예제 #1
0
    def _split_on_bars(self, note_seq):

        bars_length_sec = self._calc_bar_length_sec(
            note_seq) * self._split_in_bar_chunks

        return sequences_lib.split_note_sequence(
            note_seq, bars_length_sec
        )  # only works on non-quantized sequences (for some reason...)
예제 #2
0
    def testSplitter(self):
        note_sequence = common_testing_lib.parse_test_proto(
            music_pb2.NoteSequence, """
        time_signatures: {
          numerator: 4
          denominator: 4}
        tempos: {
          qpm: 60}""")
        testing_lib.add_track_to_sequence(note_sequence, 0,
                                          [(12, 100, 0.01, 10.0),
                                           (11, 55, 0.22, 0.50),
                                           (40, 45, 2.50, 3.50),
                                           (55, 120, 4.0, 4.01),
                                           (52, 99, 4.75, 5.0)])
        expected_sequences = sequences_lib.split_note_sequence(
            note_sequence, 1.0)

        unit = note_sequence_pipelines.Splitter(1.0)
        self._unit_transform_test(unit, note_sequence, expected_sequences)
예제 #3
0
def split_on_downbeats(sequence,
                       bars_per_segment,
                       downbeats=None,
                       skip_bars=0,
                       min_notes_per_segment=0,
                       include_span=False):
    if downbeats is None:
        downbeats = midi_io.sequence_proto_to_pretty_midi(
            sequence).get_downbeats()
    downbeats = [d for d in downbeats if d < sequence.total_time]

    try:
        iter(bars_per_segment)
    except TypeError:
        bars_per_segment = [bars_per_segment]

    for bps in bars_per_segment:
        first_split = skip_bars or bps  # Do not split at time 0
        split_times = list(downbeats[first_split::bps])
        segments = sequences_lib.split_note_sequence(
            sequence, hop_size_seconds=split_times)
        if skip_bars:
            # The first segment will contain the bars we want to skip
            segments.pop(0)

        for i, segment in enumerate(segments):
            start = skip_bars + i * bps
            end = start + bps

            if len(segment.notes) < min_notes_per_segment:
                print(
                    f'Skipping segment {start}-{end} with {len(segment.notes)} notes',
                    file=sys.stderr)
                continue

            if include_span:
                yield start, end, segment
            else:
                yield segment
예제 #4
0
    def process(self, kv):
        # Seed random number generator based on key so that hop times are
        # deterministic.
        key, ns_str = kv
        m = hashlib.md5(key.encode('utf-8'))
        random.seed(int(m.hexdigest(), 16))

        # Deserialize NoteSequence proto.
        ns = note_seq.NoteSequence.FromString(ns_str)

        # Apply sustain pedal.
        ns = sequences_lib.apply_sustain_control_changes(ns)

        # Remove control changes as there are potentially a lot of them and they are
        # no longer needed.
        del ns.control_changes[:]

        if (self._min_hop_size_seconds
                and ns.total_time < self._min_hop_size_seconds):
            Metrics.counter('extract_examples', 'sequence_too_short').inc()
            return

        sequences = []
        for _ in range(self._num_replications):
            if self._max_hop_size_seconds:
                if self._max_hop_size_seconds == self._min_hop_size_seconds:
                    # Split using fixed hop size.
                    sequences += sequences_lib.split_note_sequence(
                        ns, self._max_hop_size_seconds)
                else:
                    # Sample random hop positions such that each segment size is within
                    # the specified range.
                    hop_times = [0.0]
                    while hop_times[
                            -1] <= ns.total_time - self._min_hop_size_seconds:
                        if hop_times[
                                -1] + self._max_hop_size_seconds < ns.total_time:
                            # It's important that we get a valid hop size here, since the
                            # remainder of the sequence is too long.
                            max_offset = min(
                                self._max_hop_size_seconds, ns.total_time -
                                self._min_hop_size_seconds - hop_times[-1])
                        else:
                            # It's okay if the next hop time is invalid (in which case we'll
                            # just stop).
                            max_offset = self._max_hop_size_seconds
                        offset = random.uniform(self._min_hop_size_seconds,
                                                max_offset)
                        hop_times.append(hop_times[-1] + offset)
                    # Split at the chosen hop times (ignoring zero and the final invalid
                    # time).
                    sequences += sequences_lib.split_note_sequence(
                        ns, hop_times[1:-1])
            else:
                sequences += [ns]

        for performance_sequence in sequences:
            if self._encode_score_fns:
                # We need to extract a score.
                if not self._absolute_timing:
                    # Beats are required to extract a score with metric timing.
                    beats = [
                        ta for ta in performance_sequence.text_annotations
                        if ta.annotation_type == BEAT
                        and ta.time <= performance_sequence.total_time
                    ]
                    if len(beats) < 2:
                        Metrics.counter('extract_examples',
                                        'not_enough_beats').inc()
                        continue

                    # Ensure the sequence starts and ends on a beat.
                    performance_sequence = sequences_lib.extract_subsequence(
                        performance_sequence,
                        start_time=min(beat.time for beat in beats),
                        end_time=max(beat.time for beat in beats))

                    # Infer beat-aligned chords (only for relative timing).
                    try:
                        chord_inference.infer_chords_for_sequence(
                            performance_sequence,
                            chord_change_prob=0.25,
                            chord_note_concentration=50.0,
                            add_key_signatures=True)
                    except chord_inference.ChordInferenceError:
                        Metrics.counter('extract_examples',
                                        'chord_inference_failed').inc()
                        continue

                # Infer melody regardless of relative/absolute timing.
                try:
                    melody_instrument = melody_inference.infer_melody_for_sequence(
                        performance_sequence,
                        melody_interval_scale=2.0,
                        rest_prob=0.1,
                        instantaneous_non_max_pitch_prob=1e-15,
                        instantaneous_non_empty_rest_prob=0.0,
                        instantaneous_missing_pitch_prob=1e-15)
                except melody_inference.MelodyInferenceError:
                    Metrics.counter('extract_examples',
                                    'melody_inference_failed').inc()
                    continue

                if not self._absolute_timing:
                    # Now rectify detected beats to occur at fixed tempo.
                    # TODO(iansimon): also include the alignment
                    score_sequence, unused_alignment = sequences_lib.rectify_beats(
                        performance_sequence, beats_per_minute=SCORE_BPM)
                else:
                    # Score uses same timing as performance.
                    score_sequence = copy.deepcopy(performance_sequence)

                # Remove melody notes from performance.
                performance_notes = []
                for note in performance_sequence.notes:
                    if note.instrument != melody_instrument:
                        performance_notes.append(note)
                del performance_sequence.notes[:]
                performance_sequence.notes.extend(performance_notes)

                # Remove non-melody notes from score.
                score_notes = []
                for note in score_sequence.notes:
                    if note.instrument == melody_instrument:
                        score_notes.append(note)
                del score_sequence.notes[:]
                score_sequence.notes.extend(score_notes)

                # Remove key signatures and beat/chord annotations from performance.
                del performance_sequence.key_signatures[:]
                del performance_sequence.text_annotations[:]

                Metrics.counter('extract_examples', 'extracted_score').inc()

            for augment_fn in self._augment_fns:
                # Augment and encode the performance.
                try:
                    augmented_performance_sequence = augment_fn(
                        performance_sequence)
                except DataAugmentationError:
                    Metrics.counter('extract_examples',
                                    'augment_performance_failed').inc()
                    continue
                example_dict = {
                    'targets':
                    self._encode_performance_fn(augmented_performance_sequence)
                }
                if not example_dict['targets']:
                    Metrics.counter('extract_examples',
                                    'skipped_empty_targets').inc()
                    continue

                if (self._random_crop_length and len(example_dict['targets']) >
                        self._random_crop_length):
                    # Take a random crop of the encoded performance.
                    max_offset = len(
                        example_dict['targets']) - self._random_crop_length
                    offset = random.randrange(max_offset + 1)
                    example_dict['targets'] = example_dict['targets'][
                        offset:offset + self._random_crop_length]

                if self._encode_score_fns:
                    # Augment the extracted score.
                    try:
                        augmented_score_sequence = augment_fn(score_sequence)
                    except DataAugmentationError:
                        Metrics.counter('extract_examples',
                                        'augment_score_failed').inc()
                        continue

                    # Apply all score encoding functions.
                    skip = False
                    for name, encode_score_fn in self._encode_score_fns.items(
                    ):
                        example_dict[name] = encode_score_fn(
                            augmented_score_sequence)
                        if not example_dict[name]:
                            Metrics.counter('extract_examples',
                                            'skipped_empty_%s' % name).inc()
                            skip = True
                            break
                    if skip:
                        continue

                Metrics.counter('extract_examples', 'encoded_example').inc()
                Metrics.distribution(
                    'extract_examples',
                    'performance_length_in_seconds').update(
                        int(augmented_performance_sequence.total_time))

                yield generator_utils.to_example(example_dict)
예제 #5
0
 def transform(self, note_sequence):
     return sequences_lib.split_note_sequence(note_sequence,
                                              self._hop_size_seconds)
예제 #6
0
 def transform(self, input_object):
   note_sequence = input_object
   return sequences_lib.split_note_sequence(
       note_sequence, self._hop_size_seconds)