        if chro_interval in CONSONANT_MELODIC_INTERVALS_CHROMATIC and (
                abs(sdg_interval),
                abs(chro_interval)) not in FORBIDDEN_INTERVAL_COMBINATIONS:
            return True
        return False

    def _valid_range(self, note1: Note, note2: Note) -> bool:
        if self._valid_outline(note1, note2): return True
        if note1.get_scale_degree_interval(note2) == 7: return True
        return False

    def _valid_harmonically(self, note1: Note, note2: Note) -> bool:
        chro_interval = note1.get_chromatic_interval(note2)
        if chro_interval == 0: return False
        sdg_interval = note1.get_scale_degree_interval(note2)
        if sdg_interval in CONSONANT_HARMONIC_INTERVALS_SCALE_DEGREES and abs(
                chro_interval) % 12 in CONSONANT_HARMONIC_INTERVALS_CHROMATIC:
            combo = (abs(sdg_interval if sdg_interval <= 8 else sdg_interval -
                         7), abs(chro_interval) % 12)
            if combo not in FORBIDDEN_INTERVAL_COMBINATIONS:
                return True
        return False

    def _no_large_parallel_leaps(self, note: Note, index: int) -> bool:
        prev_note = self._counterpoint[index - 1]
        next_note = self._counterpoint[index + 1]
        cf_note = self._cf.get_note(index)
        cf_prev_note = self._cf.get_note(index - 1)
        cf_next_note = self._cf.get_note(index + 1)
        if prev_note is not None:
            prev_interval = prev_note.get_scale_degree_interval(note)
            cf_prev_interval = cf_prev_note.get_scale_degree_interval(cf_note)
            if (prev_interval > 2
                    and cf_prev_interval > 2) or (prev_interval < -2
                                                  and cf_prev_interval < -2):
                if abs(prev_interval) > 4 or abs(cf_prev_interval) > 4:
                    return False
        if next_note is not None:
            next_interval = note.get_scale_degree_interval(next_note)
            cf_next_interval = cf_note.get_scale_degree_interval(cf_next_note)
            if (next_interval > 2
                    and cf_next_interval > 2) or (next_interval < -2
                                                  and cf_next_interval < -2):
                if abs(next_interval) > 4 or abs(cf_next_interval) > 4:
                    return False
        return True

    def _doesnt_create_hiddens_or_parallels(self, note: Note,
                                            index: int) -> bool:
        chro_interval = note.get_chromatic_interval(self._cf.get_note(index))
        if abs(chro_interval) not in [7, 12]:
            return True
        prev_note = self._counterpoint[index - 1]
        next_note = self._counterpoint[index + 1]
        if prev_note is not None:
            prev_interval = prev_note.get_scale_degree_interval(note)
            cf_prev_interval = self._cf.get_note(index -
                                                 1).get_scale_degree_interval(
                                                     self._cf.get_note(index))
            if (prev_interval > 0
                    and cf_prev_interval > 0) or (prev_interval < 0
                                                  and cf_prev_interval < 0):
                return False
        if next_note is not None:
            next_interval = note.get_scale_degree_interval(next_note)
            cf_next_interval = self._cf.get_note(
                index).get_scale_degree_interval(self._cf.get_note(index + 1))
            if (next_interval > 0
                    and cf_next_interval > 0) or (next_interval < 0
                                                  and cf_next_interval < 0):
                next_chro_interval = next_note.get_chromatic_interval(
                    self._cf.get_note(index + 1))
                if abs(next_chro_interval) in [7, 12]:
                    return False
        return True

    def _no_cross_relations_with_previously_added(self, note: Note) -> bool:
        for n in self._counterpoint:
            if n is not None and n.get_scale_degree_interval(
                    note) == 1 and n.get_chromatic_interval(note) != 0:
                return False
        return True

    def _segment_has_legal_shape(self, seg: list[Note]) -> bool:
        if len(seg) < 3: return True
        prev_interval = seg[0].get_scale_degree_interval(seg[1])
        for i in range(1, len(seg) - 1):
            cur_interval = seg[i].get_scale_degree_interval(seg[i + 1])
            if cur_interval > prev_interval:
                if len(seg) > 4 or cur_interval not in [
                        3, -2
                ] or prev_interval < -3:
                    return False
            prev_interval = cur_interval
        return True

    def _segment_outlines_legal_interval(self, seg: list[Note]) -> bool:
        if len(seg) < 3: return True
        return self._valid_outline(seg[0], seg[-1])

    def _leap_chain_is_legal(self, chain: list[Note]) -> bool:
        if len(chain) < 3: return True
        for i in range(len(chain) - 2):
            for j in range(i + 2, len(chain)):
                if not self._valid_outline(chain[i], chain[j]):
                    return False
        return True

    def _score_solution(self, solution: list[Note]) -> int:
        score = 0  #violations will result in increases to score
        #start by determining ratio of steps
        num_steps = 0
        num_leaps = 0
        for i in range(1, self._length):
            if abs(solution[i - 1].get_scale_degree_interval(
                    solution[i])) == 2:
                num_steps += 1
            elif abs(solution[i - 1].get_scale_degree_interval(
                    solution[i])) > 3:
                num_leaps += 1
        ratio = num_steps / (self._length - 1)
        if ratio > AVERAGE_STEPS_PERCENTAGE:
            score += math.floor((ratio - AVERAGE_STEPS_PERCENTAGE) * 20)
        elif ratio < AVERAGE_STEPS_PERCENTAGE:
            score += math.floor((AVERAGE_STEPS_PERCENTAGE - ratio) * 100)
        if num_leaps == 0: score += 15

        #next, find the frequency of the most repeated note
        most_frequent = 1
        for i, note in enumerate(solution):
            freq = 1
            for j in range(i + 1, self._length):
                if note.get_chromatic_interval(solution[j]) == 0:
                    freq += 1
            most_frequent = max(most_frequent, freq)
        max_acceptable = MAX_ACCEPTABLE_REPITITIONS_BASED_ON_LENGTH[
            self._length]
        if most_frequent > max_acceptable:
            score += (most_frequent - max_acceptable) * 15

        #next, see if sharps are follwed by an ascending step
        for i, note in enumerate(solution):
            if note.get_accidental() == ScaleOption.SHARP:
                next_interval = note.get_scale_degree_interval(
                    solution[i + 1]
                )  #note that a sharp will never be in the last position
                if next_interval == 3:
                    score += 5
                elif next_interval != 2:
                    score += 15

        #finally, assess the number of favored harmonic intervals
        for i in range(1, self._length - 1):
            harmonic_interval = abs(solution[i].get_scale_degree_interval(
                self._cf.get_note(i)))
            if harmonic_interval == 10: score += 2
            if harmonic_interval in [5, 8]: score += 5

        return score

    def _get_default_note_from_interval(self, note: Note,
                                        interval: int) -> Note:
        candidates = self._get_notes_from_interval(note, interval)
        if len(candidates) == 0: return None
        note = candidates[0]
        self._mr.make_default_scale_option(note)
        return note

    #returns valid notes, if any, at the specified interval.  "3" returns a third above.  "-5" returns a fifth below
    def _get_notes_from_interval(self, note: Note,
                                 interval: int) -> list[Note]:
        sdg = note.get_scale_degree()
        octv = note.get_octave()
        adjustment_value = -1 if interval > 0 else 1
        new_sdg, new_octv = sdg + interval + adjustment_value, octv
        if new_sdg < 1:
            new_octv -= 1
            new_sdg += 7
        elif new_sdg > 7:
            new_octv += 1
            new_sdg -= 7
        new_note = Note(new_sdg, new_octv, 8)
        valid_notes = [new_note]
        if (self._mode == ModeOption.DORIAN
                or self._mode == ModeOption.LYDIAN) and new_sdg == 7:
            valid_notes.append(
                Note(new_sdg, new_octv, 8, accidental=ScaleOption.FLAT))
        if self._mode == ModeOption.AEOLIAN and new_sdg == 2:
            valid_notes.append(
                Note(new_sdg, new_octv, 8, accidental=ScaleOption.SHARP))
        if new_sdg in [1, 4, 5]:
            valid_notes.append(
                Note(new_sdg, new_octv, 8, accidental=ScaleOption.SHARP))
        return valid_notes