verbose=1) # Train the model on training data rf.fit(train.drop(["smiles", "logS", "Classification"], axis=1), train["Classification"]) # Use the forest's predict method on the test data predictions = rf.predict( test.drop(["smiles", "logS", "Classification"], axis=1)) predictions_t = rf.predict( train.drop(["smiles", "logS", "Classification"], axis=1)) #Get r^2 from sklearn.metrics import accuracy_score print('Train Sklearn accuracy:', round(accuracy_score(predictions_t, train["Classification"]), 2)) print('Pred Sklearn accuracy:', round(accuracy_score(predictions, test["Classification"]), 2)) from sklearn.metrics import classification_report print("Train\n", classification_report(predictions_t, train["Classification"])) print("Predict\n", classification_report(predictions, test["Classification"])) try: from notifyending import notify_ending notify_ending("Finished fitting random forest") except: print("Random forest") #quit()
import pickle with open('catboost_backup.pickle', 'wb') as f: pickle.dump(model, f) predictrain = model.predict(cattrain) predictest = model.predict(cattest) data = { 'Catboost': ['Train', 'Test', 'Validate'], 'Precision': [ptrain, ptest, pvalid] } data = pd.DataFrame(data) data.to_csv("Precision_Catboost.csv") #LOad model """ from_file = CatBoostClassifier() from_file.load_model("Catboost_Sol") with open('catboost_backup.pickle', 'rb') as f: model = pickle.load(f) """ try: from notifyending import notify_ending notify_ending("Finished fitting random forest with catboost") except: print("Random forest")