def ugly_workaround(grid,
                     C,
                     points,
                     out=None,
                     order=1,
                     diff="None",
                     extrap_mode="linear"):
     return (literally(order), literally(diff), literally(extrap_mode))
예제 #2
0
def __eval_cubic(grid, C, points):
    # print("We allocate with default extrapolation.")
    return lambda grid, C, points: eval_spline(grid,
                                               C,
                                               points,
                                               order=literally(3),
                                               extrap_mode=literally('linear'),
                                               diff=literally("None"))
예제 #3
0
def __eval_cubic(grid, C, points, out):

    return lambda grid, C, points, out: eval_spline(grid,
                                                    C,
                                                    points,
                                                    out=out,
                                                    order=literally(3),
                                                    diff=literally("None"),
                                                    extrap_mode=literally(
                                                        'linear'))
예제 #4
0
    def convert_inplace(self, series, allow_missing=False):
        """Convert IDs to indices in-place.

        series is a Pandas series of indices. If allow_missing is set to
        True, then unrecognised IDs do not raise KeyError, but are
        instead replaced with SENTINEL.
        """
        arr = series.to_numpy()
        # nb.literally makes Numba compile once for every value.
        _convert_in2ind_inplace(
            self.id2ind, self.ind2id_map.ind2id,
            nb.literally(len(self.id2ind)),
            arr, nb.literally(allow_missing))
예제 #5
0
 def ol_bar(d):
     a = {
         "A": 1,
         "B": 1,
         "C": 1,
         "D": 1,
         "E": 1,
         "F": 1,
         "G": 1,
         "H": 1,
         "I": 1,
         "J": 1,
         "K": 1,
         "L": 1,
         "M": 1,
         "N": 1,
         "O": 1,
         "P": 1,
         "Q": 1,
         "R": 1,
         "S": 7,
     }
     if d.initial_value is None:
         return lambda d: literally(d)
     self.assertTrue(isinstance(d, types.DictType))
     self.assertEqual(d.initial_value, a)
     return lambda d: d
예제 #6
0
 def ol_bar(l):
     if l.initial_value is None:
         return lambda l: literally(l)
     self.assertTrue(isinstance(l, types.List))
     self.assertEqual(l.initial_value, [1, 2, 3])
     self.assertEqual(hasattr(l, 'literal_value'), False)
     return lambda l: l
예제 #7
0
def __eval_cubic(grid, C, points, out, extrap_mode):

    if extrap_mode == t_NEAREST:
        extrap_ = literally('nearest')
    elif extrap_mode == t_CONSTANT:
        extrap_ = literally('constant')
    elif extrap_mode == t_cubic:
        extrap_ = literally('cubic')
    else:
        return None
    return lambda grid, C, points, out, extrap_mode: eval_spline(
        grid,
        C,
        points,
        out=out,
        order=literally(3),
        diff=literally("None"),
        extrap_mode=extrap_)
def eval_spline(grid,
                C,
                points,
                out=None,
                order=1,
                diff="None",
                extrap_mode="linear"):
    """Do I get a docstring ?"""
    dd = numba.literally(diff)
    k = numba.literally(order)
    extrap_ = numba.literally(extrap_mode)
    return _eval_spline(grid,
                        C,
                        points,
                        out=out,
                        order=k,
                        diff=dd,
                        extrap_mode=extrap_)
def __eval_cubic(grid, C, points, extrap_mode):

    # print(f"We are going to extrapolate in {extrap_mode} mode.")
    if extrap_mode == t_NEAREST:
        extrap_ = literally("nearest")
    elif extrap_mode == t_CONSTANT:
        extrap_ = literally("constant")
    elif extrap_mode == t_cubic:
        extrap_ = literally("cubic")
    else:
        return None

    return lambda grid, C, points, extrap_mode: eval_spline(
        grid,
        C,
        points,
        order=literally(3),
        diff=literally("None"),
        extrap_mode=extrap_)
            def ov_power(x, n):
                if isinstance(n, numba.types.Literal):
                    # only if `n` is a literal
                    if n.literal_value == 2:
                        # special case: square
                        print("square")
                        return lambda x, n: x * x
                    elif n.literal_value == 3:
                        # special case: cubic
                        print("cubic")
                        return lambda x, n: x * x * x
                else:
                    # If `n` is not literal, request literal dispatch
                    return lambda x, n: numba.literally(n)

                print("generic")
                return lambda x, n: x ** n
예제 #11
0
 def ol_bar(d):
     a = {
         "a1": 1,
         "a2": 2,
         "a3": 3,
         "a4": 4,
         "a5": 5,
         "a6": 6,
         "a7": 7,
         "a8": 8,
         "a9": 9,
         "a10": 10,
         "a11": 11,
         "a12": 12,
         "a13": 13,
         "a14": 14,
         "a15": 15,
         "a16": 16,
         "a17": 17,
         "a18": 18,
         "a19": 19,
         "a20": 20,
         "a21": 21,
         "a22": 22,
         "a23": 23,
         "a24": 24,
         "a25": 25,
         "a26": 26,
         "a27": 27,
         "a28": 28,
         "a29": 29,
         "a30": 30,
         "a31": 31,
         "a32": 32,
         "a33": 33,
         "a34": 34,  # 34 items is the limit of
         # (LOAD_CONST + MAP_ADD)^n + DICT_UPDATE
         "a35":
         35,  # 35 Generates an additional BUILD_MAP + DICT_UPDATE
     }
     if d.initial_value is None:
         return lambda d: literally(d)
     self.assertTrue(isinstance(d, types.DictType))
     self.assertEqual(d.initial_value, a)
     return lambda d: d
예제 #12
0
def make_id_hash_map(ids, path, offset=0):
    """Make ID to index hash map.

    ids is an ordered NumPy array of IDs. path is the destination.
    offset is added to the indices before storing.
    """
    with open(path, 'wb+') as f:
        # Trick: seek past the end of file and write one byte to
        # efficiently zero-fill up to that point.
        f.seek(get_hash_map_size(len(ids)) * np.uint32().nbytes - 1)
        f.write(b'\x00')
        f.flush()
        id2ind_mmap = mmap.mmap(f.fileno(), 0)
    with id2ind_mmap:
        id2ind = np.frombuffer(id2ind_mmap, dtype=np.uint32)
        id2ind[...] = SENTINEL  # Important detail: set all to SENTINEL.
        arr_size = len(id2ind)
        # nb.literally causes Numba to compile the function once for
        # every value. Avoids the CPU's slow division instruction.
        _make_hash_map(ids, id2ind, nb.literally(arr_size), offset)
예제 #13
0
 def sdc_pandas_dataframe_getitem_idx_unicode_str_impl(self, idx):
     # just call literally as it will raise and compilation will continue via common impl
     return literally(idx)
예제 #14
0
 def pyfunc(tup, idx):
     idx = literally(idx)
     return tup[idx]
예제 #15
0
 def ol_bar(d):
     if d.initial_value is None:
         return lambda d: literally(d)
     self.assertTrue(isinstance(d, types.List))
     self.assertEqual(d.initial_value, [1, 2, 3])
     return lambda d: d
예제 #16
0
 def full_slice_array(a, n):
     # Since numba slices can't be boxed at the moment
     return a[build_full_slice_tuple(literally(n))]
예제 #17
0
 def foo(x):
     return numba.literally(x)
 def ol_specialize(x):
     iv = x.initial_value
     if iv is None:
         return lambda x: literally(x)  # Force literal dispatch
     assert iv == [1, 2, 3]  # INITIAL VALUE
     return lambda x: x
예제 #19
0
def gridder(uvw,
            vis,
            wavelengths,
            chanmap,
            npix,
            cell,
            image_centre,
            phase_centre,
            convolution_kernel,
            convolution_kernel_width,
            convolution_kernel_oversampling,
            baseline_transform_policy,
            phase_transform_policy,
            stokes_conversion_policy,
            convolution_policy,
            grid_dtype=np.complex128,
            do_normalize=False):
    """
    2D Convolutional gridder, contiguous to discrete
    @uvw: value coordinates, (nrow, 3)
    @vis: complex data, (nrow, nchan, ncorr)
    @wavelengths: wavelengths of data channels
    @chanmap: MFS band mapping
    @npix: number of pixels per axis
    @cell: cell_size in degrees
    @image_centre: new phase centre of image (radians, ra, dec)
    @phase_centre: original phase centre of data (radians, ra, dec)
    @convolution_kernel: packed kernel as generated by kernels package
    @convolution_kernel_width: number of taps in kernel
    @convolution_kernel_oversampling: number of oversampled points in kernel
    @baseline_transform_policy: any accepted policy in
                                .policies.baseline_transform_policies,
                                can be used to tilt image planes for
                                polyhedron faceting
    @phase_transform_policy: any accepted policy in
                             .policies.phase_transform_policies,
                             can be used to facet at provided
                             facet @image_centre
    @stokes_conversion_policy: any accepted correlation to stokes
                               conversion policy in
                               .policies.stokes_conversion_policies
    @convolution_policy: any accepted convolution policy in
                         .policies.convolution_policies
    @grid_dtype: accumulation grid dtype (default complex 128)
    @do_normalize: normalize grid by convolution weights
    """
    if chanmap.size != wavelengths.size:
        raise ValueError(
            "Chanmap and corresponding wavelengths must match in shape")
    chanmap = chanmap.ravel()
    wavelengths = wavelengths.ravel()
    nband = np.max(chanmap) + 1
    nrow, nvischan, ncorr = vis.shape
    if uvw.shape[1] != 3:
        raise ValueError("UVW array must be array of tripples")
    if uvw.shape[0] != nrow:
        raise ValueError(
            "UVW array must have same number of rows as vis array")
    if nvischan != wavelengths.size:
        raise ValueError("Chanmap must correspond to visibility channels")

    gridstack = np.zeros((nband, npix, npix), dtype=grid_dtype)

    # scale the FOV using the simularity theorem
    scale_factor = npix * cell / 3600.0 * np.pi / 180.0
    wt_ch = np.zeros(nband, dtype=np.float64)
    for r in range(nrow):
        ra0, dec0 = phase_centre
        ra, dec = image_centre
        ptp.policy(vis[r, :, :],
                   uvw[r, :],
                   wavelengths,
                   ra0,
                   dec0,
                   ra,
                   dec,
                   policy_type=literally(phase_transform_policy),
                   phasesign=1.0)
        btp.policy(uvw[r, :], ra0, dec0, ra, dec,
                   literally(baseline_transform_policy))
        for c in range(nvischan):
            scaled_u = uvw[r, 0] * scale_factor / wavelengths[c]
            scaled_v = uvw[r, 1] * scale_factor / wavelengths[c]
            scaled_w = uvw[r, 2] * scale_factor / wavelengths[c]
            grid = gridstack[chanmap[c], :, :]
            wt_ch[chanmap[c]] += cp.policy(
                scaled_u,
                scaled_v,
                scaled_w,
                npix,
                grid,
                vis,
                r,
                c,
                convolution_kernel,
                convolution_kernel_width,
                convolution_kernel_oversampling,
                literally(stokes_conversion_policy),
                policy_type=literally(convolution_policy))
    if do_normalize:
        for c in range(nband):
            gridstack[c, :, :] /= wt_ch[c] + 1.0e-8
    return gridstack
예제 #20
0
 def impl(self, dtype):
     return astype(self, literally(dtype))
예제 #21
0
def numba_reduce(reduce_op, x, axis, keepdims=False) -> np.ndarray:
    """Reduce an array along the given axes.

    Parameters
    ----------
    reduce_op
        The reduce operation to call for each element of the output array. The input to
        reduce_op is a flattened, contigous array representing the window upon which
        reduce_op operates. It returns a scalar.
    x : np.ndarray
        The array to reduce.
    axis : ArrayLike
        The axis along which to reduce. This can be multiple axes.
    keepdims : bool
        If ``True``, keep the dimensions along which the array was reduced. If ``False``
        squeeze the output array. Currently only ``True`` is supported.

    Returns
    -------
    out_array : np.ndarray
        The reduced array.

    """
    @register_jitable
    def impl_keepdims(reduce_op, x, axis, keepdims=False):
        axis = np.atleast_1d(np.asarray(axis))

        mask = np.zeros(x.ndim, dtype=np.bool8)
        mask[axis] = True

        original_shape = np.array(x.shape)
        squeezed_shape = original_shape[~mask]

        # this could be reversed, but we are calling a reduction op on it anyway
        new_axes = -np.arange(1, axis.size + 1)

        # not that this will copy if reduction happens along a non-contigous axis
        x_work = np.moveaxis(x, axis, new_axes)
        x_work = np.ascontiguousarray(x_work)

        total_reduce = np.prod(original_shape[axis])
        total_keep = np.prod(squeezed_shape)
        tmp_shape = to_fixed_tuple(np.array((total_keep, total_reduce)), 2)
        x_work = np.reshape(x_work, tmp_shape)

        result = np.empty((total_keep, ), dtype=x_work.dtype)
        for idx in range(result.size):
            result[idx] = reduce_op(x_work[idx, ...])

        new_shape = original_shape.copy()
        new_shape[axis] = 1
        new_shape_tuple = to_fixed_tuple(new_shape, x.ndim)
        return np.reshape(result, new_shape_tuple)

    @register_jitable
    def impl_dropdims(reduce_op, x, axis, keepdims=False):
        axis = np.atleast_1d(np.asarray(axis))

        if axis.size > 1:
            raise NotImplementedError("Numba can't np.squeeze yet.")

        result = impl_keepdims(reduce_op, x, axis)
        result = np.moveaxis(result, axis, 0)

        return result[0, ...]

    if numba.literally(keepdims).literal_value:
        return impl_keepdims
    else:
        return impl_dropdims
예제 #22
0
 def foo_noop(dtype):
     return literally(dtype)
예제 #23
0
def degridder(uvw,
              gridstack,
              wavelengths,
              chanmap,
              cell,
              image_centre,
              phase_centre,
              convolution_kernel,
              convolution_kernel_width,
              convolution_kernel_oversampling,
              baseline_transform_policy,
              phase_transform_policy,
              stokes_conversion_policy,
              convolution_policy,
              vis_dtype=np.complex128):
    """
    2D Convolutional degridder, discrete to contiguous
    @uvw: value coordinates, (nrow, 3)
    @gridstack: complex gridded data, (nband, npix, npix)
    @wavelengths: wavelengths of data channels
    @chanmap: MFS band mapping per channel
    @cell: cell_size in degrees
    @image_centres: new phase centre of image (radians, ra, dec)
    @phase_centre: original phase centre of data (radians, ra, dec)
    @convolution_kernel: packed kernel as generated by kernels package
    @convolution_kernel_width: number of taps in kernel
    @convolution_kernel_oversampling: number of oversampled points in kernel
    @baseline_transform_policy: any accepted policy in
                                .policies.baseline_transform_policies,
                                can be used to tilt image planes for
                                polyhedron faceting
    @phase_transform_policy: any accepted policy in
                             .policies.phase_transform_policies,
                             can be used to facet at provided
                             facet @image_centre
    @stokes_conversion_policy: any accepted correlation to
                               stokes conversion policy in
                               .policies.stokes_conversion_policies
    @convolution_policy: any accepted convolution policy in
                         .policies.convolution_policies
    @vis_dtype: accumulation vis dtype (default complex 128)
    """

    if chanmap.size != wavelengths.size:
        raise ValueError(
            "Chanmap and corresponding wavelengths must match in shape")
    chanmap = chanmap.ravel()
    wavelengths = wavelengths.ravel()
    nband = np.max(chanmap) + 1
    nrow = uvw.shape[0]
    npix = gridstack.shape[1]
    if gridstack.shape[1] != gridstack.shape[2]:
        raise ValueError("Grid must be square")
    nvischan = wavelengths.size
    ncorr = scp.ncorr_out(policy_type=literally(stokes_conversion_policy))
    if gridstack.shape[0] < nband:
        raise ValueError(
            "Not enough channel bands in grid stack to match mfs band mapping")
    if uvw.shape[1] != 3:
        raise ValueError("UVW array must be array of tripples")
    if uvw.shape[0] != nrow:
        raise ValueError(
            "UVW array must have same number of rows as vis array")
    if nvischan != wavelengths.size:
        raise ValueError("Chanmap must correspond to visibility channels")

    vis = np.zeros((nrow, nvischan, ncorr), dtype=vis_dtype)

    # scale the FOV using the simularity theorem
    scale_factor = npix * cell / 3600.0 * np.pi / 180.0
    for r in prange(nrow):
        degridder_row_kernel(uvw,
                             gridstack,
                             wavelengths,
                             chanmap,
                             cell,
                             image_centre,
                             phase_centre,
                             convolution_kernel,
                             convolution_kernel_width,
                             convolution_kernel_oversampling,
                             literally(baseline_transform_policy),
                             literally(phase_transform_policy),
                             literally(stokes_conversion_policy),
                             literally(convolution_policy),
                             vis_dtype=vis_dtype,
                             nband=nband,
                             nrow=nrow,
                             npix=npix,
                             nvischan=nvischan,
                             ncorr=ncorr,
                             vis=vis,
                             scale_factor=scale_factor,
                             r=r)
    return vis
 def ol_specialize(x):
     iv = x.initial_value
     if iv is None:
         return lambda x: literally(x)  # Force literal dispatch
     assert iv == {'a': 1, 'b': 2, 'c': 3}  # INITIAL VALUE
     return lambda x: literally(x)
예제 #25
0
def prefilter(grid, V, out=None, k=3):
    return _prefilter(grid, V, numba.literally(k), out=out)
 def dummy_getitem_impl(self, idx):
     return literally(idx)
예제 #27
0
 def arrow_reader_get_table_cell_impl(table, col_idx, row_idx, ret):
     return literally(col_idx)
예제 #28
0
파일: utils.py 프로젝트: DannyWeitekamp/ILP
def struct_get_attr_offset(inst, attr):
    return _struct_get_attr_offset(inst, literally(attr))
예제 #29
0
 def impl(self, dtype):
     return literally(dtype)
예제 #30
0
 def test_power(x, n):
     return power(x, numba.literally(n))