def _split_on_bars(self, note_seq): bars_length_sec = self._calc_bar_length_sec( note_seq) * self._split_in_bar_chunks return sequences_lib.split_note_sequence( note_seq, bars_length_sec ) # only works on non-quantized sequences (for some reason...)
def testSplitter(self): note_sequence = common_testing_lib.parse_test_proto( music_pb2.NoteSequence, """ time_signatures: { numerator: 4 denominator: 4} tempos: { qpm: 60}""") testing_lib.add_track_to_sequence(note_sequence, 0, [(12, 100, 0.01, 10.0), (11, 55, 0.22, 0.50), (40, 45, 2.50, 3.50), (55, 120, 4.0, 4.01), (52, 99, 4.75, 5.0)]) expected_sequences = sequences_lib.split_note_sequence( note_sequence, 1.0) unit = note_sequence_pipelines.Splitter(1.0) self._unit_transform_test(unit, note_sequence, expected_sequences)
def split_on_downbeats(sequence, bars_per_segment, downbeats=None, skip_bars=0, min_notes_per_segment=0, include_span=False): if downbeats is None: downbeats = midi_io.sequence_proto_to_pretty_midi( sequence).get_downbeats() downbeats = [d for d in downbeats if d < sequence.total_time] try: iter(bars_per_segment) except TypeError: bars_per_segment = [bars_per_segment] for bps in bars_per_segment: first_split = skip_bars or bps # Do not split at time 0 split_times = list(downbeats[first_split::bps]) segments = sequences_lib.split_note_sequence( sequence, hop_size_seconds=split_times) if skip_bars: # The first segment will contain the bars we want to skip segments.pop(0) for i, segment in enumerate(segments): start = skip_bars + i * bps end = start + bps if len(segment.notes) < min_notes_per_segment: print( f'Skipping segment {start}-{end} with {len(segment.notes)} notes', file=sys.stderr) continue if include_span: yield start, end, segment else: yield segment
def process(self, kv): # Seed random number generator based on key so that hop times are # deterministic. key, ns_str = kv m = hashlib.md5(key.encode('utf-8')) random.seed(int(m.hexdigest(), 16)) # Deserialize NoteSequence proto. ns = note_seq.NoteSequence.FromString(ns_str) # Apply sustain pedal. ns = sequences_lib.apply_sustain_control_changes(ns) # Remove control changes as there are potentially a lot of them and they are # no longer needed. del ns.control_changes[:] if (self._min_hop_size_seconds and ns.total_time < self._min_hop_size_seconds): Metrics.counter('extract_examples', 'sequence_too_short').inc() return sequences = [] for _ in range(self._num_replications): if self._max_hop_size_seconds: if self._max_hop_size_seconds == self._min_hop_size_seconds: # Split using fixed hop size. sequences += sequences_lib.split_note_sequence( ns, self._max_hop_size_seconds) else: # Sample random hop positions such that each segment size is within # the specified range. hop_times = [0.0] while hop_times[ -1] <= ns.total_time - self._min_hop_size_seconds: if hop_times[ -1] + self._max_hop_size_seconds < ns.total_time: # It's important that we get a valid hop size here, since the # remainder of the sequence is too long. max_offset = min( self._max_hop_size_seconds, ns.total_time - self._min_hop_size_seconds - hop_times[-1]) else: # It's okay if the next hop time is invalid (in which case we'll # just stop). max_offset = self._max_hop_size_seconds offset = random.uniform(self._min_hop_size_seconds, max_offset) hop_times.append(hop_times[-1] + offset) # Split at the chosen hop times (ignoring zero and the final invalid # time). sequences += sequences_lib.split_note_sequence( ns, hop_times[1:-1]) else: sequences += [ns] for performance_sequence in sequences: if self._encode_score_fns: # We need to extract a score. if not self._absolute_timing: # Beats are required to extract a score with metric timing. beats = [ ta for ta in performance_sequence.text_annotations if ta.annotation_type == BEAT and ta.time <= performance_sequence.total_time ] if len(beats) < 2: Metrics.counter('extract_examples', 'not_enough_beats').inc() continue # Ensure the sequence starts and ends on a beat. performance_sequence = sequences_lib.extract_subsequence( performance_sequence, start_time=min(beat.time for beat in beats), end_time=max(beat.time for beat in beats)) # Infer beat-aligned chords (only for relative timing). try: chord_inference.infer_chords_for_sequence( performance_sequence, chord_change_prob=0.25, chord_note_concentration=50.0, add_key_signatures=True) except chord_inference.ChordInferenceError: Metrics.counter('extract_examples', 'chord_inference_failed').inc() continue # Infer melody regardless of relative/absolute timing. try: melody_instrument = melody_inference.infer_melody_for_sequence( performance_sequence, melody_interval_scale=2.0, rest_prob=0.1, instantaneous_non_max_pitch_prob=1e-15, instantaneous_non_empty_rest_prob=0.0, instantaneous_missing_pitch_prob=1e-15) except melody_inference.MelodyInferenceError: Metrics.counter('extract_examples', 'melody_inference_failed').inc() continue if not self._absolute_timing: # Now rectify detected beats to occur at fixed tempo. # TODO(iansimon): also include the alignment score_sequence, unused_alignment = sequences_lib.rectify_beats( performance_sequence, beats_per_minute=SCORE_BPM) else: # Score uses same timing as performance. score_sequence = copy.deepcopy(performance_sequence) # Remove melody notes from performance. performance_notes = [] for note in performance_sequence.notes: if note.instrument != melody_instrument: performance_notes.append(note) del performance_sequence.notes[:] performance_sequence.notes.extend(performance_notes) # Remove non-melody notes from score. score_notes = [] for note in score_sequence.notes: if note.instrument == melody_instrument: score_notes.append(note) del score_sequence.notes[:] score_sequence.notes.extend(score_notes) # Remove key signatures and beat/chord annotations from performance. del performance_sequence.key_signatures[:] del performance_sequence.text_annotations[:] Metrics.counter('extract_examples', 'extracted_score').inc() for augment_fn in self._augment_fns: # Augment and encode the performance. try: augmented_performance_sequence = augment_fn( performance_sequence) except DataAugmentationError: Metrics.counter('extract_examples', 'augment_performance_failed').inc() continue example_dict = { 'targets': self._encode_performance_fn(augmented_performance_sequence) } if not example_dict['targets']: Metrics.counter('extract_examples', 'skipped_empty_targets').inc() continue if (self._random_crop_length and len(example_dict['targets']) > self._random_crop_length): # Take a random crop of the encoded performance. max_offset = len( example_dict['targets']) - self._random_crop_length offset = random.randrange(max_offset + 1) example_dict['targets'] = example_dict['targets'][ offset:offset + self._random_crop_length] if self._encode_score_fns: # Augment the extracted score. try: augmented_score_sequence = augment_fn(score_sequence) except DataAugmentationError: Metrics.counter('extract_examples', 'augment_score_failed').inc() continue # Apply all score encoding functions. skip = False for name, encode_score_fn in self._encode_score_fns.items( ): example_dict[name] = encode_score_fn( augmented_score_sequence) if not example_dict[name]: Metrics.counter('extract_examples', 'skipped_empty_%s' % name).inc() skip = True break if skip: continue Metrics.counter('extract_examples', 'encoded_example').inc() Metrics.distribution( 'extract_examples', 'performance_length_in_seconds').update( int(augmented_performance_sequence.total_time)) yield generator_utils.to_example(example_dict)
def transform(self, note_sequence): return sequences_lib.split_note_sequence(note_sequence, self._hop_size_seconds)
def transform(self, input_object): note_sequence = input_object return sequences_lib.split_note_sequence( note_sequence, self._hop_size_seconds)