def make_network(minibatch_size=64): patch_size = 32 inp = DataProvider("data", shape=(minibatch_size, 3, patch_size, patch_size)) label = DataProvider("label", shape=(minibatch_size, )) k, l = 20, (40 - 4) // 3 lay = bn_relu_conv(inp, 3, 1, 1, k, False, False) for i in range(3): lay = transition(dense_block(lay, k, l), i) #global average pooling print(lay.partial_shape) feature = lay.mean(axis=2).mean(axis=2) #feature = Pooling2D("glbpoling", lay, window = 8, stride = 8, mode = "AVERAGE") pred = Softmax( "pred", FullyConnected("fc0", feature, output_dim=10, nonlinearity=Identity())) network = Network(outputs=[pred]) network.loss_var = CrossEntropyLoss(pred, label) info = CInfo() info.get_complexity(network.outputs).as_table().show() return network
def make_network(minibatch_size=128, debug=False): patch_size = 32 inp = DataProvider("data", shape=(minibatch_size, 3, patch_size, patch_size), dtype=np.float32) label = DataProvider("label", shape=(minibatch_size, ), dtype=np.int32) lay = conv_bn(inp, 3, 1, 1, 16 * 4 * 2, True) n = 4 * 3 group = 8 lis = [16 * 4, 32 * 4, 64 * 4] for i in range(len(lis)): lay = res_block(lay, lis[i], i, n, group) #global average pooling #feature = lay.mean(axis = 2).mean(axis = 2) feature = Pooling2D("pooling", lay, window=8, stride=8, padding=0, mode="AVERAGE") pred = Softmax( "pred", FullyConnected( "fc0", feature, output_dim=10, #W = G(mean = 0, std = (1 / 64)**0.5), #b = C(0), nonlinearity=Identity())) network = Network(outputs=[pred]) network.loss_var = CrossEntropyLoss(pred, label) info = CInfo() info.get_complexity(network.outputs).as_table().show() """ if debug: visitor = NetworkVisitor(network.loss_var) for i in visitor.all_oprs: print(i) print(i.partial_shape) print("input = ", i.inputs) print("output = ", i.outputs) print() """ return network