def _stencil_wrapper(self, result, sigret, return_type, typemap, calltypes, *args): # Overall approach: # 1) Construct a string containing a function definition for the stencil function # that will execute the stencil kernel. This function definition includes a # unique stencil function name, the parameters to the stencil kernel, loop # nests across the dimenions of the input array. Those loop nests use the # computed stencil kernel size so as not to try to compute elements where # elements outside the bounds of the input array would be needed. # 2) The but of the loop nest in this new function is a special sentinel # assignment. # 3) Get the IR of this new function. # 4) Split the block containing the sentinel assignment and remove the sentinel # assignment. Insert the stencil kernel IR into the stencil function IR # after label and variable renaming of the stencil kernel IR to prevent # conflicts with the stencil function IR. # 5) Compile the combined stencil function IR + stencil kernel IR into existence. # Copy the kernel so that our changes for this callsite # won't effect other callsites. (kernel_copy, copy_calltypes) = self.copy_ir_with_calltypes(self.kernel_ir, calltypes) # The stencil kernel body becomes the body of a loop, for which args aren't needed. ir_utils.remove_args(kernel_copy.blocks) first_arg = kernel_copy.arg_names[0] in_cps, out_cps = ir_utils.copy_propagate(kernel_copy.blocks, typemap) name_var_table = ir_utils.get_name_var_table(kernel_copy.blocks) ir_utils.apply_copy_propagate(kernel_copy.blocks, in_cps, name_var_table, typemap, copy_calltypes) if "out" in name_var_table: raise ValueError( "Cannot use the reserved word 'out' in stencil kernels.") sentinel_name = ir_utils.get_unused_var_name("__sentinel__", name_var_table) if config.DEBUG_ARRAY_OPT == 1: print("name_var_table", name_var_table, sentinel_name) the_array = args[0] if config.DEBUG_ARRAY_OPT == 1: print("_stencil_wrapper", return_type, return_type.dtype, type(return_type.dtype), args) ir_utils.dump_blocks(kernel_copy.blocks) # We generate a Numba function to execute this stencil and here # create the unique name of this function. stencil_func_name = "__numba_stencil_%s_%s" % (hex( id(the_array)).replace("-", "_"), self.id) # We will put a loop nest in the generated function for each # dimension in the input array. Here we create the name for # the index variable for each dimension. index0, index1, ... index_vars = [] for i in range(the_array.ndim): index_var_name = ir_utils.get_unused_var_name( "index" + str(i), name_var_table) index_vars += [index_var_name] # Create extra signature for out and neighborhood. out_name = ir_utils.get_unused_var_name("out", name_var_table) neighborhood_name = ir_utils.get_unused_var_name( "neighborhood", name_var_table) sig_extra = "" if result is not None: sig_extra += ", {}=None".format(out_name) if "neighborhood" in dict(self.kws): sig_extra += ", {}=None".format(neighborhood_name) # Get a list of the standard indexed array names. standard_indexed = self.options.get("standard_indexing", []) if first_arg in standard_indexed: raise ValueError("The first argument to a stencil kernel must " "use relative indexing, not standard indexing.") if len(set(standard_indexed) - set(kernel_copy.arg_names)) != 0: raise ValueError("Standard indexing requested for an array name " "not present in the stencil kernel definition.") # Add index variables to getitems in the IR to transition the accesses # in the kernel from relative to regular Python indexing. Returns the # computed size of the stencil kernel and a list of the relatively indexed # arrays. kernel_size, relatively_indexed = self.add_indices_to_kernel( kernel_copy, index_vars, the_array.ndim, self.neighborhood, standard_indexed) if self.neighborhood is None: self.neighborhood = kernel_size if config.DEBUG_ARRAY_OPT == 1: print("After add_indices_to_kernel") ir_utils.dump_blocks(kernel_copy.blocks) # The return in the stencil kernel becomes a setitem for that # particular point in the iteration space. ret_blocks = self.replace_return_with_setitem(kernel_copy.blocks, index_vars, out_name) if config.DEBUG_ARRAY_OPT == 1: print("After replace_return_with_setitem", ret_blocks) ir_utils.dump_blocks(kernel_copy.blocks) # Start to form the new function to execute the stencil kernel. func_text = "def {}({}{}):\n".format(stencil_func_name, ",".join(kernel_copy.arg_names), sig_extra) # Get loop ranges for each dimension, which could be either int # or variable. In the latter case we'll use the extra neighborhood # argument to the function. ranges = [] for i in range(the_array.ndim): if isinstance(kernel_size[i][0], int): lo = kernel_size[i][0] hi = kernel_size[i][1] else: lo = "{}[{}][0]".format(neighborhood_name, i) hi = "{}[{}][1]".format(neighborhood_name, i) ranges.append((lo, hi)) # If there are more than one relatively indexed arrays, add a call to # a function that will raise an error if any of the relatively indexed # arrays are of different size than the first input array. if len(relatively_indexed) > 1: func_text += " raise_if_incompatible_array_sizes(" + first_arg for other_array in relatively_indexed: if other_array != first_arg: func_text += "," + other_array func_text += ")\n" # Get the shape of the first input array. shape_name = ir_utils.get_unused_var_name("full_shape", name_var_table) func_text += " {} = {}.shape\n".format(shape_name, first_arg) # If we have to allocate the output array (the out argument was not used) # then us numpy.full if the user specified a cval stencil decorator option # or np.zeros if they didn't to allocate the array. if result is None: return_type_name = numpy_support.as_dtype( return_type.dtype).type.__name__ if "cval" in self.options: cval = self.options["cval"] if return_type.dtype != typing.typeof.typeof(cval): raise ValueError( "cval type does not match stencil return type.") out_init = "{} = np.full({}, {}, dtype=np.{})\n".format( out_name, shape_name, cval, return_type_name) else: out_init = "{} = np.zeros({}, dtype=np.{})\n".format( out_name, shape_name, return_type_name) func_text += " " + out_init offset = 1 # Add the loop nests to the new function. for i in range(the_array.ndim): for j in range(offset): func_text += " " # ranges[i][0] is the minimum index used in the i'th dimension # but minimum's greater than 0 don't preclude any entry in the array. # So, take the minimum of 0 and the minimum index found in the kernel # and this will be a negative number (potentially -0). Then, we do # unary - on that to get the positive offset in this dimension whose # use is precluded. # ranges[i][1] is the maximum of 0 and the observed maximum index # in this dimension because negative maximums would not cause us to # preclude any entry in the array from being used. func_text += ("for {} in range(-min(0,{})," "{}[{}]-max(0,{})):\n").format( index_vars[i], ranges[i][0], shape_name, i, ranges[i][1]) offset += 1 for j in range(offset): func_text += " " # Put a sentinel in the code so we can locate it in the IR. We will # remove this sentinel assignment and replace it with the IR for the # stencil kernel body. func_text += "{} = 0\n".format(sentinel_name) func_text += " return {}\n".format(out_name) if config.DEBUG_ARRAY_OPT == 1: print("new stencil func text") print(func_text) # Force the new stencil function into existence. exec_(func_text) in globals(), locals() stencil_func = eval(stencil_func_name) if sigret is not None: pysig = utils.pysignature(stencil_func) sigret.pysig = pysig # Get the IR for the newly created stencil function. stencil_ir = compiler.run_frontend(stencil_func) ir_utils.remove_dels(stencil_ir.blocks) # rename all variables in stencil_ir afresh var_table = ir_utils.get_name_var_table(stencil_ir.blocks) new_var_dict = {} reserved_names = ( [sentinel_name, out_name, neighborhood_name, shape_name] + kernel_copy.arg_names + index_vars) for name, var in var_table.items(): if not name in reserved_names: new_var_dict[name] = ir_utils.mk_unique_var(name) ir_utils.replace_var_names(stencil_ir.blocks, new_var_dict) stencil_stub_last_label = max(stencil_ir.blocks.keys()) + 1 # Shift lables in the kernel copy so they are guaranteed unique # and don't conflict with any labels in the stencil_ir. kernel_copy.blocks = ir_utils.add_offset_to_labels( kernel_copy.blocks, stencil_stub_last_label) new_label = max(kernel_copy.blocks.keys()) + 1 # Adjust ret_blocks to account for addition of the offset. ret_blocks = [x + stencil_stub_last_label for x in ret_blocks] if config.DEBUG_ARRAY_OPT == 1: print("ret_blocks w/ offsets", ret_blocks, stencil_stub_last_label) print("before replace sentinel stencil_ir") ir_utils.dump_blocks(stencil_ir.blocks) print("before replace sentinel kernel_copy") ir_utils.dump_blocks(kernel_copy.blocks) # Search all the block in the stencil outline for the sentinel. for label, block in stencil_ir.blocks.items(): for i, inst in enumerate(block.body): if (isinstance(inst, ir.Assign) and inst.target.name == sentinel_name): # We found the sentinel assignment. loc = inst.loc scope = block.scope # split block across __sentinel__ # A new block is allocated for the statements prior to the # sentinel but the new block maintains the current block # label. prev_block = ir.Block(scope, loc) prev_block.body = block.body[:i] # The current block is used for statements after sentinel. block.body = block.body[i + 1:] # But the current block gets a new label. body_first_label = min(kernel_copy.blocks.keys()) # The previous block jumps to the minimum labelled block of # the parfor body. prev_block.append(ir.Jump(body_first_label, loc)) # Add all the parfor loop body blocks to the gufunc # function's IR. for (l, b) in kernel_copy.blocks.items(): stencil_ir.blocks[l] = b stencil_ir.blocks[new_label] = block stencil_ir.blocks[label] = prev_block # Add a jump from all the blocks that previously contained # a return in the stencil kernel to the block # containing statements after the sentinel. for ret_block in ret_blocks: stencil_ir.blocks[ret_block].append( ir.Jump(new_label, loc)) break else: continue break stencil_ir.blocks = ir_utils.rename_labels(stencil_ir.blocks) ir_utils.remove_dels(stencil_ir.blocks) assert (isinstance(the_array, types.Type)) array_types = args new_stencil_param_types = list(array_types) if config.DEBUG_ARRAY_OPT == 1: print("new_stencil_param_types", new_stencil_param_types) ir_utils.dump_blocks(stencil_ir.blocks) # Compile the combined stencil function with the replaced loop # body in it. new_func = compiler.compile_ir(self._typingctx, self._targetctx, stencil_ir, new_stencil_param_types, None, compiler.DEFAULT_FLAGS, {}) return new_func
def _stencil_wrapper(self, result, sigret, return_type, typemap, calltypes, *args): # Overall approach: # 1) Construct a string containing a function definition for the stencil function # that will execute the stencil kernel. This function definition includes a # unique stencil function name, the parameters to the stencil kernel, loop # nests across the dimenions of the input array. Those loop nests use the # computed stencil kernel size so as not to try to compute elements where # elements outside the bounds of the input array would be needed. # 2) The but of the loop nest in this new function is a special sentinel # assignment. # 3) Get the IR of this new function. # 4) Split the block containing the sentinel assignment and remove the sentinel # assignment. Insert the stencil kernel IR into the stencil function IR # after label and variable renaming of the stencil kernel IR to prevent # conflicts with the stencil function IR. # 5) Compile the combined stencil function IR + stencil kernel IR into existence. # Copy the kernel so that our changes for this callsite # won't effect other callsites. (kernel_copy, copy_calltypes) = self.copy_ir_with_calltypes( self.kernel_ir, calltypes) # The stencil kernel body becomes the body of a loop, for which args aren't needed. ir_utils.remove_args(kernel_copy.blocks) first_arg = kernel_copy.arg_names[0] in_cps, out_cps = ir_utils.copy_propagate(kernel_copy.blocks, typemap) name_var_table = ir_utils.get_name_var_table(kernel_copy.blocks) ir_utils.apply_copy_propagate( kernel_copy.blocks, in_cps, name_var_table, typemap, copy_calltypes) if "out" in name_var_table: raise ValueError("Cannot use the reserved word 'out' in stencil kernels.") sentinel_name = ir_utils.get_unused_var_name("__sentinel__", name_var_table) if config.DEBUG_ARRAY_OPT == 1: print("name_var_table", name_var_table, sentinel_name) the_array = args[0] if config.DEBUG_ARRAY_OPT == 1: print("_stencil_wrapper", return_type, return_type.dtype, type(return_type.dtype), args) ir_utils.dump_blocks(kernel_copy.blocks) # We generate a Numba function to execute this stencil and here # create the unique name of this function. stencil_func_name = "__numba_stencil_%s_%s" % ( hex(id(the_array)).replace("-", "_"), self.id) # We will put a loop nest in the generated function for each # dimension in the input array. Here we create the name for # the index variable for each dimension. index0, index1, ... index_vars = [] for i in range(the_array.ndim): index_var_name = ir_utils.get_unused_var_name("index" + str(i), name_var_table) index_vars += [index_var_name] # Create extra signature for out and neighborhood. out_name = ir_utils.get_unused_var_name("out", name_var_table) neighborhood_name = ir_utils.get_unused_var_name("neighborhood", name_var_table) sig_extra = "" if result is not None: sig_extra += ", {}=None".format(out_name) if "neighborhood" in dict(self.kws): sig_extra += ", {}=None".format(neighborhood_name) # Get a list of the standard indexed array names. standard_indexed = self.options.get("standard_indexing", []) if first_arg in standard_indexed: raise ValueError("The first argument to a stencil kernel must " "use relative indexing, not standard indexing.") if len(set(standard_indexed) - set(kernel_copy.arg_names)) != 0: raise ValueError("Standard indexing requested for an array name " "not present in the stencil kernel definition.") # Add index variables to getitems in the IR to transition the accesses # in the kernel from relative to regular Python indexing. Returns the # computed size of the stencil kernel and a list of the relatively indexed # arrays. kernel_size, relatively_indexed = self.add_indices_to_kernel( kernel_copy, index_vars, the_array.ndim, self.neighborhood, standard_indexed) if self.neighborhood is None: self.neighborhood = kernel_size if config.DEBUG_ARRAY_OPT == 1: print("After add_indices_to_kernel") ir_utils.dump_blocks(kernel_copy.blocks) # The return in the stencil kernel becomes a setitem for that # particular point in the iteration space. ret_blocks = self.replace_return_with_setitem(kernel_copy.blocks, index_vars, out_name) if config.DEBUG_ARRAY_OPT == 1: print("After replace_return_with_setitem", ret_blocks) ir_utils.dump_blocks(kernel_copy.blocks) # Start to form the new function to execute the stencil kernel. func_text = "def {}({}{}):\n".format(stencil_func_name, ",".join(kernel_copy.arg_names), sig_extra) # Get loop ranges for each dimension, which could be either int # or variable. In the latter case we'll use the extra neighborhood # argument to the function. ranges = [] for i in range(the_array.ndim): if isinstance(kernel_size[i][0], int): lo = kernel_size[i][0] hi = kernel_size[i][1] else: lo = "{}[{}][0]".format(neighborhood_name, i) hi = "{}[{}][1]".format(neighborhood_name, i) ranges.append((lo, hi)) # If there are more than one relatively indexed arrays, add a call to # a function that will raise an error if any of the relatively indexed # arrays are of different size than the first input array. if len(relatively_indexed) > 1: func_text += " raise_if_incompatible_array_sizes(" + first_arg for other_array in relatively_indexed: if other_array != first_arg: func_text += "," + other_array func_text += ")\n" # Get the shape of the first input array. shape_name = ir_utils.get_unused_var_name("full_shape", name_var_table) func_text += " {} = {}.shape\n".format(shape_name, first_arg) # If we have to allocate the output array (the out argument was not used) # then us numpy.full if the user specified a cval stencil decorator option # or np.zeros if they didn't to allocate the array. if result is None: if "cval" in self.options: cval = self.options["cval"] if return_type.dtype != typing.typeof.typeof(cval): raise ValueError( "cval type does not match stencil return type.") out_init ="{} = np.full({}, {}, dtype=np.{})\n".format( out_name, shape_name, cval, return_type.dtype) else: out_init ="{} = np.zeros({}, dtype=np.{})\n".format( out_name, shape_name, return_type.dtype) func_text += " " + out_init offset = 1 # Add the loop nests to the new function. for i in range(the_array.ndim): for j in range(offset): func_text += " " # ranges[i][0] is the minimum index used in the i'th dimension # but minimum's greater than 0 don't preclude any entry in the array. # So, take the minimum of 0 and the minimum index found in the kernel # and this will be a negative number (potentially -0). Then, we do # unary - on that to get the positive offset in this dimension whose # use is precluded. # ranges[i][1] is the maximum of 0 and the observed maximum index # in this dimension because negative maximums would not cause us to # preclude any entry in the array from being used. func_text += ("for {} in range(-min(0,{})," "{}[{}]-max(0,{})):\n").format( index_vars[i], ranges[i][0], shape_name, i, ranges[i][1]) offset += 1 for j in range(offset): func_text += " " # Put a sentinel in the code so we can locate it in the IR. We will # remove this sentinel assignment and replace it with the IR for the # stencil kernel body. func_text += "{} = 0\n".format(sentinel_name) func_text += " return {}\n".format(out_name) if config.DEBUG_ARRAY_OPT == 1: print("new stencil func text") print(func_text) # Force the new stencil function into existence. exec_(func_text) in globals(), locals() stencil_func = eval(stencil_func_name) if sigret is not None: pysig = utils.pysignature(stencil_func) sigret.pysig = pysig # Get the IR for the newly created stencil function. stencil_ir = compiler.run_frontend(stencil_func) ir_utils.remove_dels(stencil_ir.blocks) # rename all variables in stencil_ir afresh var_table = ir_utils.get_name_var_table(stencil_ir.blocks) new_var_dict = {} reserved_names = ([sentinel_name, out_name, neighborhood_name, shape_name] + kernel_copy.arg_names + index_vars) for name, var in var_table.items(): if not name in reserved_names: new_var_dict[name] = ir_utils.mk_unique_var(name) ir_utils.replace_var_names(stencil_ir.blocks, new_var_dict) stencil_stub_last_label = max(stencil_ir.blocks.keys()) + 1 # Shift lables in the kernel copy so they are guaranteed unique # and don't conflict with any labels in the stencil_ir. kernel_copy.blocks = ir_utils.add_offset_to_labels( kernel_copy.blocks, stencil_stub_last_label) new_label = max(kernel_copy.blocks.keys()) + 1 # Adjust ret_blocks to account for addition of the offset. ret_blocks = [x + stencil_stub_last_label for x in ret_blocks] if config.DEBUG_ARRAY_OPT == 1: print("ret_blocks w/ offsets", ret_blocks, stencil_stub_last_label) print("before replace sentinel stencil_ir") ir_utils.dump_blocks(stencil_ir.blocks) print("before replace sentinel kernel_copy") ir_utils.dump_blocks(kernel_copy.blocks) # Search all the block in the stencil outline for the sentinel. for label, block in stencil_ir.blocks.items(): for i, inst in enumerate(block.body): if (isinstance( inst, ir.Assign) and inst.target.name == sentinel_name): # We found the sentinel assignment. loc = inst.loc scope = block.scope # split block across __sentinel__ # A new block is allocated for the statements prior to the # sentinel but the new block maintains the current block # label. prev_block = ir.Block(scope, loc) prev_block.body = block.body[:i] # The current block is used for statements after sentinel. block.body = block.body[i + 1:] # But the current block gets a new label. body_first_label = min(kernel_copy.blocks.keys()) # The previous block jumps to the minimum labelled block of # the parfor body. prev_block.append(ir.Jump(body_first_label, loc)) # Add all the parfor loop body blocks to the gufunc # function's IR. for (l, b) in kernel_copy.blocks.items(): stencil_ir.blocks[l] = b stencil_ir.blocks[new_label] = block stencil_ir.blocks[label] = prev_block # Add a jump from all the blocks that previously contained # a return in the stencil kernel to the block # containing statements after the sentinel. for ret_block in ret_blocks: stencil_ir.blocks[ret_block].append( ir.Jump(new_label, loc)) break else: continue break stencil_ir.blocks = ir_utils.rename_labels(stencil_ir.blocks) ir_utils.remove_dels(stencil_ir.blocks) assert(isinstance(the_array, types.Type)) array_types = args new_stencil_param_types = list(array_types) if config.DEBUG_ARRAY_OPT == 1: print("new_stencil_param_types", new_stencil_param_types) ir_utils.dump_blocks(stencil_ir.blocks) # Compile the combined stencil function with the replaced loop # body in it. new_func = compiler.compile_ir( self._typingctx, self._targetctx, stencil_ir, new_stencil_param_types, None, compiler.DEFAULT_FLAGS, {}) return new_func