예제 #1
0
            def init_specific(self, context, builder, arrty, arr):
                zero = context.get_constant(types.intp, 0)
                data = arr.data
                ndim = arrty.ndim
                shapes = cgutils.unpack_tuple(builder, arr.shape, ndim)

                indices = cgutils.alloca_once(builder,
                                              zero.type,
                                              size=context.get_constant(
                                                  types.intp, arrty.ndim))
                pointers = cgutils.alloca_once(builder,
                                               data.type,
                                               size=context.get_constant(
                                                   types.intp, arrty.ndim))
                strides = cgutils.unpack_tuple(builder, arr.strides, ndim)
                exhausted = cgutils.alloca_once_value(builder,
                                                      cgutils.false_byte)

                # Initialize indices and pointers with their start values.
                for dim in range(ndim):
                    idxptr = cgutils.gep(builder, indices, dim)
                    ptrptr = cgutils.gep(builder, pointers, dim)
                    builder.store(data, ptrptr)
                    builder.store(zero, idxptr)
                    # 0-sized dimensions really indicate an empty array,
                    # but we have to catch that condition early to avoid
                    # a bug inside the iteration logic (see issue #846).
                    dim_size = shapes[dim]
                    dim_is_empty = builder.icmp(lc.ICMP_EQ, dim_size, zero)
                    with cgutils.if_unlikely(builder, dim_is_empty):
                        builder.store(cgutils.true_byte, exhausted)

                self.indices = indices
                self.pointers = pointers
                self.exhausted = exhausted
예제 #2
0
def dot_3_vm(context, builder, sig, args):
    """
    np.dot(vector, matrix, out)
    np.dot(matrix, vector, out)
    """
    xty, yty, outty = sig.args
    assert outty == sig.return_type
    dtype = xty.dtype

    x = make_array(xty)(context, builder, args[0])
    y = make_array(yty)(context, builder, args[1])
    out = make_array(outty)(context, builder, args[2])
    x_shapes = cgutils.unpack_tuple(builder, x.shape)
    y_shapes = cgutils.unpack_tuple(builder, y.shape)
    out_shapes = cgutils.unpack_tuple(builder, out.shape)
    if xty.ndim < yty.ndim:
        # Vector * matrix
        # Asked for x * y, we will compute y.T * x
        mty = yty
        m_shapes = y_shapes
        do_trans = yty.layout == 'F'
        m_data, v_data = y.data, x.data

        def check_args(a, b, out):
            m, = a.shape
            _m, n = b.shape
            if m != _m:
                raise ValueError("incompatible array sizes for "
                                 "np.dot(a, b) (vector * matrix)")
            if out.shape != (n,):
                raise ValueError("incompatible output array size for "
                                 "np.dot(a, b, out) (vector * matrix)")
    else:
        # Matrix * vector
        # We will compute x * y
        mty = xty
        m_shapes = x_shapes
        do_trans = xty.layout == 'C'
        m_data, v_data = x.data, y.data

        def check_args(a, b, out):
            m, _n = a.shape
            n, = b.shape
            if n != _n:
                raise ValueError("incompatible array sizes for np.dot(a, b) "
                                 "(matrix * vector)")
            if out.shape != (m,):
                raise ValueError("incompatible output array size for "
                                 "np.dot(a, b, out) (matrix * vector)")

    context.compile_internal(builder, check_args,
                             signature(types.none, *sig.args), args)
    for val in m_shapes:
        check_c_int(context, builder, val)

    call_xxgemv(context, builder, do_trans, mty, m_shapes, m_data,
                v_data, out.data)

    return impl_ret_borrowed(context, builder, sig.return_type,
                             out._getvalue())
예제 #3
0
            def init_specific(self, context, builder, arrty, arr):
                zero = context.get_constant(types.intp, 0)
                data = arr.data
                ndim = arrty.ndim
                shapes = cgutils.unpack_tuple(builder, arr.shape, ndim)

                indices = cgutils.alloca_once(builder, zero.type,
                                              size=context.get_constant(types.intp,
                                                                        arrty.ndim))
                pointers = cgutils.alloca_once(builder, data.type,
                                               size=context.get_constant(types.intp,
                                                                         arrty.ndim))
                strides = cgutils.unpack_tuple(builder, arr.strides, ndim)
                exhausted = cgutils.alloca_once_value(builder, cgutils.false_byte)

                # Initialize indices and pointers with their start values.
                for dim in range(ndim):
                    idxptr = cgutils.gep(builder, indices, dim)
                    ptrptr = cgutils.gep(builder, pointers, dim)
                    builder.store(data, ptrptr)
                    builder.store(zero, idxptr)
                    # 0-sized dimensions really indicate an empty array,
                    # but we have to catch that condition early to avoid
                    # a bug inside the iteration logic (see issue #846).
                    dim_size = shapes[dim]
                    dim_is_empty = builder.icmp(lc.ICMP_EQ, dim_size, zero)
                    with cgutils.if_unlikely(builder, dim_is_empty):
                        builder.store(cgutils.true_byte, exhausted)

                self.indices = indices
                self.pointers = pointers
                self.exhausted = exhausted
예제 #4
0
def getitem_arraynd_intp(context, builder, sig, args):
    aryty, idxty = sig.args
    ary, idx = args
    arystty = make_array(aryty)
    adapted_ary = arystty(context, builder, ary)
    ndim = aryty.ndim
    if ndim == 1:
        result = _getitem_array1d(context, builder, aryty, adapted_ary, idx,
                                  wraparound=idxty.signed)
    elif ndim > 1:
        out_ary_ty = make_array(aryty.copy(ndim = ndim - 1))
        out_ary = out_ary_ty(context, builder)
        in_shapes = cgutils.unpack_tuple(builder, adapted_ary.shape, count=ndim)
        in_strides = cgutils.unpack_tuple(builder, adapted_ary.strides,
                                          count=ndim)
        data_p = cgutils.get_item_pointer2(builder, adapted_ary.data, in_shapes,
                                           in_strides, aryty.layout, [idx],
                                           wraparound=idxty.signed)
        populate_array(out_ary,
                       data=data_p,
                       shape=cgutils.pack_array(builder, in_shapes[1:]),
                       strides=cgutils.pack_array(builder, in_strides[1:]),
                       itemsize=adapted_ary.itemsize,
                       parent=adapted_ary.parent,)
        result = out_ary._getvalue()
    else:
        raise NotImplementedError("1D indexing into %dD array" % aryty.ndim)
    return result
예제 #5
0
def getitem_array_tuple(context, builder, sig, args):
    aryty, idxty = sig.args
    ary, idx = args

    arystty = make_array(aryty)
    ary = arystty(context, builder, ary)

    ndim = aryty.ndim
    if isinstance(sig.return_type, types.Array):
        # Slicing
        raw_indices = cgutils.unpack_tuple(builder, idx, aryty.ndim)
        start = []
        shapes = []
        strides = []

        oshapes = cgutils.unpack_tuple(builder, ary.shape, ndim)
        for ax, (indexval, idxty) in enumerate(zip(raw_indices, idxty)):
            if idxty == types.slice3_type:
                slice = Slice(context, builder, value=indexval)
                cgutils.normalize_slice(builder, slice, oshapes[ax])
                start.append(slice.start)
                shapes.append(cgutils.get_range_from_slice(builder, slice))
                strides.append(
                    cgutils.get_strides_from_slice(builder, ndim, ary.strides,
                                                   slice, ax))
            else:
                ind = context.cast(builder, indexval, idxty, types.intp)
                start.append(ind)

        dataptr = cgutils.get_item_pointer(
            builder,
            aryty,
            ary,
            start,
            wraparound=context.metadata['wraparound'])
        # Build array
        retstty = make_array(sig.return_type)
        retary = retstty(context, builder)
        retary.data = dataptr
        retary.shape = cgutils.pack_array(builder, shapes)
        retary.strides = cgutils.pack_array(builder, strides)
        return retary._getvalue()
    else:
        # Indexing
        indices = cgutils.unpack_tuple(builder, idx, count=len(idxty))
        indices = [
            context.cast(builder, i, t, types.intp)
            for t, i in zip(idxty, indices)
        ]
        ptr = cgutils.get_item_pointer(
            builder,
            aryty,
            ary,
            indices,
            wraparound=context.metadata['wraparound'])

        return context.unpack_value(builder, aryty.dtype, ptr)
예제 #6
0
def array_nonzero(context, builder, sig, args):
    aryty = sig.args[0]
    # Return type is a N-tuple of 1D C-contiguous arrays
    retty = sig.return_type
    outaryty = retty.dtype
    ndim = aryty.ndim
    nouts = retty.count

    ary = make_array(aryty)(context, builder, args[0])
    shape = cgutils.unpack_tuple(builder, ary.shape)
    strides = cgutils.unpack_tuple(builder, ary.strides)
    data = ary.data
    layout = aryty.layout

    # First count the number of non-zero elements
    zero = context.get_constant(types.intp, 0)
    one = context.get_constant(types.intp, 1)
    count = cgutils.alloca_once_value(builder, zero)
    with cgutils.loop_nest(builder, shape, zero.type) as indices:
        ptr = cgutils.get_item_pointer2(builder, data, shape, strides, layout,
                                        indices)
        val = load_item(context, builder, aryty, ptr)
        nz = context.is_true(builder, aryty.dtype, val)
        with builder.if_then(nz):
            builder.store(builder.add(builder.load(count), one), count)

    # Then allocate output arrays of the right size
    out_shape = (builder.load(count), )
    outs = [
        _empty_nd_impl(context, builder, outaryty, out_shape)._getvalue()
        for i in range(nouts)
    ]
    outarys = [make_array(outaryty)(context, builder, out) for out in outs]
    out_datas = [out.data for out in outarys]

    # And fill them up
    index = cgutils.alloca_once_value(builder, zero)
    with cgutils.loop_nest(builder, shape, zero.type) as indices:
        ptr = cgutils.get_item_pointer2(builder, data, shape, strides, layout,
                                        indices)
        val = load_item(context, builder, aryty, ptr)
        nz = context.is_true(builder, aryty.dtype, val)
        with builder.if_then(nz):
            # Store element indices in output arrays
            if not indices:
                # For a 0-d array, store 0 in the unique output array
                indices = (zero, )
            cur = builder.load(index)
            for i in range(nouts):
                ptr = cgutils.get_item_pointer2(builder, out_datas[i],
                                                out_shape, (), 'C', [cur])
                store_item(context, builder, outaryty, indices[i], ptr)
            builder.store(builder.add(cur, one), index)

    tup = context.make_tuple(builder, sig.return_type, outs)
    return impl_ret_new_ref(context, builder, sig.return_type, tup)
예제 #7
0
파일: npyimpl.py 프로젝트: albop/numba
    def impl(context, builder, sig, args):
        [tyinp, tyout] = sig.args
        [inp, out] = args
        if scalar_input:
            ndim = 1
        else:
            ndim = tyinp.ndim

        if not scalar_input:
            iary = context.make_array(tyinp)(context, builder, inp)
        oary = context.make_array(tyout)(context, builder, out)

        if asfloat:
            sig = typing.signature(types.float64, types.float64)
        else:
            if scalar_input:
                sig = typing.signature(tyout.dtype, tyinp)
            else:
                sig = typing.signature(tyout.dtype, tyinp.dtype)

        fnwork = context.get_function(funckey, sig)
        intpty = context.get_value_type(types.intp)

        # TODO handle differing shape by mimicking broadcasting
        if scalar_input:
            shape = cgutils.unpack_tuple(builder, oary.shape, ndim)
        else:
            shape = cgutils.unpack_tuple(builder, iary.shape, ndim)
        with cgutils.loop_nest(builder, shape, intp=intpty) as indices:
            if not scalar_input:
                pi = cgutils.get_item_pointer(builder, tyinp, iary, indices)
            po = cgutils.get_item_pointer(builder, tyout, oary, indices)

            if scalar_input:
                ival = inp
            else:
                ival = builder.load(pi)
            if asfloat:
                if scalar_input:
                    dval = context.cast(builder, ival, tyinp, types.float64)
                else:
                    dval = context.cast(builder, ival, tyinp.dtype, types.float64)
                dres = fnwork(builder, [dval])
                res = context.cast(builder, dres, types.float64, tyout.dtype)
            elif scalar_input and tyinp != tyout:
                tempres = fnwork(builder, [ival])
                res = context.cast(builder, tempres, tyinp, tyout.dtype)
            elif tyinp.dtype != tyout.dtype:
                tempres = fnwork(builder, [ival])
                res = context.cast(builder, tempres, tyinp.dtype, tyout.dtype)
            else:
                res = fnwork(builder, [ival])
            builder.store(res, po)

        return out
예제 #8
0
def array_nonzero(context, builder, sig, args):
    aryty = sig.args[0]
    # Return type is a N-tuple of 1D C-contiguous arrays
    retty = sig.return_type
    outaryty = retty.dtype
    ndim = aryty.ndim
    nouts = retty.count

    ary = make_array(aryty)(context, builder, args[0])
    shape = cgutils.unpack_tuple(builder, ary.shape)
    strides = cgutils.unpack_tuple(builder, ary.strides)
    data = ary.data
    layout = aryty.layout

    # First count the number of non-zero elements
    zero = context.get_constant(types.intp, 0)
    one = context.get_constant(types.intp, 1)
    count = cgutils.alloca_once_value(builder, zero)
    with cgutils.loop_nest(builder, shape, zero.type) as indices:
        ptr = cgutils.get_item_pointer2(builder, data, shape, strides,
                                        layout, indices)
        val = load_item(context, builder, aryty, ptr)
        nz = context.is_true(builder, aryty.dtype, val)
        with builder.if_then(nz):
            builder.store(builder.add(builder.load(count), one), count)

    # Then allocate output arrays of the right size
    out_shape = (builder.load(count),)
    outs = [_empty_nd_impl(context, builder, outaryty, out_shape)._getvalue()
            for i in range(nouts)]
    outarys = [make_array(outaryty)(context, builder, out) for out in outs]
    out_datas = [out.data for out in outarys]

    # And fill them up
    index = cgutils.alloca_once_value(builder, zero)
    with cgutils.loop_nest(builder, shape, zero.type) as indices:
        ptr = cgutils.get_item_pointer2(builder, data, shape, strides,
                                        layout, indices)
        val = load_item(context, builder, aryty, ptr)
        nz = context.is_true(builder, aryty.dtype, val)
        with builder.if_then(nz):
            # Store element indices in output arrays
            if not indices:
                # For a 0-d array, store 0 in the unique output array
                indices = (zero,)
            cur = builder.load(index)
            for i in range(nouts):
                ptr = cgutils.get_item_pointer2(builder, out_datas[i],
                                                out_shape, (),
                                                'C', [cur])
                store_item(context, builder, outaryty, indices[i], ptr)
            builder.store(builder.add(cur, one), index)

    tup = context.make_tuple(builder, sig.return_type, outs)
    return impl_ret_new_ref(context, builder, sig.return_type, tup)
예제 #9
0
def getitem_array_unituple(context, builder, sig, args):
    aryty, idxty = sig.args
    ary, idx = args

    ndim = aryty.ndim
    arystty = make_array(aryty)
    ary = arystty(context, builder, ary)

    if idxty.dtype == types.slice3_type:
        # Slicing
        raw_slices = cgutils.unpack_tuple(builder, idx, aryty.ndim)
        slices = [Slice(context, builder, value=sl) for sl in raw_slices]
        for sl, sh in zip(slices, cgutils.unpack_tuple(builder, ary.shape,
                                                       ndim)):
            cgutils.normalize_slice(builder, sl, sh)
        indices = [sl.start for sl in slices]
        dataptr = cgutils.get_item_pointer(
            builder,
            aryty,
            ary,
            indices,
            wraparound=context.metadata['wraparound'])
        # Build array
        retstty = make_array(sig.return_type)
        retary = retstty(context, builder)
        retary.data = dataptr
        shapes = [cgutils.get_range_from_slice(builder, sl) for sl in slices]
        retary.shape = cgutils.pack_array(builder, shapes)
        strides = [
            cgutils.get_strides_from_slice(builder, ndim, ary.strides, sl, i)
            for i, sl in enumerate(slices)
        ]

        retary.strides = cgutils.pack_array(builder, strides)

        return retary._getvalue()
    else:
        # Indexing
        assert idxty.dtype == types.intp
        indices = cgutils.unpack_tuple(builder, idx, count=len(idxty))
        indices = [
            context.cast(builder, i, t, types.intp)
            for t, i in zip(idxty, indices)
        ]
        ptr = cgutils.get_item_pointer(
            builder,
            aryty,
            ary,
            indices,
            wraparound=context.metadata['wraparound'])

        return context.unpack_value(builder, aryty.dtype, ptr)
예제 #10
0
파일: arrayobj.py 프로젝트: meego/numba
def getitem_array_tuple(context, builder, sig, args):
    aryty, idxty = sig.args
    ary, idx = args

    arystty = make_array(aryty)
    ary = arystty(context, builder, ary)

    ndim = aryty.ndim
    if isinstance(sig.return_type, types.Array):
        # Slicing
        raw_indices = cgutils.unpack_tuple(builder, idx, aryty.ndim)
        start = []
        shapes = []
        strides = []

        oshapes = cgutils.unpack_tuple(builder, ary.shape, ndim)
        for ax, (indexval, idxty) in enumerate(zip(raw_indices, idxty)):
            if idxty == types.slice3_type:
                slice = Slice(context, builder, value=indexval)
                cgutils.normalize_slice(builder, slice, oshapes[ax])
                start.append(slice.start)
                shapes.append(cgutils.get_range_from_slice(builder, slice))
                strides.append(cgutils.get_strides_from_slice(builder, ndim,
                                                              ary.strides,
                                                              slice, ax))
            else:
                ind = context.cast(builder, indexval, idxty, types.intp)
                start.append(ind)

        dataptr = cgutils.get_item_pointer(builder, aryty, ary, start,
                                           wraparound=True)
        # Build array
        retstty = make_array(sig.return_type)
        retary = retstty(context, builder)
        populate_array(retary,
                       data=dataptr,
                       shape=cgutils.pack_array(builder, shapes),
                       strides=cgutils.pack_array(builder, strides),
                       itemsize=ary.itemsize,
                       meminfo=ary.meminfo,
                       parent=ary.parent)
        return retary._getvalue()
    else:
        # Indexing
        indices = cgutils.unpack_tuple(builder, idx, count=len(idxty))
        indices = [context.cast(builder, i, t, types.intp)
                   for t, i in zip(idxty, indices)]
        ptr = cgutils.get_item_pointer(builder, aryty, ary, indices,
                                       wraparound=True)

        return context.unpack_value(builder, aryty.dtype, ptr)
예제 #11
0
def _define_atomic_cas(module, ordering):
    """Define a llvm function for atomic compare-and-swap.
    The generated function is a direct wrapper of the LLVM cmpxchg with the
    difference that the a int indicate success (1) or failure (0) is returned
    and the last argument is a output pointer for storing the old value.

    Note
    ----
    On failure, the generated function behaves like an atomic load.  The loaded
    value is stored to the last argument.
    """
    ftype = ir.FunctionType(ir.IntType(32), [_word_type.as_pointer(),
                                             _word_type, _word_type,
                                             _word_type.as_pointer()])
    fn_cas = ir.Function(module, ftype, name="nrt_atomic_cas")

    [ptr, cmp, repl, oldptr] = fn_cas.args
    bb = fn_cas.append_basic_block()
    builder = ir.IRBuilder(bb)
    outtup = builder.cmpxchg(ptr, cmp, repl, ordering=ordering)
    old, ok = cgutils.unpack_tuple(builder, outtup, 2)
    builder.store(old, oldptr)
    builder.ret(builder.zext(ok, ftype.return_type))

    return fn_cas
예제 #12
0
파일: d4p.py 프로젝트: schevalier/hpat
 def gen_call(context, builder, sig, args, c_func):
     '''
     This is generating the llvm code for calling a d4p C function.
     May also convert to ndarray.
     Used by our dynamically generated/exec'ed @lower_builtin/@lower_getattr functions below.
     '''
     lir_types = [lir.IntType(8).as_pointer()]  # the first arg is always our algo object (shrd_ptr)
     c_args = [args[0]]                         # the first arg is always our algo object (shrd_ptr)
     # prepare our args (usually none for most get_* attribuutes/properties)
     for i in range(1, len(args)):
         lirt = get_lir_type(context, sig.args[i])
         if isinstance(lirt, list):  # Array!
             # generate lir code to extract actual arguments
             # collect args/types in list
             lir_types += lirt
             in_arrtype = sig.args[i]
             in_array = context.make_array(in_arrtype)(context, builder, args[i])
             in_shape = cgutils.unpack_tuple(builder, in_array.shape)
             c_args += [in_array.data, in_shape[0], in_shape[1]]
         else:
             lir_types.append(lirt)
             c_args.append(args[i])
     #ret_typ = sig if c_func.startswith('get_') else sig.return_type
     # Our getter might return an array, which needs special handling
     ret_is_array = isinstance(sig.return_type, types.Array)
     # define our llvm return type
     c_func_ret_type = lir.IntType(8).as_pointer() if ret_is_array else context.get_data_type(sig.return_type)
     # Now we can define the signature
     fnty = lir.FunctionType(c_func_ret_type, lir_types)
     # Get function
     fn = builder.module.get_or_insert_function(fnty, name=c_func)
     # and finally generate the call
     ptr = builder.call(fn, c_args)
     return nt2nd(context, builder, ptr, sig.return_type) if ret_is_array else ptr
예제 #13
0
def iternext_array(context, builder, sig, args, result):
    [iterty] = sig.args
    [iter] = args
    arrayty = iterty.array_type

    if arrayty.ndim != 1:
        # TODO
        raise NotImplementedError("iterating over %dD array" % arrayty.ndim)

    iterobj = make_arrayiter_cls(iterty)(context, builder, value=iter)
    ary = make_array(arrayty)(context, builder, value=iterobj.array)

    nitems, = cgutils.unpack_tuple(builder, ary.shape, count=1)

    index = builder.load(iterobj.index)
    is_valid = builder.icmp(lc.ICMP_SLT, index, nitems)
    result.set_valid(is_valid)

    with cgutils.ifthen(builder, is_valid):
        value = _getitem_array1d(context,
                                 builder,
                                 arrayty,
                                 ary,
                                 index,
                                 wraparound=False)
        result.yield_(value)
        nindex = builder.add(index, context.get_constant(types.intp, 1))
        builder.store(nindex, iterobj.index)
예제 #14
0
def hsail_atomic_add_tuple(context, builder, sig, args):
    aryty, indty, valty = sig.args
    ary, inds, val = args
    dtype = aryty.dtype

    if indty == types.intp:
        indices = [inds]  # just a single integer
        indty = [indty]
    else:
        indices = cgutils.unpack_tuple(builder, inds, count=len(indty))
        indices = [
            context.cast(builder, i, t, types.intp)
            for t, i in zip(indty, indices)
        ]

    if dtype != valty:
        raise TypeError("expecting %s but got %s" % (dtype, valty))

    if aryty.ndim != len(indty):
        raise TypeError("indexing %d-D array with %d-D index" %
                        (aryty.ndim, len(indty)))

    lary = context.make_array(aryty)(context, builder, ary)
    ptr = cgutils.get_item_pointer(builder, aryty, lary, indices)

    return builder.atomic_rmw("add", ptr, val, ordering='monotonic')
예제 #15
0
def ptx_atomic_add_tuple(context, builder, sig, args):
    aryty, indty, valty = sig.args
    ary, inds, val = args
    dtype = aryty.dtype

    indices = cgutils.unpack_tuple(builder, inds, count=len(indty))
    indices = [
        context.cast(builder, i, t, types.intp)
        for t, i in zip(indty, indices)
    ]

    if dtype != valty:
        raise TypeError("expect %s but got %s" % (dtype, valty))

    if aryty.ndim != len(indty):
        raise TypeError("indexing %d-D array with %d-D index" %
                        (aryty.ndim, len(indty)))

    lary = context.make_array(aryty)(context, builder, ary)
    ptr = cgutils.get_item_pointer(builder, aryty, lary, indices)

    if aryty.dtype == types.float32:
        lmod = cgutils.get_module(builder)
        return builder.call(nvvmutils.declare_atomic_add_float32(lmod),
                            (ptr, val))
    else:
        return builder.atomic_rmw('add', ptr, val, 'monotonic')
예제 #16
0
def array_record_getattr(context, builder, typ, value, attr):
    arrayty = make_array(typ)
    array = arrayty(context, builder, value)

    rectype = typ.dtype
    assert isinstance(rectype, types.Record)
    dtype = rectype.typeof(attr)
    offset = rectype.offset(attr)

    resty = types.Array(dtype, ndim=typ.ndim, layout='A')

    raryty = make_array(resty)

    rary = raryty(context, builder)
    rary.shape = array.shape

    constoffset = context.get_constant(types.intp, offset)
    unpackedstrides = cgutils.unpack_tuple(builder, array.strides, typ.ndim)
    newstrides = [builder.add(s, constoffset) for s in unpackedstrides]

    rary.strides = array.strides

    llintp = context.get_value_type(types.intp)
    newdata = builder.add(builder.ptrtoint(array.data, llintp), constoffset)
    newdataptr = builder.inttoptr(newdata, rary.data.type)
    rary.data = newdataptr

    return rary._getvalue()
예제 #17
0
def dot_2_vv(context, builder, sig, args, conjugate=False):
    """
    np.dot(vector, vector)
    np.vdot(vector, vector)
    """
    aty, bty = sig.args
    dtype = sig.return_type
    a = make_array(aty)(context, builder, args[0])
    b = make_array(bty)(context, builder, args[1])
    n, = cgutils.unpack_tuple(builder, a.shape)

    def check_args(a, b):
        m, = a.shape
        n, = b.shape
        if m != n:
            raise ValueError("incompatible array sizes for np.dot(a, b) "
                             "(vector * vector)")

    context.compile_internal(builder, check_args,
                             signature(types.none, *sig.args), args)
    check_c_int(context, builder, n)

    out = cgutils.alloca_once(builder, context.get_value_type(dtype))
    call_xxdot(context, builder, conjugate, dtype, n, a.data, b.data, out)
    return builder.load(out)
예제 #18
0
def _define_atomic_cas(module, ordering):
    """Define a llvm function for atomic compare-and-swap.
    The generated function is a direct wrapper of the LLVM cmpxchg with the
    difference that the a int indicate success (1) or failure (0) is returned
    and the last argument is a output pointer for storing the old value.

    Note
    ----
    On failure, the generated function behaves like an atomic load.  The loaded
    value is stored to the last argument.
    """
    ftype = ir.FunctionType(ir.IntType(32), [
        _word_type.as_pointer(), _word_type, _word_type,
        _word_type.as_pointer()
    ])
    fn_cas = ir.Function(module, ftype, name="nrt_atomic_cas")

    [ptr, cmp, repl, oldptr] = fn_cas.args
    bb = fn_cas.append_basic_block()
    builder = ir.IRBuilder(bb)
    outtup = builder.cmpxchg(ptr, cmp, repl, ordering=ordering)
    old, ok = cgutils.unpack_tuple(builder, outtup, 2)
    builder.store(old, oldptr)
    builder.ret(builder.zext(ok, ftype.return_type))

    return fn_cas
예제 #19
0
def iternext_series_array(context, builder, sig, args, result):
    """
    Implementation of iternext() for the ArrayIterator type

    :param context: context descriptor
    :param builder: llvmlite IR Builder
    :param sig: iterator signature
    :param args: tuple with iterator arguments, such as instruction, operands and types
    :param result: iternext result
    """

    [iterty] = sig.args
    [iter] = args
    arrayty = iterty.array_type

    if arrayty.ndim != 1:
        raise NotImplementedError("iterating over %dD array" % arrayty.ndim)

    iterobj = context.make_helper(builder, iterty, value=iter)
    ary = make_array(arrayty)(context, builder, value=iterobj.array)

    nitems, = cgutils.unpack_tuple(builder, ary.shape, count=1)

    index = builder.load(iterobj.index)
    is_valid = builder.icmp(lc.ICMP_SLT, index, nitems)
    result.set_valid(is_valid)

    with builder.if_then(is_valid):
        value = _getitem_array1d(context, builder, arrayty, ary, index,
                                 wraparound=False)
        result.yield_(value)
        nindex = cgutils.increment_index(builder, index)
        builder.store(nindex, iterobj.index)
예제 #20
0
def getitem_array1d_slice(context, builder, sig, args):
    aryty, _ = sig.args
    if aryty.ndim != 1:
        # TODO
        raise NotImplementedError("1D indexing into %dD array" % aryty.ndim)

    ary, idx = args

    arystty = make_array(aryty)
    ary = arystty(context, builder, value=ary)

    shapes = cgutils.unpack_tuple(builder, ary.shape, aryty.ndim)

    slicestruct = Slice(context, builder, value=idx)
    cgutils.normalize_slice(builder, slicestruct, shapes[0])

    dataptr = cgutils.get_item_pointer(builder,
                                       aryty,
                                       ary, [slicestruct.start],
                                       wraparound=True)

    retstty = make_array(sig.return_type)
    retary = retstty(context, builder)

    shape = cgutils.get_range_from_slice(builder, slicestruct)
    retary.shape = cgutils.pack_array(builder, [shape])

    stride = cgutils.get_strides_from_slice(builder, aryty.ndim, ary.strides,
                                            slicestruct, 0)
    retary.strides = cgutils.pack_array(builder, [stride])
    retary.data = dataptr

    return retary._getvalue()
예제 #21
0
def _box_class_instance(typ, val, c):
    meminfo, dataptr = cgutils.unpack_tuple(c.builder, val)

    # Create Box instance
    box_subclassed = _specialize_box(typ)
    # Note: the ``box_subclassed`` is kept alive by the cache
    int_addr_boxcls = c.context.get_constant(types.uintp, id(box_subclassed))

    box_cls = c.builder.inttoptr(int_addr_boxcls, c.pyapi.pyobj)
    box = c.pyapi.call_function_objargs(box_cls, ())

    # Initialize Box instance
    llvoidptr = ir.IntType(8).as_pointer()
    addr_meminfo = c.builder.bitcast(meminfo, llvoidptr)
    addr_data = c.builder.bitcast(dataptr, llvoidptr)

    def set_member(member_offset, value):
        # Access member by byte offset
        offset = c.context.get_constant(types.uintp, member_offset)
        ptr = cgutils.pointer_add(c.builder, box, offset)
        casted = c.builder.bitcast(ptr, llvoidptr.as_pointer())
        c.builder.store(value, casted)

    set_member(_box.box_meminfoptr_offset, addr_meminfo)
    set_member(_box.box_dataptr_offset, addr_data)
    return box
예제 #22
0
    def impl(context, builder, sig, args):
        [tyinp, tyout] = sig.args
        [inp, out] = args
        ndim = tyinp.ndim

        iary = context.make_array(tyinp)(context, builder, inp)
        oary = context.make_array(tyout)(context, builder, out)

        if asfloat:
            sig = typing.signature(types.float64, types.float64)
        else:
            sig = typing.signature(tyout.dtype, tyinp.dtype)

        fnwork = context.get_function(funckey, sig)
        intpty = context.get_value_type(types.intp)

        # TODO handle differing shape by mimicking broadcasting
        shape = cgutils.unpack_tuple(builder, iary.shape, ndim)
        with cgutils.loop_nest(builder, shape, intp=intpty) as indices:
            pi = cgutils.get_item_pointer(builder, tyinp, iary, indices)
            po = cgutils.get_item_pointer(builder, tyout, oary, indices)

            ival = builder.load(pi)
            if asfloat:
                dval = context.cast(builder, ival, tyinp.dtype, types.float64)
                dres = fnwork(builder, [dval])
                res = context.cast(builder, dres, types.float64, tyout.dtype)
            elif tyinp.dtype != tyout.dtype:
                tempres = fnwork(builder, [ival])
                res = context.cast(builder, tempres, tyinp.dtype, tyout.dtype)
            else:
                res = fnwork(builder, [ival])
            builder.store(res, po)

        return out
예제 #23
0
파일: cudaimpl.py 프로젝트: nikete/numba
def ptx_atomic_add_tuple(context, builder, sig, args):
    aryty, indty, valty = sig.args
    ary, inds, val = args
    dtype = aryty.dtype

    indices = cgutils.unpack_tuple(builder, inds, count=len(indty))
    indices = [context.cast(builder, i, t, types.intp) for t, i in zip(indty, indices)]

    if dtype != valty:
        raise TypeError("expect %s but got %s" % (dtype, valty))

    if aryty.ndim != len(indty):
        raise TypeError("indexing %d-D array with %d-D index" % (aryty.ndim, len(indty)))

    lary = context.make_array(aryty)(context, builder, ary)
    ptr = cgutils.get_item_pointer(builder, aryty, lary, indices)

    if aryty.dtype == types.float32:
        lmod = builder.module
        return builder.call(nvvmutils.declare_atomic_add_float32(lmod), (ptr, val))
    elif aryty.dtype == types.float64:
        lmod = builder.module
        return builder.call(nvvmutils.declare_atomic_add_float64(lmod), (ptr, val))
    else:
        return builder.atomic_rmw("add", ptr, val, "monotonic")
예제 #24
0
파일: randomimpl.py 프로젝트: smtlify/numba
def _gauss_impl(context, builder, sig, args, state):
    # The type for all computations (either float or double)
    ty = sig.return_type
    llty = context.get_data_type(ty)

    state_ptr = get_state_ptr(context, builder, state)
    _random = {"py": random.random,
               "np": np.random.random}[state]

    ret = cgutils.alloca_once(builder, llty, name="result")

    gauss_ptr = get_gauss_ptr(builder, state_ptr)
    has_gauss_ptr = get_has_gauss_ptr(builder, state_ptr)
    has_gauss = cgutils.is_true(builder, builder.load(has_gauss_ptr))
    with cgutils.ifelse(builder, has_gauss) as (then, otherwise):
        with then:
            # if has_gauss: return it
            builder.store(builder.load(gauss_ptr), ret)
            builder.store(const_int(0), has_gauss_ptr)
        with otherwise:
            # if not has_gauss: compute a pair of numbers using the Box-Muller
            # transform; keep one and return the other
            pair = context.compile_internal(builder,
                                            _gauss_pair_impl(_random),
                                            signature(types.UniTuple(ty, 2)),
                                            ())

            first, second = cgutils.unpack_tuple(builder, pair, 2)
            builder.store(first, gauss_ptr)
            builder.store(second, ret)
            builder.store(const_int(1), has_gauss_ptr)

    mu, sigma = args
    return builder.fadd(mu,
                        builder.fmul(sigma, builder.load(ret)))
예제 #25
0
def _box_class_instance(typ, val, c):
    meminfo, dataptr = cgutils.unpack_tuple(c.builder, val)

    # Create Box instance
    box_subclassed = _specialize_box(typ)
    # Note: the ``box_subclassed`` is kept alive by the cache
    int_addr_boxcls = c.context.get_constant(types.uintp, id(box_subclassed))

    box_cls = c.builder.inttoptr(int_addr_boxcls, c.pyapi.pyobj)
    box = c.pyapi.call_function_objargs(box_cls, ())

    # Initialize Box instance
    llvoidptr = ir.IntType(8).as_pointer()
    addr_meminfo = c.builder.bitcast(meminfo, llvoidptr)
    addr_data = c.builder.bitcast(dataptr, llvoidptr)

    def set_member(member_offset, value):
        # Access member by byte offset
        offset = c.context.get_constant(types.uintp, member_offset)
        ptr = cgutils.pointer_add(c.builder, box, offset)
        casted = c.builder.bitcast(ptr, llvoidptr.as_pointer())
        c.builder.store(value, casted)

    set_member(_box.box_meminfoptr_offset, addr_meminfo)
    set_member(_box.box_dataptr_offset, addr_data)
    return box
예제 #26
0
파일: boxing.py 프로젝트: xuyaocareer/numba
def _box_class_instance(typ, val, c):
    meminfo, dataptr = cgutils.unpack_tuple(c.builder, val)

    lluintp = c.context.get_data_type(types.uintp)

    addr_meminfo = c.pyapi.from_native_value(types.uintp,
                                             c.builder.ptrtoint(meminfo,
                                                                lluintp))
    addr_dataptr = c.pyapi.from_native_value(types.uintp,
                                             c.builder.ptrtoint(dataptr,
                                                                lluintp))

    box_subclassed = _specialize_box(typ)
    # Note: the ``box_subclassed`` is kept alive by the cache
    int_addr_boxcls = c.context.get_constant(types.uintp, id(box_subclassed))

    box_cls = c.builder.inttoptr(int_addr_boxcls, c.pyapi.pyobj)

    args = [addr_meminfo, addr_dataptr]
    res = c.pyapi.call_function_objargs(box_cls, args)

    # Clean up
    c.pyapi.decref(addr_meminfo)
    c.pyapi.decref(addr_dataptr)

    return res
예제 #27
0
def array_record_getattr(context, builder, typ, value, attr):
    arrayty = make_array(typ)
    array = arrayty(context, builder, value)

    rectype = typ.dtype
    assert isinstance(rectype, types.Record)
    dtype = rectype.typeof(attr)
    offset = rectype.offset(attr)

    resty = types.Array(dtype, ndim=typ.ndim, layout='A')

    raryty = make_array(resty)

    rary = raryty(context, builder)
    rary.shape = array.shape

    constoffset = context.get_constant(types.intp, offset)
    unpackedstrides = cgutils.unpack_tuple(builder, array.strides, typ.ndim)
    newstrides = [builder.add(s, constoffset) for s in unpackedstrides]

    rary.strides = array.strides

    llintp = context.get_value_type(types.intp)
    newdata = builder.add(builder.ptrtoint(array.data, llintp), constoffset)
    newdataptr = builder.inttoptr(newdata, rary.data.type)
    rary.data = newdataptr

    return rary._getvalue()
예제 #28
0
def ptx_atomic_max_tuple(context, builder, sig, args):
    aryty, indty, valty = sig.args
    ary, inds, val = args
    dtype = aryty.dtype

    indices = cgutils.unpack_tuple(builder, inds, count=len(indty))
    indices = [
        context.cast(builder, i, t, types.intp)
        for t, i in zip(indty, indices)
    ]

    if dtype != valty:
        raise TypeError("expect %s but got %s" % (dtype, valty))

    if aryty.ndim != len(indty):
        raise TypeError("indexing %d-D array with %d-D index" %
                        (aryty.ndim, len(indty)))

    lary = context.make_array(aryty)(context, builder, ary)
    ptr = cgutils.get_item_pointer(builder, aryty, lary, indices)

    if aryty.dtype == types.float64:
        lmod = builder.module
        return builder.call(nvvmutils.declare_atomic_max_float64(lmod),
                            (ptr, val))
    else:
        raise TypeError('Unimplemented atomic max with %s array' % dtype)
예제 #29
0
파일: randomimpl.py 프로젝트: yuguen/numba
def _gauss_impl(context, builder, sig, args, state):
    # The type for all computations (either float or double)
    ty = sig.return_type
    llty = context.get_data_type(ty)

    state_ptr = get_state_ptr(context, builder, state)
    _random = {"py": random.random,
               "np": np.random.random}[state]

    ret = cgutils.alloca_once(builder, llty, name="result")

    gauss_ptr = get_gauss_ptr(builder, state_ptr)
    has_gauss_ptr = get_has_gauss_ptr(builder, state_ptr)
    has_gauss = cgutils.is_true(builder, builder.load(has_gauss_ptr))
    with builder.if_else(has_gauss) as (then, otherwise):
        with then:
            # if has_gauss: return it
            builder.store(builder.load(gauss_ptr), ret)
            builder.store(const_int(0), has_gauss_ptr)
        with otherwise:
            # if not has_gauss: compute a pair of numbers using the Box-Muller
            # transform; keep one and return the other
            pair = context.compile_internal(builder,
                                            _gauss_pair_impl(_random),
                                            signature(types.UniTuple(ty, 2)),
                                            ())

            first, second = cgutils.unpack_tuple(builder, pair, 2)
            builder.store(first, gauss_ptr)
            builder.store(second, ret)
            builder.store(const_int(1), has_gauss_ptr)

    mu, sigma = args
    return builder.fadd(mu,
                        builder.fmul(sigma, builder.load(ret)))
예제 #30
0
파일: builtins.py 프로젝트: aburan28/numba
def getitem_array1d(context, builder, sig, args):
    aryty, _ = sig.args
    if aryty.ndim != 1:
        # TODO
        raise NotImplementedError("1D indexing into %dD array" % aryty.ndim)

    ary, idx = args

    arystty = make_array(aryty)
    ary = arystty(context, builder, ary)
    dataptr = ary.data

    if True or WARPAROUND:  # TODO target flag
        ZERO = context.get_constant(types.intp, 0)
        negative = builder.icmp(lc.ICMP_SLT, idx, ZERO)
        bbnormal = builder.basic_block
        with cgutils.if_unlikely(builder, negative):
            # Index is negative, wraparound
            [nelem] = cgutils.unpack_tuple(builder, ary.shape, 1)
            wrapped = builder.add(nelem, idx)
            bbwrapped = builder.basic_block

        where = builder.phi(idx.type)
        where.add_incoming(idx, bbnormal)
        where.add_incoming(wrapped, bbwrapped)

        ptr = builder.gep(dataptr, [where])
    else:
        # No wraparound
        ptr = builder.gep(dataptr, [idx])

    if context.is_struct_type(aryty.dtype):
        return ptr
    else:
        return builder.load(ptr)
예제 #31
0
def getitem_array1d_slice(context, builder, sig, args):
    aryty, _ = sig.args
    if aryty.ndim != 1:
        # TODO
        raise NotImplementedError("1D indexing into %dD array" % aryty.ndim)

    ary, idx = args

    arystty = make_array(aryty)
    ary = arystty(context, builder, value=ary)

    shapes = cgutils.unpack_tuple(builder, ary.shape, aryty.ndim)

    slicestruct = Slice(context, builder, value=idx)
    cgutils.normalize_slice(builder, slicestruct, shapes[0])

    dataptr = cgutils.get_item_pointer(builder, aryty, ary,
                                       [slicestruct.start],
                                       wraparound=True)

    retstty = make_array(sig.return_type)
    retary = retstty(context, builder)

    shape = cgutils.get_range_from_slice(builder, slicestruct)
    retary.shape = cgutils.pack_array(builder, [shape])

    stride = cgutils.get_strides_from_slice(builder, aryty.ndim, ary.strides,
                                            slicestruct, 0)
    retary.strides = cgutils.pack_array(builder, [stride])
    retary.data = dataptr

    return retary._getvalue()
예제 #32
0
        def iternext_specific(self, context, builder, result):
            zero = context.get_constant(types.intp, 0)
            one = context.get_constant(types.intp, 1)

            bbend = cgutils.append_basic_block(builder, 'end')

            exhausted = cgutils.as_bool_bit(builder,
                                            builder.load(self.exhausted))
            with cgutils.if_unlikely(builder, exhausted):
                result.set_valid(False)
                builder.branch(bbend)

            indices = [
                builder.load(cgutils.gep(builder, self.indices, dim))
                for dim in range(ndim)
            ]
            result.yield_(cgutils.pack_array(builder, indices))
            result.set_valid(True)

            shape = cgutils.unpack_tuple(builder, self.shape, ndim)
            _increment_indices(context, builder, ndim, shape, self.indices,
                               self.exhausted)

            builder.branch(bbend)
            builder.position_at_end(bbend)
예제 #33
0
 def codegen(context, builder, signature, args):
     # check that the return type is now defined
     arrty = signature.return_type
     assert arrty.is_precise()
     shapes = unpack_tuple(builder, args[0])
     # redirect implementation to np.empty
     res = _empty_nd_impl(context, builder, arrty, shapes)
     return impl_ret_new_ref(context, builder, arrty, res._getvalue())
예제 #34
0
def _increment_indices_array(context,
                             builder,
                             arrty,
                             arr,
                             indices,
                             end_flag=None):
    shape = cgutils.unpack_tuple(builder, arr.shape, arrty.ndim)
    _increment_indices(context, builder, arrty.ndim, shape, indices, end_flag)
예제 #35
0
def array_nbytes(context, builder, typ, value):
    """
    nbytes = size * itemsize
    """
    arrayty = make_array(typ)
    array = arrayty(context, builder, value)
    dims = cgutils.unpack_tuple(builder, array.shape, typ.ndim)
    return builder.mul(array.nitems, array.itemsize)
예제 #36
0
파일: arrayobj.py 프로젝트: meego/numba
def getitem_array_unituple(context, builder, sig, args):
    aryty, idxty = sig.args
    ary, idx = args

    ndim = aryty.ndim
    arystty = make_array(aryty)
    ary = arystty(context, builder, ary)

    if idxty.dtype == types.slice3_type:
        # Slicing
        raw_slices = cgutils.unpack_tuple(builder, idx, aryty.ndim)
        slices = [Slice(context, builder, value=sl) for sl in raw_slices]
        for sl, sh in zip(slices,
                          cgutils.unpack_tuple(builder, ary.shape, ndim)):
            cgutils.normalize_slice(builder, sl, sh)
        indices = [sl.start for sl in slices]
        dataptr = cgutils.get_item_pointer(builder, aryty, ary, indices,
                                           wraparound=True)
        # Build array
        retstty = make_array(sig.return_type)
        retary = retstty(context, builder)
        shapes = [cgutils.get_range_from_slice(builder, sl)
                  for sl in slices]
        strides = [cgutils.get_strides_from_slice(builder, ndim, ary.strides,
                                                  sl, i)
                   for i, sl in enumerate(slices)]
        populate_array(retary,
                       data=dataptr,
                       shape=cgutils.pack_array(builder, shapes),
                       strides=cgutils.pack_array(builder, strides),
                       itemsize=ary.itemsize,
                       meminfo=ary.meminfo,
                       parent=ary.parent)
        return retary._getvalue()
    else:
        # Indexing
        assert isinstance(idxty.dtype, types.Integer)
        indices = cgutils.unpack_tuple(builder, idx, count=len(idxty))
        indices = [context.cast(builder, i, t, types.intp)
                   for t, i in zip(idxty, indices)]
        ptr = cgutils.get_item_pointer(builder, aryty, ary, indices,
                                       wraparound=idxty.dtype.signed)

        return context.unpack_value(builder, aryty.dtype, ptr)
예제 #37
0
파일: arrayobj.py 프로젝트: genba/numba
def iternext_numpy_flatiter(context, builder, sig, args, result):
    [flatiterty] = sig.args
    [flatiter] = args

    flatitercls = make_array_flat_cls(flatiterty)
    flatiter = flatitercls(context, builder, value=flatiter)

    arrty = flatiterty.array_type
    arrcls = context.make_array(arrty)
    arr = arrcls(context, builder, value=builder.load(flatiter.array))

    ndim = arrty.ndim
    shapes = cgutils.unpack_tuple(builder, arr.shape, ndim)
    indptr = flatiter.iters

    # Load indices and check if they are valid
    indices = []
    is_valid = cgutils.true_bit
    zero = context.get_constant(types.intp, 0)
    one = context.get_constant(types.intp, 1)
    for ax in range(ndim):
        axsize = shapes[ax]
        idxptr = builder.gep(indptr, [context.get_constant(types.intp, ax)])
        idx = builder.load(idxptr)
        ax_valid = builder.icmp(lc.ICMP_SLT, idx, axsize)

        indices.append(idx)
        is_valid = builder.and_(is_valid, ax_valid)

    result.set_valid(is_valid)

    with cgutils.if_likely(builder, is_valid):
        # Get yielded value
        valptr = cgutils.get_item_pointer(builder, arrty, arr, indices)
        yield_value = builder.load(valptr)
        result.yield_(yield_value)

        # Increment iterator indices
        carry_flags = [cgutils.true_bit]
        for ax, (idx, axsize) in reversed(list(enumerate(zip(indices,
                                                             shapes)))):
            idxptr = builder.gep(indptr, [context.get_constant(types.intp, ax)])
            lastcarry = carry_flags[-1]
            idxp1 = builder.add(idx, one)
            carry = builder.icmp(lc.ICMP_SGE, idxp1, axsize)
            idxfinal = builder.select(lastcarry,
                                      builder.select(carry, zero, idxp1),
                                      idx)
            builder.store(idxfinal, idxptr)
            carry_flags.append(builder.and_(carry, lastcarry))

        with cgutils.if_unlikely(builder, carry_flags[-1]):
            # If we have iterated all elements,
            # Set first index to out-of-bound
            idxptr = builder.gep(indptr, [context.get_constant(types.intp, 0)])
            builder.store(shapes[0], idxptr)
예제 #38
0
def iternext_numpy_flatiter(context, builder, sig, args, result):
    [flatiterty] = sig.args
    [flatiter] = args

    flatitercls = make_array_flat_cls(flatiterty)
    flatiter = flatitercls(context, builder, value=flatiter)

    arrty = flatiterty.array_type
    arrcls = context.make_array(arrty)
    arr = arrcls(context, builder, value=builder.load(flatiter.array))

    ndim = arrty.ndim
    shapes = cgutils.unpack_tuple(builder, arr.shape, ndim)
    indptr = flatiter.iters

    # Load indices and check if they are valid
    indices = []
    is_valid = cgutils.true_bit
    zero = context.get_constant(types.intp, 0)
    one = context.get_constant(types.intp, 1)
    for ax in range(ndim):
        axsize = shapes[ax]
        idxptr = builder.gep(indptr, [context.get_constant(types.intp, ax)])
        idx = builder.load(idxptr)
        ax_valid = builder.icmp(lc.ICMP_SLT, idx, axsize)

        indices.append(idx)
        is_valid = builder.and_(is_valid, ax_valid)

    result.set_valid(is_valid)

    with cgutils.if_likely(builder, is_valid):
        # Get yielded value
        valptr = cgutils.get_item_pointer(builder, arrty, arr, indices)
        yield_value = builder.load(valptr)
        result.yield_(yield_value)

        # Increment iterator indices
        carry_flags = [cgutils.true_bit]
        for ax, (idx, axsize) in reversed(list(enumerate(zip(indices,
                                                             shapes)))):
            idxptr = builder.gep(indptr,
                                 [context.get_constant(types.intp, ax)])
            lastcarry = carry_flags[-1]
            idxp1 = builder.add(idx, one)
            carry = builder.icmp(lc.ICMP_SGE, idxp1, axsize)
            idxfinal = builder.select(lastcarry,
                                      builder.select(carry, zero, idxp1), idx)
            builder.store(idxfinal, idxptr)
            carry_flags.append(builder.and_(carry, lastcarry))

        with cgutils.if_unlikely(builder, carry_flags[-1]):
            # If we have iterated all elements,
            # Set first index to out-of-bound
            idxptr = builder.gep(indptr, [context.get_constant(types.intp, 0)])
            builder.store(shapes[0], idxptr)
예제 #39
0
파일: rangeobj.py 프로젝트: cpcloud/numba
 def  codegen(context, builder, sig, args):
     (iterty,) = sig.args
     (value,) = args
     intp_t = context.get_value_type(types.intp)
     iterobj = context.make_helper(builder, iterty, value=value)
     arrayty = iterty.array_type
     ary = make_array(arrayty)(context, builder, value=iterobj.array)
     shape = cgutils.unpack_tuple(builder, ary.shape)
     # array iterates along the outer dimension
     return impl_ret_untracked(context, builder, intp_t, shape[0])
예제 #40
0
 def codegen(context, builder, sig, args):
     (iterty, ) = sig.args
     (value, ) = args
     intp_t = context.get_value_type(types.intp)
     iterobj = context.make_helper(builder, iterty, value=value)
     arrayty = iterty.array_type
     ary = make_array(arrayty)(context, builder, value=iterobj.array)
     shape = cgutils.unpack_tuple(builder, ary.shape)
     # array iterates along the outer dimension
     return impl_ret_untracked(context, builder, intp_t, shape[0])
예제 #41
0
            def init_specific(self, context, builder, arrty, arr):
                zero = context.get_constant(types.intp, 0)
                one = context.get_constant(types.intp, 1)
                data = arr.data
                ndim = arrty.ndim
                shapes = cgutils.unpack_tuple(builder, arr.shape, ndim)

                indices = cgutils.alloca_once(builder,
                                              zero.type,
                                              size=context.get_constant(
                                                  types.intp, arrty.ndim))
                pointers = cgutils.alloca_once(builder,
                                               data.type,
                                               size=context.get_constant(
                                                   types.intp, arrty.ndim))
                strides = cgutils.unpack_tuple(builder, arr.strides, ndim)
                empty = cgutils.alloca_once_value(builder, cgutils.false_byte)

                # Initialize each dimension with the next index and pointer
                # values.  For the last (inner) dimension, this is 0 and the
                # start pointer, for the other dimensions, this is 1 and the
                # pointer to the next subarray after start.
                for dim in range(ndim):
                    idxptr = cgutils.gep(builder, indices, dim)
                    ptrptr = cgutils.gep(builder, pointers, dim)
                    if dim == ndim - 1:
                        builder.store(zero, idxptr)
                        builder.store(data, ptrptr)
                    else:
                        p = cgutils.pointer_add(builder, data, strides[dim])
                        builder.store(p, ptrptr)
                        builder.store(one, idxptr)
                    # 0-sized dimensions really indicate an empty array,
                    # but we have to catch that condition early to avoid
                    # a bug inside the iteration logic (see issue #846).
                    dim_size = shapes[dim]
                    dim_is_empty = builder.icmp(lc.ICMP_EQ, dim_size, zero)
                    with cgutils.if_unlikely(builder, dim_is_empty):
                        builder.store(cgutils.true_byte, empty)

                self.indices = indices
                self.pointers = pointers
                self.empty = empty
예제 #42
0
            def init_specific(self, context, builder, arrty, arr):
                zero = context.get_constant(types.intp, 0)
                one = context.get_constant(types.intp, 1)
                data = arr.data
                ndim = arrty.ndim
                shapes = cgutils.unpack_tuple(builder, arr.shape, ndim)

                indices = cgutils.alloca_once(builder, zero.type,
                                              size=context.get_constant(types.intp,
                                                                        arrty.ndim))
                pointers = cgutils.alloca_once(builder, data.type,
                                               size=context.get_constant(types.intp,
                                                                         arrty.ndim))
                strides = cgutils.unpack_tuple(builder, arr.strides, ndim)
                empty = cgutils.alloca_once_value(builder, cgutils.false_byte)

                # Initialize each dimension with the next index and pointer
                # values.  For the last (inner) dimension, this is 0 and the
                # start pointer, for the other dimensions, this is 1 and the
                # pointer to the next subarray after start.
                for dim in range(ndim):
                    idxptr = cgutils.gep(builder, indices, dim)
                    ptrptr = cgutils.gep(builder, pointers, dim)
                    if dim == ndim - 1:
                        builder.store(zero, idxptr)
                        builder.store(data, ptrptr)
                    else:
                        p = cgutils.pointer_add(builder, data, strides[dim])
                        builder.store(p, ptrptr)
                        builder.store(one, idxptr)
                    # 0-sized dimensions really indicate an empty array,
                    # but we have to catch that condition early to avoid
                    # a bug inside the iteration logic (see issue #846).
                    dim_size = shapes[dim]
                    dim_is_empty = builder.icmp(lc.ICMP_EQ, dim_size, zero)
                    with cgutils.if_unlikely(builder, dim_is_empty):
                        builder.store(cgutils.true_byte, empty)

                self.indices = indices
                self.pointers = pointers
                self.empty = empty
예제 #43
0
파일: cudaimpl.py 프로젝트: dwhu/numba
def _normalize_indices(context, builder, indty, inds):
    """
    Convert integer indices into tuple of intp
    """
    if indty in types.integer_domain:
        indty = types.UniTuple(dtype=indty, count=1)
        indices = [inds]
    else:
        indices = cgutils.unpack_tuple(builder, inds, count=len(indty))
    indices = [context.cast(builder, i, t, types.intp)
               for t, i in zip(indty, indices)]
    return indty, indices
예제 #44
0
파일: cudaimpl.py 프로젝트: cpcloud/numba
def _normalize_indices(context, builder, indty, inds):
    """
    Convert integer indices into tuple of intp
    """
    if indty in types.integer_domain:
        indty = types.UniTuple(dtype=indty, count=1)
        indices = [inds]
    else:
        indices = cgutils.unpack_tuple(builder, inds, count=len(indty))
    indices = [context.cast(builder, i, t, types.intp)
               for t, i in zip(indty, indices)]
    return indty, indices
예제 #45
0
def make_array_ndindex(context, builder, sig, args):
    """ndindex(shape)"""
    ndim = sig.return_type.ndim
    idxty = sig.args[0].dtype
    tup = args[0]

    shape = cgutils.unpack_tuple(builder, tup, ndim)
    shape = [context.cast(builder, idx, idxty, types.intp) for idx in shape]

    nditercls = make_ndindex_cls(types.NumpyNdIndexType(len(shape)))
    nditer = nditercls(context, builder)
    nditer.init_specific(context, builder, shape)

    return nditer._getvalue()
예제 #46
0
파일: arrayobj.py 프로젝트: meego/numba
def numpy_empty_nd(context, builder, sig, args):
    arrshapetype = sig.args[0]
    arrshape = args[0]
    arrtype = sig.return_type

    if isinstance(arrshapetype, types.Integer):
        shapes = [context.cast(builder, arrshape, arrshapetype, types.intp)]
    else:
        arrshape = context.cast(builder, arrshape, arrshapetype,
                                types.UniTuple(types.intp, len(arrshapetype)))
        shapes = cgutils.unpack_tuple(builder, arrshape,
                                      count=len(arrshapetype))

    return _empty_nd_impl(context, builder, arrtype, shapes)
예제 #47
0
def setitem_array_tuple(context, builder, sig, args):
    aryty, idxty, valty = sig.args
    ary, idx, val = args

    arystty = make_array(aryty)
    ary = arystty(context, builder, ary)

    # TODO: other than layout
    indices = cgutils.unpack_tuple(builder, idx, count=len(idxty))
    indices = [context.cast(builder, i, t, types.intp)
               for t, i in zip(idxty, indices)]
    ptr = cgutils.get_item_pointer(builder, aryty, ary, indices,
                                   wraparound=True)
    context.pack_value(builder, aryty.dtype, val, ptr)
예제 #48
0
파일: arrayobj.py 프로젝트: meego/numba
def populate_array(array, data, shape, strides, itemsize, meminfo,
                   parent=None):
    """
    Helper function for populating array structures.
    This avoids forgetting to set fields.
    """
    context = array._context
    builder = array._builder
    datamodel = array._datamodel
    required_fields = set(datamodel._fields)

    if meminfo is None:
        meminfo = Constant.null(context.get_value_type(
            datamodel.get_type('meminfo')))

    attrs = dict(shape=shape,
                 strides=strides,
                 data=data,
                 itemsize=itemsize,
                 meminfo=meminfo,)

    # Set `parent` attribute
    if parent is None:
        attrs['parent'] = Constant.null(context.get_value_type(
            datamodel.get_type('parent')))
    else:
        attrs['parent'] = parent
    # Calc num of items from shape
    nitems = context.get_constant(types.intp, 1)
    unpacked_shape = cgutils.unpack_tuple(builder, shape, shape.type.count)
    if unpacked_shape:
        # Shape is not empty
        for axlen in unpacked_shape:
            nitems = builder.mul(nitems, axlen)
    else:
        # Shape is empty
        nitems = context.get_constant(types.intp, 0)
    attrs['nitems'] = nitems

    # Make sure that we have all the fields
    got_fields = set(attrs.keys())
    if got_fields != required_fields:
        raise ValueError("missing {0}".format(required_fields - got_fields))

    # Set field value
    for k, v in attrs.items():
        setattr(array, k, v)

    return array
예제 #49
0
def make_array_ndindex(context, builder, sig, args):
    """ndindex(shape)"""
    ndim = sig.return_type.ndim
    idxty = sig.args[0].dtype
    tup = args[0]

    shape = cgutils.unpack_tuple(builder, tup, ndim)
    shape = [context.cast(builder, idx, idxty, types.intp)
             for idx in shape]

    nditercls = make_ndindex_cls(types.NumpyNdIndexType(len(shape)))
    nditer = nditercls(context, builder)
    nditer.init_specific(context, builder, shape)

    return nditer._getvalue()
예제 #50
0
파일: builtins.py 프로젝트: aburan28/numba
def setitem_array_unituple(context, builder, sig, args):
    aryty, idxty, valty = sig.args
    ary, idx, val = args

    arystty = make_array(aryty)
    ary = arystty(context, builder, ary)

    # TODO: other than layout
    indices = cgutils.unpack_tuple(builder, idx, count=len(idxty))
    ptr = cgutils.get_item_pointer(builder, aryty, ary, indices,
                                   wraparound=True)
    if context.is_struct_type(aryty.dtype):
        stval = builder.load(val)
    else:
        stval = val
    builder.store(stval, ptr)
예제 #51
0
파일: builtins.py 프로젝트: aburan28/numba
def getitem_array_unituple(context, builder, sig, args):
    aryty, idxty = sig.args
    ary, idx = args

    arystty = make_array(aryty)
    ary = arystty(context, builder, ary)

    # TODO: other layout
    indices = cgutils.unpack_tuple(builder, idx, count=len(idxty))
    # TODO warparound flag
    ptr = cgutils.get_item_pointer(builder, aryty, ary, indices,
                                   wraparound=True)

    if context.is_struct_type(aryty.dtype):
        return ptr
    else:
        return builder.load(ptr)
예제 #52
0
def getitem_tuple_lower(context, builder, sig, args):
    tupty, idx = sig.args
    idx = idx.literal_value
    tup, _ = args
    if isinstance(idx, int):
        if idx < 0:
            idx += len(tupty)
        if not 0 <= idx < len(tupty):
            raise IndexError("cannot index at %d in %s" % (idx, tupty))
        res = builder.extract_value(tup, idx)
    elif isinstance(idx, slice):
        items = cgutils.unpack_tuple(builder, tup)[idx]
        res = context.make_tuple(builder, sig.return_type, items)
    else:
        raise NotImplementedError("unexpected index %r for %s" %
                                  (idx, sig.args[0]))
    return impl_ret_borrowed(context, builder, sig.return_type, res)
예제 #53
0
파일: cv_ext.py 프로젝트: rowhit/sdc
def _image_to_array(context, builder, shapes_array, arrtype, data, img):
    # allocate array
    shapes = cgutils.unpack_tuple(builder, builder.load(shapes_array))
    ary = _empty_nd_impl(context, builder, arrtype, shapes)
    cgutils.raw_memcpy(builder,
                       ary.data,
                       builder.load(data),
                       ary.nitems,
                       ary.itemsize,
                       align=1)

    # clean up cv::Mat image
    fnty = lir.FunctionType(lir.VoidType(), [lir.IntType(8).as_pointer()])
    fn_release = builder.module.get_or_insert_function(fnty,
                                                       name="cv_mat_release")
    builder.call(fn_release, [img])

    return impl_ret_new_ref(context, builder, arrtype, ary._getvalue())
예제 #54
0
def setitem_array_tuple(context, builder, sig, args):
    aryty, idxty, valty = sig.args
    ary, idx, val = args

    arystty = make_array(aryty)
    ary = arystty(context, builder, ary)

    # TODO: other than layout
    indices = cgutils.unpack_tuple(builder, idx, count=len(idxty))
    indices = [
        context.cast(builder, i, t, types.intp)
        for t, i in zip(idxty, indices)
    ]
    ptr = cgutils.get_item_pointer(builder,
                                   aryty,
                                   ary,
                                   indices,
                                   wraparound=True)
    context.pack_value(builder, aryty.dtype, val, ptr)
예제 #55
0
파일: cudaimpl.py 프로젝트: MJJoyce/numba
def ptx_atomic_add_tuple(context, builder, sig, args):
    aryty, indty, valty = sig.args
    ary, inds, val = args
    dtype = aryty.dtype

    indices = cgutils.unpack_tuple(builder, inds, count=len(indty))
    indices = [context.cast(builder, i, t, types.intp)
               for t, i in zip(indty, indices)]

    if dtype != valty:
        raise TypeError("expect %s but got %s" % (dtype, valty))

    if aryty.ndim != len(indty):
        raise TypeError("indexing %d-D array with %d-D index" %
                        (aryty.ndim, len(indty)))

    lary = context.make_array(aryty)(context, builder, ary)
    ptr = cgutils.get_item_pointer(builder, aryty, lary, indices)
    return builder.atomic_rmw('add', ptr, val, 'monotonic')
예제 #56
0
def dot_2_vv(context, builder, sig, args, conjugate=False):
    """
    np.dot(vector, vector)
    np.vdot(vector, vector)
    """
    aty, bty = sig.args
    dtype = sig.return_type
    a = make_array(aty)(context, builder, args[0])
    b = make_array(bty)(context, builder, args[1])
    n, = cgutils.unpack_tuple(builder, a.shape)

    def check_args(a, b):
        m, = a.shape
        n, = b.shape
        if m != n:
            raise ValueError("incompatible array sizes for np.dot(a, b) "
                             "(vector * vector)")

    context.compile_internal(builder, check_args,
                             signature(types.none, *sig.args), args)
    check_c_int(context, builder, n)

    out = cgutils.alloca_once(builder, context.get_value_type(dtype))

    fnty = ir.FunctionType(ir.IntType(32),
                           [ll_char, ll_char, intp_t,        # kind, conjugate, n
                            ll_void_p, ll_void_p, ll_void_p, # a, b, out
                           ])
    fn = builder.module.get_or_insert_function(fnty, name="numba_xxdot")

    kind = get_blas_kind(dtype)
    kind_val = ir.Constant(ll_char, ord(kind))
    conjugate = ir.Constant(ll_char, int(conjugate))

    res = builder.call(fn, (kind_val, conjugate, n,
                            builder.bitcast(a.data, ll_void_p),
                            builder.bitcast(b.data, ll_void_p),
                            builder.bitcast(out, ll_void_p)))
    check_blas_return(context, builder, res)

    return builder.load(out)