예제 #1
0
def test_simple_example_params(digits, param, expected):
    X_train, X_test, y_train, y_test = digits
    mod = BasicSGDClassifier(**{param: expected})
    mod.fit(X_train, y_train)
    preds = mod.predict(X_test)
    acc = accuracy_score(y_test, preds)
    if not (param == "max_iter" and expected <= 1):
        assert acc >= 0.90
def fit_basic_sgd_classifier_with_crossvalidation(X, y):
    basemod = BasicSGDClassifier()
    cv = 5
    param_grid = {'eta': [0.01, 0.1, 1.0], 'max_iter': [10]}
    best_mod = utils.fit_classifier_with_crossvalidation(
        X, y, basemod, cv, param_grid)
    return best_mod
def fit_basic_sgd_classifier(X, y):
    """Wrapper for `BasicSGDClassifier`.
    
    Parameters
    ----------
    X : 2d np.array
        The matrix of features, one example per row.        
    y : list
        The list of labels for rows in `X`.
    
    Returns
    -------
    BasicSGDClassifier
        A trained `BasicSGDClassifier` instance.
    
    """
    mod = BasicSGDClassifier()
    mod.fit(X, y)
    return mod
예제 #4
0
def test_cross_validation_nlu(digits):
    X_train, X_test, y_train, y_test = digits
    param_grid = {'eta': [0.02, 0.03]}
    mod = BasicSGDClassifier(max_iter=2)
    best_mod = utils.fit_classifier_with_hyperparameter_search(
        X_train, y_train, mod, cv=2, param_grid=param_grid)
예제 #5
0
def test_cross_validation_sklearn(digits):
    X_train, X_test, y_train, y_test = digits
    mod = BasicSGDClassifier(max_iter=5)
    xval = cross_validate(mod, X_train, y_train, cv=2)
예제 #6
0
def test_hyperparameter_selection(digits):
    X_train, X_test, y_train, y_test = digits
    param_grid = {'eta': [0.02, 0.03]}
    mod = BasicSGDClassifier(max_iter=5)
    xval = RandomizedSearchCV(mod, param_grid, cv=2)
    xval.fit(X_train, y_train)
예제 #7
0
def test_parameter_setting(param, expected):
    mod = BasicSGDClassifier()
    mod.set_params(**{param: expected})
    result = getattr(mod, param)
    assert result == expected
예제 #8
0
def test_params(param, expected):
    mod = BasicSGDClassifier(**{param: expected})
    result = getattr(mod, param)
    assert result == expected