def clean_defects(image2d, debugplot=0): """Interpolate problematic image region""" # define output image image2d_clean = image2d.copy() # define region containing the "curved piece of hair" j1, j2 = 980, 1050 # channel region (X direction) i1, i2 = 750, 860 # scan region (Y direction) subimage = image2d_clean[i1:(i2 + 1), j1:(j2 + 1)].copy() if abs(debugplot) % 10 != 0: ximshow(subimage, title='original image', first_pixel=(j1, i1), debugplot=debugplot) # median filter in Y subimage_filtered = ndimage.median_filter(subimage, size=(5, 1)) if abs(debugplot) % 10 != 0: ximshow(subimage_filtered, title='median-filtered image', first_pixel=(j1, i1), debugplot=debugplot) # fit image xfit = np.arange(j1, j2 + 1, 1, dtype=float) yfit = subimage_filtered.transpose() coef = fit_theil_sen(xfit, yfit) subimage_fitted = np.zeros_like(subimage) nscans = i2 - i1 + 1 for i in range(nscans): subimage_fitted[i, :] = coef[0, i] + coef[1, i] * xfit if abs(debugplot) % 10 != 0: ximshow(subimage_fitted, title='fitted image', first_pixel=(j1, i1), debugplot=debugplot) # filtered_image/fitted_image subimage_ratio = subimage_filtered / subimage_fitted if abs(debugplot) % 10 != 0: ximshow(subimage_ratio, title='image ratio', first_pixel=(j1, i1), debugplot=debugplot) # mark bad pixels badpix = np.where(subimage_ratio < 0.90) # replace bad pixels by fitted image subimage[badpix] = subimage_fitted[badpix] if abs(debugplot) % 10 != 0: ximshow(subimage, title='cleaned image', first_pixel=(j1, i1), debugplot=debugplot) # replace interpolated region in original image image2d_clean[i1:(i2 + 1), j1:(j2 + 1)] = subimage return image2d_clean
def ximshow_rectified(self, slitlet2d_rect, subtitle=None): """Display rectified image with spectrails and frontiers. Parameters ---------- slitlet2d_rect : numpy array Array containing the rectified slitlet image. subtitle : string, optional Subtitle for plot. """ title = "Slitlet#" + str(self.islitlet) if subtitle is not None: title += ' (' + subtitle + ')' ax = ximshow(slitlet2d_rect, title=title, first_pixel=(self.bb_nc1_orig, self.bb_ns1_orig), show=False) # grid with fitted transformation: spectrum trails xx = np.arange(0, self.bb_nc2_orig - self.bb_nc1_orig + 1, dtype=np.float) for spectrail in self.list_spectrails: yy0 = self.corr_yrect_a + \ self.corr_yrect_b * spectrail(self.x0_reference) yy = np.tile([yy0 - self.bb_ns1_orig], xx.size) ax.plot(xx + self.bb_nc1_orig, yy + self.bb_ns1_orig, "b") for spectrail in self.list_frontiers: yy0 = self.corr_yrect_a +\ self.corr_yrect_b * spectrail(self.x0_reference) yy = np.tile([yy0 - self.bb_ns1_orig], xx.size) ax.plot(xx + self.bb_nc1_orig, yy + self.bb_ns1_orig, "b:") # show plot pause_debugplot(self.debugplot, pltshow=True)
def ximshow_unrectified(self, slitlet2d, subtitle=None): """Display unrectified image with spectrails and frontiers. Parameters ---------- slitlet2d : numpy array Array containing the unrectified slitlet image. subtitle : string, optional Subtitle for plot. """ title = "Slitlet#" + str(self.islitlet) if subtitle is not None: title += ' (' + subtitle + ')' ax = ximshow(slitlet2d, title=title, first_pixel=(self.bb_nc1_orig, self.bb_ns1_orig), show=False) xdum = np.linspace(1, EMIR_NAXIS1, num=EMIR_NAXIS1) ylower = self.list_spectrails[0](xdum) ax.plot(xdum, ylower, 'b-') ymiddle = self.list_spectrails[1](xdum) ax.plot(xdum, ymiddle, 'b--') yupper = self.list_spectrails[2](xdum) ax.plot(xdum, yupper, 'b-') ylower_frontier = self.list_frontiers[0](xdum) ax.plot(xdum, ylower_frontier, 'b:') yupper_frontier = self.list_frontiers[1](xdum) ax.plot(xdum, yupper_frontier, 'b:') if title is not None: ax.set_title(title) pause_debugplot(debugplot=self.debugplot, pltshow=True)
def ximshow_unrectified(self, slitlet2d): """Display unrectified image with spectrails and frontiers. Parameters ---------- slitlet2d : numpy array Array containing the unrectified slitlet image. """ title = "Slitlet#" + str(self.islitlet) ax = ximshow(slitlet2d, title=title, first_pixel=(self.bb_nc1_orig, self.bb_ns1_orig), show=False) xdum = np.linspace(1, EMIR_NAXIS1, num=EMIR_NAXIS1) ylower = self.list_spectrails[0](xdum) ax.plot(xdum, ylower, 'b-') ymiddle = self.list_spectrails[1](xdum) ax.plot(xdum, ymiddle, 'b--') yupper = self.list_spectrails[2](xdum) ax.plot(xdum, yupper, 'b-') ylower_frontier = self.list_frontiers[0](xdum) ax.plot(xdum, ylower_frontier, 'b:') yupper_frontier = self.list_frontiers[1](xdum) ax.plot(xdum, yupper_frontier, 'b:') pause_debugplot(debugplot=self.debugplot, pltshow=True)
def main(args=None): # parse command-line options parser = argparse.ArgumentParser() # positional arguments parser.add_argument("fitsfile", help="FITS file name to be displayed", type=argparse.FileType('rb')) parser.add_argument("--bounddict", required=True, help="bounddict file name", type=argparse.FileType('rt')) parser.add_argument("--tuple_slit_numbers", required=True, help="Tuple n1[,n2[,step]] to define slitlet numbers") # optional arguments parser.add_argument("--echo", help="Display full command line", action="store_true") args = parser.parse_args() if args.echo: print('\033[1m\033[31mExecuting: ' + ' '.join(sys.argv) + '\033[0m\n') # read slitlet numbers to be computed tmp_str = args.tuple_slit_numbers.split(",") if len(tmp_str) == 3: if int(tmp_str[0]) < 1: raise ValueError("Invalid slitlet number < 1") if int(tmp_str[1]) > EMIR_NBARS: raise ValueError("Invalid slitlet number > EMIR_NBARS") list_slitlets = range(int(tmp_str[0]), int(tmp_str[1]) + 1, int(tmp_str[2])) elif len(tmp_str) == 2: if int(tmp_str[0]) < 1: raise ValueError("Invalid slitlet number < 1") if int(tmp_str[1]) > EMIR_NBARS: raise ValueError("Invalid slitlet number > EMIR_NBARS") list_slitlets = range(int(tmp_str[0]), int(tmp_str[1]) + 1, 1) elif len(tmp_str) == 1: if int(tmp_str[0]) < 1: raise ValueError("Invalid slitlet number < 1") if int(tmp_str[0]) > EMIR_NBARS: raise ValueError("Invalid slitlet number > EMIR_NBARS") list_slitlets = [int(tmp_str[0])] else: raise ValueError("Invalid tuple for slitlet numbers") # read input FITS file hdulist = fits.open(args.fitsfile.name) image_header = hdulist[0].header image2d = hdulist[0].data hdulist.close() naxis1 = image_header['naxis1'] naxis2 = image_header['naxis2'] if image2d.shape != (naxis2, naxis1): raise ValueError("Unexpected error with NAXIS1, NAXIS2") # remove path from fitsfile sfitsfile = os.path.basename(args.fitsfile.name) # check that the FITS file has been obtained with EMIR instrument = image_header['instrume'] if instrument != 'EMIR': raise ValueError("INSTRUME keyword is not 'EMIR'!") # read GRISM, FILTER and ROTANG from FITS header grism = image_header['grism'] spfilter = image_header['filter'] rotang = image_header['rotang'] # display full image ax = ximshow(image2d=image2d, title=sfitsfile + "\ngrism=" + grism + ", filter=" + spfilter + ", rotang=" + str(round(rotang, 2)), image_bbox=(1, naxis1, 1, naxis2), show=False) # overplot boundaries for each slitlet for slitlet_number in list_slitlets: pol_lower_boundary, pol_upper_boundary, \ xmin_lower, xmax_lower, xmin_upper, xmax_upper, \ csu_bar_slit_center = \ get_boundaries(args.bounddict, slitlet_number) if (pol_lower_boundary is not None) and \ (pol_upper_boundary is not None): xp = np.linspace(start=xmin_lower, stop=xmax_lower, num=1000) yp = pol_lower_boundary(xp) ax.plot(xp, yp, 'g-') xp = np.linspace(start=xmin_upper, stop=xmax_upper, num=1000) yp = pol_upper_boundary(xp) ax.plot(xp, yp, 'b-') # slitlet label yc_lower = pol_lower_boundary(EMIR_NAXIS1 / 2 + 0.5) yc_upper = pol_upper_boundary(EMIR_NAXIS1 / 2 + 0.5) tmpcolor = ['r', 'b'][slitlet_number % 2] xcsu = EMIR_NAXIS1 * csu_bar_slit_center / 341.5 ax.text(xcsu, (yc_lower + yc_upper) / 2, str(slitlet_number), fontsize=10, va='center', ha='center', bbox=dict(boxstyle="round,pad=0.1", fc="white", ec="grey"), color=tmpcolor, fontweight='bold', backgroundcolor='white') # show plot pause_debugplot(12, pltshow=True)
def median_slitlets_rectified( input_image, mode=0, minimum_slitlet_width_mm=EMIR_MINIMUM_SLITLET_WIDTH_MM, maximum_slitlet_width_mm=EMIR_MAXIMUM_SLITLET_WIDTH_MM, debugplot=0): """Compute median spectrum for each slitlet. Parameters ---------- input_image : HDUList object Input 2D image. mode : int Indicate desired result: 0 : image with the same size as the input image, with the median spectrum of each slitlet spanning all the spectra of the corresponding slitlet 1 : image with 55 spectra, containing the median spectra of each slitlet 2 : single collapsed median spectrum, using exclusively the useful slitlets from the input image minimum_slitlet_width_mm : float Minimum slitlet width (mm) for a valid slitlet. maximum_slitlet_width_mm : float Maximum slitlet width (mm) for a valid slitlet. debugplot : int Determines whether intermediate computations and/or plots are displayed. The valid codes are defined in numina.array.display.pause_debugplot. Returns ------- image_median : HDUList object Output image. """ image_header = input_image[0].header image2d = input_image[0].data # check image dimensions naxis2_expected = EMIR_NBARS * EMIR_NPIXPERSLIT_RECTIFIED naxis2, naxis1 = image2d.shape if naxis2 != naxis2_expected: raise ValueError("NAXIS2={0} should be {1}".format( naxis2, naxis2_expected)) # check that the FITS file has been obtained with EMIR instrument = image_header['instrume'] if instrument != 'EMIR': raise ValueError("INSTRUME keyword is not 'EMIR'!") # initialize output image if mode == 0: image2d_median = np.zeros((naxis2, naxis1)) else: image2d_median = np.zeros((EMIR_NBARS, naxis1)) # main loop for i in range(EMIR_NBARS): ns1 = i * EMIR_NPIXPERSLIT_RECTIFIED + 1 ns2 = ns1 + EMIR_NPIXPERSLIT_RECTIFIED - 1 sp_median = np.median(image2d[(ns1 - 1):ns2, :], axis=0) if mode == 0: image2d_median[(ns1 - 1):ns2, :] = np.tile( sp_median, (EMIR_NPIXPERSLIT_RECTIFIED, 1)) else: image2d_median[i] = np.copy(sp_median) if mode == 2: # get CSU configuration from FITS header csu_config = CsuConfiguration.define_from_header(image_header) # define wavelength calibration parameters crpix1 = image_header['crpix1'] crval1 = image_header['crval1'] cdelt1 = image_header['cdelt1'] # segregate slitlets list_useful_slitlets = csu_config.widths_in_range_mm( minwidth=minimum_slitlet_width_mm, maxwidth=maximum_slitlet_width_mm) list_not_useful_slitlets = [ i for i in list(range(1, EMIR_NBARS + 1)) if i not in list_useful_slitlets ] if abs(debugplot) != 0: print('>>> list_useful_slitlets....:', list_useful_slitlets) print('>>> list_not_useful_slitlets:', list_not_useful_slitlets) # define mask from array data mask2d, borders = define_mask_borders(image2d_median, sought_value=0) if abs(debugplot) % 10 != 0: ximshow(mask2d.astype(int), z1z2=(-.2, 1.2), crpix1=crpix1, crval1=crval1, cdelt1=cdelt1, debugplot=debugplot) # update mask with unused slitlets for islitlet in list_not_useful_slitlets: mask2d[islitlet - 1, :] = np.array([True] * naxis1) if abs(debugplot) % 10 != 0: ximshow(mask2d.astype(int), z1z2=(-.2, 1.2), crpix1=crpix1, crval1=crval1, cdelt1=cdelt1, debugplot=debugplot) # useful image pixels image2d_masked = image2d_median * (1 - mask2d.astype(int)) if abs(debugplot) % 10 != 0: ximshow(image2d_masked, crpix1=crpix1, crval1=crval1, cdelt1=cdelt1, debugplot=debugplot) # masked image image2d_masked = np.ma.masked_array(image2d_median, mask=mask2d) # median spectrum image1d_median = np.ma.median(image2d_masked, axis=0).data image_median = fits.PrimaryHDU(data=image1d_median, header=image_header) else: image_median = fits.PrimaryHDU(data=image2d_median, header=image_header) return fits.HDUList([image_median])
def useful_mos_xpixels(reduced_mos_data, base_header, vpix_region, npix_removed_near_ohlines=0, list_valid_wvregions=None, debugplot=0): """Useful X-axis pixels removing +/- npixaround pixels around each OH line """ # get wavelength calibration from image header naxis1 = base_header['naxis1'] naxis2 = base_header['naxis2'] crpix1 = base_header['crpix1'] crval1 = base_header['crval1'] cdelt1 = base_header['cdelt1'] # check vertical region nsmin = int(vpix_region[0] + 0.5) nsmax = int(vpix_region[1] + 0.5) if nsmin > nsmax: raise ValueError('vpix_region values in wrong order') elif nsmin < 1 or nsmax > naxis2: raise ValueError('vpix_region outside valid range') # minimum and maximum pixels in the wavelength direction islitlet_min = get_islitlet(nsmin) ncmin = base_header['jmnslt{:02d}'.format(islitlet_min)] ncmax = base_header['jmxslt{:02d}'.format(islitlet_min)] islitlet_max = get_islitlet(nsmax) if islitlet_max > islitlet_min: for islitlet in range(islitlet_min + 1, islitlet_max + 1): ncmin_ = base_header['jmnslt{:02d}'.format(islitlet)] ncmax_ = base_header['jmnslt{:02d}'.format(islitlet)] ncmin = min(ncmin, ncmin_) ncmax = max(ncmax, ncmax_) # pixels within valid regions xisok_wvreg = np.zeros(naxis1, dtype='bool') if list_valid_wvregions is None: for ipix in range(ncmin, ncmax + 1): xisok_wvreg[ipix - 1] = True else: for wvregion in list_valid_wvregions: wvmin = float(wvregion[0]) wvmax = float(wvregion[1]) if wvmin > wvmax: raise ValueError('wvregion values in wrong order:' ' {}, {}'.format(wvmin, wvmax)) minpix = int((wvmin - crval1) / cdelt1 + crpix1 + 0.5) maxpix = int((wvmax - crval1) / cdelt1 + crpix1 + 0.5) for ipix in range(minpix, maxpix + 1): if 1 <= ipix <= naxis1: xisok_wvreg[ipix - 1] = True if np.sum(xisok_wvreg) < 1: raise ValueError('no valid wavelength ranges provided') # pixels affected by OH lines xisok_oh = np.ones(naxis1, dtype='bool') if int(npix_removed_near_ohlines) > 0: dumdata = pkgutil.get_data( 'emirdrp.instrument.configs', 'Oliva_etal_2013.dat' ) oh_lines_tmpfile = StringIO(dumdata.decode('utf8')) catlines = np.genfromtxt(oh_lines_tmpfile) catlines_all_wave = np.concatenate( (catlines[:, 1], catlines[:, 0])) for waveline in catlines_all_wave: expected_pixel = int( (waveline - crval1) / cdelt1 + crpix1 + 0.5) minpix = expected_pixel - int(npix_removed_near_ohlines) maxpix = expected_pixel + int(npix_removed_near_ohlines) for ipix in range(minpix, maxpix + 1): if 1 <= ipix <= naxis1: xisok_oh[ipix - 1] = False # pixels in valid regions not affected by OH lines xisok = np.logical_and(xisok_wvreg, xisok_oh) naxis1_effective = np.sum(xisok) if naxis1_effective < 1: raise ValueError('no valid wavelength range available after ' 'removing OH lines') if abs(debugplot) in [21, 22]: slitlet2d = reduced_mos_data[(nsmin - 1):nsmax, :].copy() ximshow(slitlet2d, title='Rectified region', first_pixel=(1, nsmin), crval1=crval1, cdelt1=cdelt1, debugplot=debugplot) ax = ximshow(slitlet2d, title='Rectified region\nafter blocking ' 'removed wavelength ranges', first_pixel=(1, nsmin), crval1=crval1, cdelt1=cdelt1, show=False) for idum in range(1, naxis1 + 1): if not xisok_wvreg[idum - 1]: ax.plot([idum, idum], [nsmin, nsmax], 'g-') pause_debugplot(debugplot, pltshow=True) ax = ximshow(slitlet2d, title='Rectified slitlet\nuseful regions after ' 'removing OH lines', first_pixel=(1, nsmin), crval1=crval1, cdelt1=cdelt1, show=False) for idum in range(1, naxis1 + 1): if not xisok[idum - 1]: ax.plot([idum, idum], [nsmin, nsmax], 'm-') pause_debugplot(debugplot, pltshow=True) return xisok
def main(args=None): # parse command-line options parser = argparse.ArgumentParser( description='description: overplot boundary model over FITS image') # positional arguments parser.add_argument("fitsfile", help="FITS file name to be displayed", type=argparse.FileType('rb')) parser.add_argument("--rect_wpoly_MOSlibrary", required=True, help="Input JSON file with library of rectification " "and wavelength calibration coefficients", type=argparse.FileType('rt')) # optional arguments parser.add_argument("--global_integer_offset_x_pix", help="Global integer offset in the X direction " "(default=0)", default=0, type=int) parser.add_argument("--global_integer_offset_y_pix", help="Global integer offset in the Y direction " "(default=0)", default=0, type=int) parser.add_argument("--arc_lines", help="Overplot arc lines", action="store_true") parser.add_argument("--oh_lines", help="Overplot OH lines", action="store_true") parser.add_argument("--ds9_frontiers", help="Output ds9 region file with slitlet frontiers", type=lambda x: arg_file_is_new(parser, x)) parser.add_argument("--ds9_boundaries", help="Output ds9 region file with slitlet boundaries", type=lambda x: arg_file_is_new(parser, x)) parser.add_argument("--ds9_lines", help="Output ds9 region file with arc/oh lines", type=lambda x: arg_file_is_new(parser, x)) parser.add_argument("--debugplot", help="Integer indicating plotting/debugging" + " (default=12)", type=int, default=12, choices=DEBUGPLOT_CODES) parser.add_argument("--echo", help="Display full command line", action="store_true") args = parser.parse_args() if args.echo: print('\033[1m\033[31mExecuting: ' + ' '.join(sys.argv) + '\033[0m\n') # --- # avoid incompatible options if args.arc_lines and args.oh_lines: raise ValueError("--arc_lines and --oh_lines cannot be used " "simultaneously") # --ds9_lines requires --arc_lines or --oh_lines if args.ds9_lines: if not (args.arc_lines or args.oh_lines): raise ValueError("--ds9_lines requires the use of either " "--arc_lines or --oh_lines") # read input FITS file hdulist = fits.open(args.fitsfile) image_header = hdulist[0].header image2d = hdulist[0].data hdulist.close() naxis1 = image_header['naxis1'] naxis2 = image_header['naxis2'] if image2d.shape != (naxis2, naxis1): raise ValueError("Unexpected error with NAXIS1, NAXIS2") if image2d.shape != (EMIR_NAXIS2, EMIR_NAXIS1): raise ValueError("Unexpected values for NAXIS1, NAXIS2") # remove path from fitsfile sfitsfile = os.path.basename(args.fitsfile.name) # check that the FITS file has been obtained with EMIR instrument = image_header['instrume'] if instrument != 'EMIR': raise ValueError("INSTRUME keyword is not 'EMIR'!") # read GRISM, FILTER and ROTANG from FITS header grism = image_header['grism'] spfilter = image_header['filter'] rotang = image_header['rotang'] # --- # generate MasterRectWave object master_rectwv = MasterRectWave._datatype_load( args.rect_wpoly_MOSlibrary.name) # check that grism and filter are the expected ones grism_ = master_rectwv.tags['grism'] if grism_ != grism: raise ValueError('Unexpected grism: ' + str(grism_)) spfilter_ = master_rectwv.tags['filter'] if spfilter_ != spfilter: raise ValueError('Unexpected filter ' + str(spfilter_)) # valid slitlet numbers list_valid_islitlets = list(range(1, EMIR_NBARS + 1)) for idel in master_rectwv.missing_slitlets: list_valid_islitlets.remove(idel) # read CsuConfiguration object from FITS file csu_config = CsuConfiguration.define_from_fits(args.fitsfile) # list with csu_bar_slit_center for valid slitlets list_csu_bar_slit_center = [] for islitlet in list_valid_islitlets: list_csu_bar_slit_center.append( csu_config.csu_bar_slit_center(islitlet)) # define parmodel and params fitted_bound_param_json = { 'contents': master_rectwv.meta_info['refined_boundary_model'] } parmodel = fitted_bound_param_json['contents']['parmodel'] fitted_bound_param_json.update({'meta_info': {'parmodel': parmodel}}) params = bound_params_from_dict(fitted_bound_param_json) if parmodel != "multislit": raise ValueError('parmodel = "multislit" not found') # --- # define lines to be overplotted if args.arc_lines or args.oh_lines: rectwv_coeff = rectwv_coeff_from_mos_library(hdulist, master_rectwv) rectwv_coeff.global_integer_offset_x_pix = \ args.global_integer_offset_x_pix rectwv_coeff.global_integer_offset_y_pix = \ args.global_integer_offset_y_pix # rectwv_coeff.writeto('xxx.json') if args.arc_lines: if grism == 'LR': catlines_file = 'lines_argon_neon_xenon_empirical_LR.dat' else: catlines_file = 'lines_argon_neon_xenon_empirical.dat' dumdata = pkgutil.get_data('emirdrp.instrument.configs', catlines_file) arc_lines_tmpfile = StringIO(dumdata.decode('utf8')) catlines = np.genfromtxt(arc_lines_tmpfile) # define wavelength and flux as separate arrays catlines_all_wave = catlines[:, 0] catlines_all_flux = catlines[:, 1] elif args.oh_lines: dumdata = pkgutil.get_data('emirdrp.instrument.configs', 'Oliva_etal_2013.dat') oh_lines_tmpfile = StringIO(dumdata.decode('utf8')) catlines = np.genfromtxt(oh_lines_tmpfile) # define wavelength and flux as separate arrays catlines_all_wave = np.concatenate((catlines[:, 1], catlines[:, 0])) catlines_all_flux = np.concatenate((catlines[:, 2], catlines[:, 2])) else: raise ValueError("This should not happen!") else: rectwv_coeff = None catlines_all_wave = None catlines_all_flux = None # --- # generate output ds9 region file with slitlet boundaries if args.ds9_boundaries is not None: save_boundaries_from_params_ds9( params=params, parmodel=parmodel, list_islitlet=list_valid_islitlets, list_csu_bar_slit_center=list_csu_bar_slit_center, uuid=master_rectwv.uuid, grism=grism, spfilter=spfilter, ds9_filename=args.ds9_boundaries.name, global_offset_x_pix=-args.global_integer_offset_x_pix, global_offset_y_pix=-args.global_integer_offset_y_pix) # generate output ds9 region file with slitlet frontiers if args.ds9_frontiers is not None: save_frontiers_from_params_ds9( params=params, parmodel=parmodel, list_islitlet=list_valid_islitlets, list_csu_bar_slit_center=list_csu_bar_slit_center, uuid=master_rectwv.uuid, grism=grism, spfilter=spfilter, ds9_filename=args.ds9_frontiers.name, global_offset_x_pix=-args.global_integer_offset_x_pix, global_offset_y_pix=-args.global_integer_offset_y_pix) # --- # display full image if abs(args.debugplot) % 10 != 0: ax = ximshow(image2d=image2d, title=sfitsfile + "\ngrism=" + grism + ", filter=" + spfilter + ", rotang=" + str(round(rotang, 2)), image_bbox=(1, naxis1, 1, naxis2), show=False) # overplot boundaries overplot_boundaries_from_params( ax=ax, params=params, parmodel=parmodel, list_islitlet=list_valid_islitlets, list_csu_bar_slit_center=list_csu_bar_slit_center, global_offset_x_pix=-args.global_integer_offset_x_pix, global_offset_y_pix=-args.global_integer_offset_y_pix) # overplot frontiers overplot_frontiers_from_params( ax=ax, params=params, parmodel=parmodel, list_islitlet=list_valid_islitlets, list_csu_bar_slit_center=list_csu_bar_slit_center, micolors=('b', 'b'), linetype='-', labels=False, # already displayed with the boundaries global_offset_x_pix=-args.global_integer_offset_x_pix, global_offset_y_pix=-args.global_integer_offset_y_pix) else: ax = None # overplot lines if catlines_all_wave is not None: if args.ds9_lines is None: ds9_file = None else: ds9_file = open(args.ds9_lines.name, 'w') ds9_file.write('# Region file format: DS9 version 4.1\n') ds9_file.write('global color=#00ffff dashlist=0 0 width=2 ' 'font="helvetica 10 normal roman" select=1 ' 'highlite=1 dash=0 fixed=0 edit=1 ' 'move=1 delete=1 include=1 source=1\n') ds9_file.write('physical\n#\n') ds9_file.write('#\n# uuid..: {0}\n'.format(master_rectwv.uuid)) ds9_file.write('# filter: {0}\n'.format(spfilter)) ds9_file.write('# grism.: {0}\n'.format(grism)) ds9_file.write('#\n# global_offset_x_pix: {0}\n'.format( args.global_integer_offset_x_pix)) ds9_file.write('# global_offset_y_pix: {0}\n#\n'.format( args.global_integer_offset_y_pix)) if parmodel == "longslit": for dumpar in EXPECTED_PARAMETER_LIST: parvalue = params[dumpar].value ds9_file.write('# {0}: {1}\n'.format(dumpar, parvalue)) else: for dumpar in EXPECTED_PARAMETER_LIST_EXTENDED: parvalue = params[dumpar].value ds9_file.write('# {0}: {1}\n'.format(dumpar, parvalue)) overplot_lines(ax, catlines_all_wave, list_valid_islitlets, rectwv_coeff, args.global_integer_offset_x_pix, args.global_integer_offset_y_pix, ds9_file, args.debugplot) if ds9_file is not None: ds9_file.close() if ax is not None: # show plot pause_debugplot(12, pltshow=True)
def main(args=None): # parse command-line options parser = argparse.ArgumentParser() # positional arguments parser.add_argument("fitsfile", help="FITS file name to be displayed", type=argparse.FileType('rb')) parser.add_argument("--fitted_bound_param", required=True, help="JSON file with fitted boundary coefficients " "corresponding to the multislit model", type=argparse.FileType('rt')) parser.add_argument("--slitlets", required=True, help="Slitlet selection: string between double " "quotes providing tuples of the form " "n1[,n2[,step]]", type=str) # optional arguments parser.add_argument("--outfile", help="Output FITS file name", type=lambda x: arg_file_is_new(parser, x, mode='wb')) parser.add_argument("--maskonly", help="Generate mask for the indicated slitlets", action="store_true") parser.add_argument("--debugplot", help="Integer indicating plotting/debugging" + " (default=0)", type=int, default=0, choices=DEBUGPLOT_CODES) parser.add_argument("--echo", help="Display full command line", action="store_true") args = parser.parse_args() if args.echo: print('\033[1m\033[31mExecuting: ' + ' '.join(sys.argv) + '\033[0m\n') # read input FITS file hdulist_image = fits.open(args.fitsfile.name) image_header = hdulist_image[0].header image2d = hdulist_image[0].data naxis1 = image_header['naxis1'] naxis2 = image_header['naxis2'] if image2d.shape != (naxis2, naxis1): raise ValueError("Unexpected error with NAXIS1, NAXIS2") if image2d.shape != (EMIR_NAXIS2, EMIR_NAXIS1): raise ValueError("NAXIS1, NAXIS2 unexpected for EMIR detector") # remove path from fitsfile if args.outfile is None: sfitsfile = os.path.basename(args.fitsfile.name) else: sfitsfile = os.path.basename(args.outfile.name) # check that the FITS file has been obtained with EMIR instrument = image_header['instrume'] if instrument != 'EMIR': raise ValueError("INSTRUME keyword is not 'EMIR'!") # read GRISM, FILTER and ROTANG from FITS header grism = image_header['grism'] spfilter = image_header['filter'] rotang = image_header['rotang'] # read fitted_bound_param JSON file fittedpar_dict = json.loads(open(args.fitted_bound_param.name).read()) params = bound_params_from_dict(fittedpar_dict) if abs(args.debugplot) in [21, 22]: params.pretty_print() parmodel = fittedpar_dict['meta_info']['parmodel'] if parmodel != 'multislit': raise ValueError("Unexpected parameter model: ", parmodel) # define slitlet range islitlet_min = fittedpar_dict['tags']['islitlet_min'] islitlet_max = fittedpar_dict['tags']['islitlet_max'] list_islitlet = list_slitlets_from_string( s=args.slitlets, islitlet_min=islitlet_min, islitlet_max=islitlet_max ) # read CsuConfiguration object from FITS file csu_config = CsuConfiguration.define_from_fits(args.fitsfile) # define csu_bar_slit_center associated to each slitlet list_csu_bar_slit_center = [] for islitlet in list_islitlet: list_csu_bar_slit_center.append( csu_config.csu_bar_slit_center(islitlet)) # initialize output data array image2d_output = np.zeros((naxis2, naxis1)) # main loop for islitlet, csu_bar_slit_center in \ zip(list_islitlet, list_csu_bar_slit_center): image2d_tmp = select_unrectified_slitlet( image2d=image2d, islitlet=islitlet, csu_bar_slit_center=csu_bar_slit_center, params=params, parmodel=parmodel, maskonly=args.maskonly ) image2d_output += image2d_tmp # update the array of the output file hdulist_image[0].data = image2d_output # save output FITS file hdulist_image.writeto(args.outfile) # close original image hdulist_image.close() # display full image if abs(args.debugplot) % 10 != 0: ax = ximshow(image2d=image2d_output, title=sfitsfile + "\n" + args.slitlets, image_bbox=(1, naxis1, 1, naxis2), show=False) # overplot boundaries overplot_boundaries_from_params( ax=ax, params=params, parmodel=parmodel, list_islitlet=list_islitlet, list_csu_bar_slit_center=list_csu_bar_slit_center ) # overplot frontiers overplot_frontiers_from_params( ax=ax, params=params, parmodel=parmodel, list_islitlet=list_islitlet, list_csu_bar_slit_center=list_csu_bar_slit_center, micolors=('b', 'b'), linetype='-', labels=False # already displayed with the boundaries ) # show plot pause_debugplot(12, pltshow=True)
def main(args=None): # parse command-line options parser = argparse.ArgumentParser() # positional arguments parser.add_argument("fitsfile", help="FITS file name to be displayed", type=argparse.FileType('rb')) parser.add_argument("--bounddict", required=True, help="bounddict file name", type=argparse.FileType('rt')) parser.add_argument("--tuple_slit_numbers", required=True, help="Tuple n1[,n2[,step]] to define slitlet numbers") # optional arguments parser.add_argument("--echo", help="Display full command line", action="store_true") args = parser.parse_args() if args.echo: print('\033[1m\033[31mExecuting: ' + ' '.join(sys.argv) + '\033[0m\n') # read slitlet numbers to be computed tmp_str = args.tuple_slit_numbers.split(",") if len(tmp_str) == 3: if int(tmp_str[0]) < 1: raise ValueError("Invalid slitlet number < 1") if int(tmp_str[1]) > EMIR_NBARS: raise ValueError("Invalid slitlet number > EMIR_NBARS") list_slitlets = range(int(tmp_str[0]), int(tmp_str[1])+1, int(tmp_str[2])) elif len(tmp_str) == 2: if int(tmp_str[0]) < 1: raise ValueError("Invalid slitlet number < 1") if int(tmp_str[1]) > EMIR_NBARS: raise ValueError("Invalid slitlet number > EMIR_NBARS") list_slitlets = range(int(tmp_str[0]), int(tmp_str[1])+1, 1) elif len(tmp_str) == 1: if int(tmp_str[0]) < 1: raise ValueError("Invalid slitlet number < 1") if int(tmp_str[0]) > EMIR_NBARS: raise ValueError("Invalid slitlet number > EMIR_NBARS") list_slitlets = [int(tmp_str[0])] else: raise ValueError("Invalid tuple for slitlet numbers") # read input FITS file hdulist = fits.open(args.fitsfile.name) image_header = hdulist[0].header image2d = hdulist[0].data hdulist.close() naxis1 = image_header['naxis1'] naxis2 = image_header['naxis2'] if image2d.shape != (naxis2, naxis1): raise ValueError("Unexpected error with NAXIS1, NAXIS2") # remove path from fitsfile sfitsfile = os.path.basename(args.fitsfile.name) # check that the FITS file has been obtained with EMIR instrument = image_header['instrume'] if instrument != 'EMIR': raise ValueError("INSTRUME keyword is not 'EMIR'!") # read GRISM, FILTER and ROTANG from FITS header grism = image_header['grism'] spfilter = image_header['filter'] rotang = image_header['rotang'] # display full image ax = ximshow(image2d=image2d, title=sfitsfile + "\ngrism=" + grism + ", filter=" + spfilter + ", rotang=" + str(round(rotang, 2)), image_bbox=(1, naxis1, 1, naxis2), show=False) # overplot boundaries for each slitlet for slitlet_number in list_slitlets: pol_lower_boundary, pol_upper_boundary, \ xmin_lower, xmax_lower, xmin_upper, xmax_upper, \ csu_bar_slit_center = \ get_boundaries(args.bounddict, slitlet_number) if (pol_lower_boundary is not None) and \ (pol_upper_boundary is not None): xp = np.linspace(start=xmin_lower, stop=xmax_lower, num=1000) yp = pol_lower_boundary(xp) ax.plot(xp, yp, 'g-') xp = np.linspace(start=xmin_upper, stop=xmax_upper, num=1000) yp = pol_upper_boundary(xp) ax.plot(xp, yp, 'b-') # slitlet label yc_lower = pol_lower_boundary(EMIR_NAXIS1 / 2 + 0.5) yc_upper = pol_upper_boundary(EMIR_NAXIS1 / 2 + 0.5) tmpcolor = ['r', 'b'][slitlet_number % 2] xcsu = EMIR_NAXIS1 * csu_bar_slit_center/341.5 ax.text(xcsu, (yc_lower + yc_upper) / 2, str(slitlet_number), fontsize=10, va='center', ha='center', bbox=dict(boxstyle="round,pad=0.1", fc="white", ec="grey"), color=tmpcolor, fontweight='bold', backgroundcolor='white') # show plot pause_debugplot(12, pltshow=True)
def compute_slitlet_boundaries( filename, grism, spfilter, list_slitlets, size_x_medfilt, size_y_savgol, times_sigma_threshold, bounddict, debugplot=0): """Compute slitlet boundaries using continuum lamp images. Parameters ---------- filename : string Input continumm lamp image. grism : string Grism name. It must be one in EMIR_VALID_GRISMS. spfilter : string Filter name. It must be one in EMIR_VALID_FILTERS. list_slitlets : list of integers Number of slitlets to be updated. size_x_medfilt : int Window in the X (spectral) direction, in pixels, to apply the 1d median filter in order to remove bad pixels. size_y_savgol : int Window in the Y (spatial) direction to be used when using the 1d Savitzky-Golay filter. times_sigma_threshold : float Times sigma to detect peaks in derivatives. bounddict : dictionary of dictionaries Structure to store the boundaries. debugplot : int Determines whether intermediate computations and/or plots are displayed. """ # read 2D image hdulist = fits.open(filename) image_header = hdulist[0].header image2d = hdulist[0].data naxis2, naxis1 = image2d.shape hdulist.close() if debugplot >= 10: print('>>> NAXIS1:', naxis1) print('>>> NAXIS2:', naxis2) # ToDo: replace this by application of cosmetic defect mask! for j in range(1024): image2d[1024, j] = (image2d[1023, j] + image2d[1025, j]) / 2 image2d[1023, j + 1024] = (image2d[1022, j + 1024] + image2d[1024, j + 1024]) / 2 # remove path from filename sfilename = os.path.basename(filename) # check that the FITS file has been obtained with EMIR instrument = image_header['instrume'] if instrument != 'EMIR': raise ValueError("INSTRUME keyword is not 'EMIR'!") # read CSU configuration from FITS header csu_config = CsuConfiguration.define_from_fits(filename) # read DTU configuration from FITS header dtu_config = DtuConfiguration.define_from_fits(filename) # read grism grism_in_header = image_header['grism'] if grism != grism_in_header: raise ValueError("GRISM keyword=" + grism_in_header + " is not the expected value=" + grism) # read filter spfilter_in_header = image_header['filter'] if spfilter != spfilter_in_header: raise ValueError("FILTER keyword=" + spfilter_in_header + " is not the expected value=" + spfilter) # read rotator position angle rotang = image_header['rotang'] # read date-obs date_obs = image_header['date-obs'] for islitlet in list_slitlets: if debugplot < 10: sys.stdout.write('.') sys.stdout.flush() sltlim = SlitletLimits(grism, spfilter, islitlet) # extract slitlet2d slitlet2d = extract_slitlet2d(image2d, sltlim) if debugplot % 10 != 0: ximshow(slitlet2d, title=sfilename + " [original]" "\nslitlet=" + str(islitlet) + ", grism=" + grism + ", filter=" + spfilter + ", rotang=" + str(round(rotang, 2)), first_pixel=(sltlim.bb_nc1_orig, sltlim.bb_ns1_orig), debugplot=debugplot) # apply 1d median filtering (along the spectral direction) # to remove bad pixels size_x = size_x_medfilt size_y = 1 slitlet2d_smooth = ndimage.filters.median_filter( slitlet2d, size=(size_y, size_x)) if debugplot % 10 != 0: ximshow(slitlet2d_smooth, title=sfilename + " [smoothed]" "\nslitlet=" + str(islitlet) + ", grism=" + grism + ", filter=" + spfilter + ", rotang=" + str(round(rotang, 2)), first_pixel=(sltlim.bb_nc1_orig, sltlim.bb_ns1_orig), debugplot=debugplot) # apply 1d Savitzky-Golay filter (along the spatial direction) # to compute first derivative slitlet2d_savgol = savgol_filter( slitlet2d_smooth, window_length=size_y_savgol, polyorder=2, deriv=1, axis=0) # compute basic statistics q25, q50, q75 = np.percentile(slitlet2d_savgol, q=[25.0, 50.0, 75.0]) sigmag = 0.7413 * (q75 - q25) # robust standard deviation if debugplot >= 10: print("q50, sigmag:", q50, sigmag) if debugplot % 10 != 0: ximshow(slitlet2d_savgol, title=sfilename + " [S.-G.filt.]" "\nslitlet=" + str(islitlet) + ", grism=" + grism + ", filter=" + spfilter + ", rotang=" + str(round(rotang, 2)), first_pixel=(sltlim.bb_nc1_orig, sltlim.bb_ns1_orig), z1z2=(q50-times_sigma_threshold*sigmag, q50+times_sigma_threshold*sigmag), debugplot=debugplot) # identify objects in slitlet2d_savgol: pixels with positive # derivatives are identify independently from pixels with # negative derivaties; then the two set of potential features # are merged; this approach avoids some problems when, in # nearby regions, there are pixels with positive and negative # derivatives (in those circumstances a single search as # np.logical_or( # slitlet2d_savgol < q50 - times_sigma_threshold * sigmag, # slitlet2d_savgol > q50 + times_sigma_threshold * sigmag) # led to erroneous detections!) # # search for positive derivatives labels2d_objects_pos, no_objects_pos = ndimage.label( slitlet2d_savgol > q50 + times_sigma_threshold * sigmag) # search for negative derivatives labels2d_objects_neg, no_objects_neg = ndimage.label( slitlet2d_savgol < q50 - times_sigma_threshold * sigmag) # merge both sets non_zero_neg = np.where(labels2d_objects_neg > 0) labels2d_objects = np.copy(labels2d_objects_pos) labels2d_objects[non_zero_neg] += \ labels2d_objects_neg[non_zero_neg] + no_objects_pos no_objects = no_objects_pos + no_objects_neg if debugplot >= 10: print("Number of objects with positive derivative:", no_objects_pos) print("Number of objects with negative derivative:", no_objects_neg) print("Total number of objects initially found...:", no_objects) if debugplot % 10 != 0: ximshow(labels2d_objects, z1z2=(0, no_objects), title=sfilename + " [objects]" "\nslitlet=" + str(islitlet) + ", grism=" + grism + ", filter=" + spfilter + ", rotang=" + str(round(rotang, 2)), first_pixel=(sltlim.bb_nc1_orig, sltlim.bb_ns1_orig), cbar_label="Object number", debugplot=debugplot) # select boundaries as the largest objects found with # positive and negative derivatives n_der_pos = 0 # number of pixels covered by the object with deriv > 0 i_der_pos = 0 # id of the object with deriv > 0 n_der_neg = 0 # number of pixels covered by the object with deriv < 0 i_der_neg = 0 # id of the object with deriv < 0 for i in range(1, no_objects+1): xy_tmp = np.where(labels2d_objects == i) n_pix = len(xy_tmp[0]) if i <= no_objects_pos: if n_pix > n_der_pos: i_der_pos = i n_der_pos = n_pix else: if n_pix > n_der_neg: i_der_neg = i n_der_neg = n_pix # determine which boundary is lower and which is upper y_center_mass_der_pos = ndimage.center_of_mass( slitlet2d_savgol, labels2d_objects, [i_der_pos])[0][0] y_center_mass_der_neg = ndimage.center_of_mass( slitlet2d_savgol, labels2d_objects, [i_der_neg])[0][0] if y_center_mass_der_pos < y_center_mass_der_neg: i_lower = i_der_pos i_upper = i_der_neg if debugplot >= 10: print("-> lower boundary has positive derivatives") else: i_lower = i_der_neg i_upper = i_der_pos if debugplot >= 10: print("-> lower boundary has negative derivatives") list_slices_ok = [i_lower, i_upper] # adjust individual boundaries passing the selection: # - select points in the image belonging to a given boundary # - compute weighted mean of the pixels of the boundary, column # by column (this reduces dramatically the number of points # to be fitted to determine the boundary) list_boundaries = [] for k in range(2): # k=0 lower boundary, k=1 upper boundary # select points to be fitted for a particular boundary # (note: be careful with array indices and pixel # coordinates) xy_tmp = np.where(labels2d_objects == list_slices_ok[k]) xmin = xy_tmp[1].min() # array indices (integers) xmax = xy_tmp[1].max() # array indices (integers) xfit = [] yfit = [] # fix range for fit if k == 0: xmineff = max(sltlim.xmin_lower_boundary_fit, xmin) xmaxeff = min(sltlim.xmax_lower_boundary_fit, xmax) else: xmineff = max(sltlim.xmin_upper_boundary_fit, xmin) xmaxeff = min(sltlim.xmax_upper_boundary_fit, xmax) # loop in columns of the image belonging to the boundary for xdum in range(xmineff, xmaxeff + 1): # array indices (integer) iok = np.where(xy_tmp[1] == xdum) y_tmp = xy_tmp[0][iok] + sltlim.bb_ns1_orig # image pixel weight = slitlet2d_savgol[xy_tmp[0][iok], xy_tmp[1][iok]] y_wmean = sum(y_tmp * weight) / sum(weight) xfit.append(xdum + sltlim.bb_nc1_orig) yfit.append(y_wmean) xfit = np.array(xfit) yfit = np.array(yfit) # declare new SpectrumTrail instance boundary = SpectrumTrail() # define new boundary boundary.fit(x=xfit, y=yfit, deg=sltlim.deg_boundary, times_sigma_reject=10, title="slit:" + str(sltlim.islitlet) + ", deg=" + str(sltlim.deg_boundary), debugplot=0) list_boundaries.append(boundary) if debugplot % 10 != 0: for tmp_img, tmp_label in zip( [slitlet2d_savgol, slitlet2d], [' [S.-G.filt.]', ' [original]'] ): ax = ximshow(tmp_img, title=sfilename + tmp_label + "\nslitlet=" + str(islitlet) + ", grism=" + grism + ", filter=" + spfilter + ", rotang=" + str(round(rotang, 2)), first_pixel=(sltlim.bb_nc1_orig, sltlim.bb_ns1_orig), show=False, debugplot=debugplot) for k in range(2): xpol, ypol = list_boundaries[k].linspace_pix( start=1, stop=EMIR_NAXIS1) ax.plot(xpol, ypol, 'b--', linewidth=1) for k in range(2): xpol, ypol = list_boundaries[k].linspace_pix() ax.plot(xpol, ypol, 'g--', linewidth=4) # show plot pause_debugplot(debugplot, pltshow=True) # update bounddict tmp_dict = { 'boundary_coef_lower': list_boundaries[0].poly_funct.coef.tolist(), 'boundary_xmin_lower': list_boundaries[0].xlower_line, 'boundary_xmax_lower': list_boundaries[0].xupper_line, 'boundary_coef_upper': list_boundaries[1].poly_funct.coef.tolist(), 'boundary_xmin_upper': list_boundaries[1].xlower_line, 'boundary_xmax_upper': list_boundaries[1].xupper_line, 'csu_bar_left': csu_config.csu_bar_left(islitlet), 'csu_bar_right': csu_config.csu_bar_right(islitlet), 'csu_bar_slit_center': csu_config.csu_bar_slit_center(islitlet), 'csu_bar_slit_width': csu_config.csu_bar_slit_width(islitlet), 'rotang': rotang, 'xdtu': dtu_config.xdtu, 'ydtu': dtu_config.ydtu, 'zdtu': dtu_config.zdtu, 'xdtu_0': dtu_config.xdtu_0, 'ydtu_0': dtu_config.ydtu_0, 'zdtu_0': dtu_config.zdtu_0, 'zzz_info1': os.getlogin() + '@' + socket.gethostname(), 'zzz_info2': datetime.now().isoformat() } slitlet_label = "slitlet" + str(islitlet).zfill(2) if slitlet_label not in bounddict['contents']: bounddict['contents'][slitlet_label] = {} bounddict['contents'][slitlet_label][date_obs] = tmp_dict if debugplot < 10: print("")
def compute_slitlet_boundaries(filename, grism, spfilter, list_slitlets, size_x_medfilt, size_y_savgol, times_sigma_threshold, bounddict, debugplot=0): """Compute slitlet boundaries using continuum lamp images. Parameters ---------- filename : string Input continumm lamp image. grism : string Grism name. It must be one in EMIR_VALID_GRISMS. spfilter : string Filter name. It must be one in EMIR_VALID_FILTERS. list_slitlets : list of integers Number of slitlets to be updated. size_x_medfilt : int Window in the X (spectral) direction, in pixels, to apply the 1d median filter in order to remove bad pixels. size_y_savgol : int Window in the Y (spatial) direction to be used when using the 1d Savitzky-Golay filter. times_sigma_threshold : float Times sigma to detect peaks in derivatives. bounddict : dictionary of dictionaries Structure to store the boundaries. debugplot : int Determines whether intermediate computations and/or plots are displayed. """ # read 2D image hdulist = fits.open(filename) image_header = hdulist[0].header image2d = hdulist[0].data naxis2, naxis1 = image2d.shape hdulist.close() if debugplot >= 10: print('>>> NAXIS1:', naxis1) print('>>> NAXIS2:', naxis2) # ToDo: replace this by application of cosmetic defect mask! for j in range(1024): image2d[1024, j] = (image2d[1023, j] + image2d[1025, j]) / 2 image2d[1023, j + 1024] = (image2d[1022, j + 1024] + image2d[1024, j + 1024]) / 2 # remove path from filename sfilename = os.path.basename(filename) # check that the FITS file has been obtained with EMIR instrument = image_header['instrume'] if instrument != 'EMIR': raise ValueError("INSTRUME keyword is not 'EMIR'!") # read CSU configuration from FITS header csu_config = CsuConfiguration.define_from_fits(filename) # read DTU configuration from FITS header dtu_config = DtuConfiguration.define_from_fits(filename) # read grism grism_in_header = image_header['grism'] if grism != grism_in_header: raise ValueError("GRISM keyword=" + grism_in_header + " is not the expected value=" + grism) # read filter spfilter_in_header = image_header['filter'] if spfilter != spfilter_in_header: raise ValueError("FILTER keyword=" + spfilter_in_header + " is not the expected value=" + spfilter) # read rotator position angle rotang = image_header['rotang'] # read date-obs date_obs = image_header['date-obs'] for islitlet in list_slitlets: if debugplot < 10: sys.stdout.write('.') sys.stdout.flush() sltlim = SlitletLimits(grism, spfilter, islitlet) # extract slitlet2d slitlet2d = extract_slitlet2d(image2d, sltlim) if debugplot % 10 != 0: ximshow(slitlet2d, title=sfilename + " [original]" "\nslitlet=" + str(islitlet) + ", grism=" + grism + ", filter=" + spfilter + ", rotang=" + str(round(rotang, 2)), first_pixel=(sltlim.bb_nc1_orig, sltlim.bb_ns1_orig), debugplot=debugplot) # apply 1d median filtering (along the spectral direction) # to remove bad pixels size_x = size_x_medfilt size_y = 1 slitlet2d_smooth = ndimage.filters.median_filter(slitlet2d, size=(size_y, size_x)) if debugplot % 10 != 0: ximshow(slitlet2d_smooth, title=sfilename + " [smoothed]" "\nslitlet=" + str(islitlet) + ", grism=" + grism + ", filter=" + spfilter + ", rotang=" + str(round(rotang, 2)), first_pixel=(sltlim.bb_nc1_orig, sltlim.bb_ns1_orig), debugplot=debugplot) # apply 1d Savitzky-Golay filter (along the spatial direction) # to compute first derivative slitlet2d_savgol = savgol_filter(slitlet2d_smooth, window_length=size_y_savgol, polyorder=2, deriv=1, axis=0) # compute basic statistics q25, q50, q75 = np.percentile(slitlet2d_savgol, q=[25.0, 50.0, 75.0]) sigmag = 0.7413 * (q75 - q25) # robust standard deviation if debugplot >= 10: print("q50, sigmag:", q50, sigmag) if debugplot % 10 != 0: ximshow(slitlet2d_savgol, title=sfilename + " [S.-G.filt.]" "\nslitlet=" + str(islitlet) + ", grism=" + grism + ", filter=" + spfilter + ", rotang=" + str(round(rotang, 2)), first_pixel=(sltlim.bb_nc1_orig, sltlim.bb_ns1_orig), z1z2=(q50 - times_sigma_threshold * sigmag, q50 + times_sigma_threshold * sigmag), debugplot=debugplot) # identify objects in slitlet2d_savgol: pixels with positive # derivatives are identify independently from pixels with # negative derivaties; then the two set of potential features # are merged; this approach avoids some problems when, in # nearby regions, there are pixels with positive and negative # derivatives (in those circumstances a single search as # np.logical_or( # slitlet2d_savgol < q50 - times_sigma_threshold * sigmag, # slitlet2d_savgol > q50 + times_sigma_threshold * sigmag) # led to erroneous detections!) # # search for positive derivatives labels2d_objects_pos, no_objects_pos = ndimage.label( slitlet2d_savgol > q50 + times_sigma_threshold * sigmag) # search for negative derivatives labels2d_objects_neg, no_objects_neg = ndimage.label( slitlet2d_savgol < q50 - times_sigma_threshold * sigmag) # merge both sets non_zero_neg = np.where(labels2d_objects_neg > 0) labels2d_objects = np.copy(labels2d_objects_pos) labels2d_objects[non_zero_neg] += \ labels2d_objects_neg[non_zero_neg] + no_objects_pos no_objects = no_objects_pos + no_objects_neg if debugplot >= 10: print("Number of objects with positive derivative:", no_objects_pos) print("Number of objects with negative derivative:", no_objects_neg) print("Total number of objects initially found...:", no_objects) if debugplot % 10 != 0: ximshow(labels2d_objects, z1z2=(0, no_objects), title=sfilename + " [objects]" "\nslitlet=" + str(islitlet) + ", grism=" + grism + ", filter=" + spfilter + ", rotang=" + str(round(rotang, 2)), first_pixel=(sltlim.bb_nc1_orig, sltlim.bb_ns1_orig), cbar_label="Object number", debugplot=debugplot) # select boundaries as the largest objects found with # positive and negative derivatives n_der_pos = 0 # number of pixels covered by the object with deriv > 0 i_der_pos = 0 # id of the object with deriv > 0 n_der_neg = 0 # number of pixels covered by the object with deriv < 0 i_der_neg = 0 # id of the object with deriv < 0 for i in range(1, no_objects + 1): xy_tmp = np.where(labels2d_objects == i) n_pix = len(xy_tmp[0]) if i <= no_objects_pos: if n_pix > n_der_pos: i_der_pos = i n_der_pos = n_pix else: if n_pix > n_der_neg: i_der_neg = i n_der_neg = n_pix # determine which boundary is lower and which is upper y_center_mass_der_pos = ndimage.center_of_mass(slitlet2d_savgol, labels2d_objects, [i_der_pos])[0][0] y_center_mass_der_neg = ndimage.center_of_mass(slitlet2d_savgol, labels2d_objects, [i_der_neg])[0][0] if y_center_mass_der_pos < y_center_mass_der_neg: i_lower = i_der_pos i_upper = i_der_neg if debugplot >= 10: print("-> lower boundary has positive derivatives") else: i_lower = i_der_neg i_upper = i_der_pos if debugplot >= 10: print("-> lower boundary has negative derivatives") list_slices_ok = [i_lower, i_upper] # adjust individual boundaries passing the selection: # - select points in the image belonging to a given boundary # - compute weighted mean of the pixels of the boundary, column # by column (this reduces dramatically the number of points # to be fitted to determine the boundary) list_boundaries = [] for k in range(2): # k=0 lower boundary, k=1 upper boundary # select points to be fitted for a particular boundary # (note: be careful with array indices and pixel # coordinates) xy_tmp = np.where(labels2d_objects == list_slices_ok[k]) xmin = xy_tmp[1].min() # array indices (integers) xmax = xy_tmp[1].max() # array indices (integers) xfit = [] yfit = [] # fix range for fit if k == 0: xmineff = max(sltlim.xmin_lower_boundary_fit, xmin) xmaxeff = min(sltlim.xmax_lower_boundary_fit, xmax) else: xmineff = max(sltlim.xmin_upper_boundary_fit, xmin) xmaxeff = min(sltlim.xmax_upper_boundary_fit, xmax) # loop in columns of the image belonging to the boundary for xdum in range(xmineff, xmaxeff + 1): # array indices (integer) iok = np.where(xy_tmp[1] == xdum) y_tmp = xy_tmp[0][iok] + sltlim.bb_ns1_orig # image pixel weight = slitlet2d_savgol[xy_tmp[0][iok], xy_tmp[1][iok]] y_wmean = sum(y_tmp * weight) / sum(weight) xfit.append(xdum + sltlim.bb_nc1_orig) yfit.append(y_wmean) xfit = np.array(xfit) yfit = np.array(yfit) # declare new SpectrumTrail instance boundary = SpectrumTrail() # define new boundary boundary.fit(x=xfit, y=yfit, deg=sltlim.deg_boundary, times_sigma_reject=10, title="slit:" + str(sltlim.islitlet) + ", deg=" + str(sltlim.deg_boundary), debugplot=0) list_boundaries.append(boundary) if debugplot % 10 != 0: for tmp_img, tmp_label in zip([slitlet2d_savgol, slitlet2d], [' [S.-G.filt.]', ' [original]']): ax = ximshow(tmp_img, title=sfilename + tmp_label + "\nslitlet=" + str(islitlet) + ", grism=" + grism + ", filter=" + spfilter + ", rotang=" + str(round(rotang, 2)), first_pixel=(sltlim.bb_nc1_orig, sltlim.bb_ns1_orig), show=False, debugplot=debugplot) for k in range(2): xpol, ypol = list_boundaries[k].linspace_pix( start=1, stop=EMIR_NAXIS1) ax.plot(xpol, ypol, 'b--', linewidth=1) for k in range(2): xpol, ypol = list_boundaries[k].linspace_pix() ax.plot(xpol, ypol, 'g--', linewidth=4) # show plot pause_debugplot(debugplot, pltshow=True) # update bounddict tmp_dict = { 'boundary_coef_lower': list_boundaries[0].poly_funct.coef.tolist(), 'boundary_xmin_lower': list_boundaries[0].xlower_line, 'boundary_xmax_lower': list_boundaries[0].xupper_line, 'boundary_coef_upper': list_boundaries[1].poly_funct.coef.tolist(), 'boundary_xmin_upper': list_boundaries[1].xlower_line, 'boundary_xmax_upper': list_boundaries[1].xupper_line, 'csu_bar_left': csu_config.csu_bar_left(islitlet), 'csu_bar_right': csu_config.csu_bar_right(islitlet), 'csu_bar_slit_center': csu_config.csu_bar_slit_center(islitlet), 'csu_bar_slit_width': csu_config.csu_bar_slit_width(islitlet), 'rotang': rotang, 'xdtu': dtu_config.xdtu, 'ydtu': dtu_config.ydtu, 'zdtu': dtu_config.zdtu, 'xdtu_0': dtu_config.xdtu_0, 'ydtu_0': dtu_config.ydtu_0, 'zdtu_0': dtu_config.zdtu_0, 'zzz_info1': os.getlogin() + '@' + socket.gethostname(), 'zzz_info2': datetime.now().isoformat() } slitlet_label = "slitlet" + str(islitlet).zfill(2) if slitlet_label not in bounddict['contents']: bounddict['contents'][slitlet_label] = {} bounddict['contents'][slitlet_label][date_obs] = tmp_dict if debugplot < 10: print("")
def main(args=None): # parse command-line options parser = argparse.ArgumentParser( description='description: compute pixel-to-pixel flatfield' ) # required arguments parser.add_argument("fitsfile", help="Input FITS file (flat ON-OFF)", type=argparse.FileType('rb')) parser.add_argument("--rectwv_coeff", required=True, help="Input JSON file with rectification and " "wavelength calibration coefficients", type=argparse.FileType('rt')) parser.add_argument("--minimum_slitlet_width_mm", required=True, help="Minimum slitlet width in mm", type=float) parser.add_argument("--maximum_slitlet_width_mm", required=True, help="Maximum slitlet width in mm", type=float) parser.add_argument("--minimum_fraction", required=True, help="Minimum allowed flatfielding value", type=float, default=0.01) parser.add_argument("--minimum_value_in_output", help="Minimum value allowed in output file: pixels " "below this value are set to 1.0 (default=0.01)", type=float, default=0.01) parser.add_argument("--maximum_value_in_output", help="Maximum value allowed in output file: pixels " "above this value are set to 1.0 (default=10.0)", type=float, default=10.0) parser.add_argument("--nwindow_median", help="Window size to smooth median spectrum in the " "spectral direction", type=int) parser.add_argument("--outfile", required=True, help="Output FITS file", type=lambda x: arg_file_is_new(parser, x, mode='wb')) # optional arguments parser.add_argument("--delta_global_integer_offset_x_pix", help="Delta global integer offset in the X direction " "(default=0)", default=0, type=int) parser.add_argument("--delta_global_integer_offset_y_pix", help="Delta global integer offset in the Y direction " "(default=0)", default=0, type=int) parser.add_argument("--resampling", help="Resampling method: 1 -> nearest neighbor, " "2 -> linear interpolation (default)", default=2, type=int, choices=(1, 2)) parser.add_argument("--ignore_DTUconf", help="Ignore DTU configurations differences between " "model and input image", action="store_true") parser.add_argument("--debugplot", help="Integer indicating plotting & debugging options" " (default=0)", default=0, type=int, choices=DEBUGPLOT_CODES) parser.add_argument("--echo", help="Display full command line", action="store_true") args = parser.parse_args(args) if args.echo: print('\033[1m\033[31m% ' + ' '.join(sys.argv) + '\033[0m\n') # This code is obsolete raise ValueError('This code is obsolete: use recipe in ' 'emirdrp/recipes/spec/flatpix2pix.py') # read calibration structure from JSON file rectwv_coeff = RectWaveCoeff._datatype_load(args.rectwv_coeff.name) # modify (when requested) global offsets rectwv_coeff.global_integer_offset_x_pix += \ args.delta_global_integer_offset_x_pix rectwv_coeff.global_integer_offset_y_pix += \ args.delta_global_integer_offset_y_pix # read FITS image and its corresponding header hdulist = fits.open(args.fitsfile) header = hdulist[0].header image2d = hdulist[0].data hdulist.close() # apply global offsets image2d = apply_integer_offsets( image2d=image2d, offx=rectwv_coeff.global_integer_offset_x_pix, offy=rectwv_coeff.global_integer_offset_y_pix ) # protections naxis2, naxis1 = image2d.shape if naxis1 != header['naxis1'] or naxis2 != header['naxis2']: print('>>> NAXIS1:', naxis1) print('>>> NAXIS2:', naxis2) raise ValueError('Something is wrong with NAXIS1 and/or NAXIS2') if abs(args.debugplot) >= 10: print('>>> NAXIS1:', naxis1) print('>>> NAXIS2:', naxis2) # check that the input FITS file grism and filter match filter_name = header['filter'] if filter_name != rectwv_coeff.tags['filter']: raise ValueError("Filter name does not match!") grism_name = header['grism'] if grism_name != rectwv_coeff.tags['grism']: raise ValueError("Filter name does not match!") if abs(args.debugplot) >= 10: print('>>> grism.......:', grism_name) print('>>> filter......:', filter_name) # check that the DTU configurations are compatible dtu_conf_fitsfile = DtuConfiguration.define_from_fits(args.fitsfile) dtu_conf_jsonfile = DtuConfiguration.define_from_dictionary( rectwv_coeff.meta_info['dtu_configuration']) if dtu_conf_fitsfile != dtu_conf_jsonfile: print('DTU configuration (FITS file):\n\t', dtu_conf_fitsfile) print('DTU configuration (JSON file):\n\t', dtu_conf_jsonfile) if args.ignore_DTUconf: print('WARNING: DTU configuration differences found!') else: raise ValueError('DTU configurations do not match') else: if abs(args.debugplot) >= 10: print('>>> DTU Configuration match!') print(dtu_conf_fitsfile) # load CSU configuration csu_conf_fitsfile = CsuConfiguration.define_from_fits(args.fitsfile) if abs(args.debugplot) >= 10: print(csu_conf_fitsfile) # valid slitlet numbers list_valid_islitlets = list(range(1, EMIR_NBARS + 1)) for idel in rectwv_coeff.missing_slitlets: print('-> Removing slitlet (not defined):', idel) list_valid_islitlets.remove(idel) # filter out slitlets with widths outside valid range list_outside_valid_width = [] for islitlet in list_valid_islitlets: slitwidth = csu_conf_fitsfile.csu_bar_slit_width(islitlet) if (slitwidth < args.minimum_slitlet_width_mm) or \ (slitwidth > args.maximum_slitlet_width_mm): list_outside_valid_width.append(islitlet) print('-> Removing slitlet (invalid width):', islitlet) if len(list_outside_valid_width) > 0: for idel in list_outside_valid_width: list_valid_islitlets.remove(idel) print('>>> valid slitlet numbers:\n', list_valid_islitlets) # --- # compute and store median spectrum (and masked region) for each # individual slitlet image2d_sp_median = np.zeros((EMIR_NBARS, EMIR_NAXIS1)) image2d_sp_mask = np.zeros((EMIR_NBARS, EMIR_NAXIS1), dtype=bool) for islitlet in list(range(1, EMIR_NBARS + 1)): if islitlet in list_valid_islitlets: if args.debugplot == 0: islitlet_progress(islitlet, EMIR_NBARS, ignore=False) # define Slitlet2D object slt = Slitlet2D(islitlet=islitlet, rectwv_coeff=rectwv_coeff, debugplot=args.debugplot) if abs(args.debugplot) >= 10: print(slt) # extract (distorted) slitlet from the initial image slitlet2d = slt.extract_slitlet2d( image_2k2k=image2d, subtitle='original image' ) # rectify slitlet slitlet2d_rect = slt.rectify( slitlet2d=slitlet2d, resampling=args.resampling, subtitle='original rectified' ) naxis2_slitlet2d, naxis1_slitlet2d = slitlet2d_rect.shape if naxis1_slitlet2d != EMIR_NAXIS1: print('naxis1_slitlet2d: ', naxis1_slitlet2d) print('EMIR_NAXIS1.....: ', EMIR_NAXIS1) raise ValueError("Unexpected naxis1_slitlet2d") sp_mask = np.zeros(naxis1_slitlet2d, dtype=bool) # for grism LR set to zero data beyond useful wavelength range if grism_name == 'LR': wv_parameters = set_wv_parameters(filter_name, grism_name) x_pix = np.arange(1, naxis1_slitlet2d + 1) wl_pix = polyval(x_pix, slt.wpoly) lremove = wl_pix < wv_parameters['wvmin_useful'] sp_mask[lremove] = True slitlet2d_rect[:, lremove] = 0.0 lremove = wl_pix > wv_parameters['wvmax_useful'] slitlet2d_rect[:, lremove] = 0.0 sp_mask[lremove] = True # get useful slitlet region (use boundaries instead of frontiers; # note that the nscan_minmax_frontiers() works well independently # of using frontiers of boundaries as arguments) nscan_min, nscan_max = nscan_minmax_frontiers( slt.y0_reference_lower, slt.y0_reference_upper, resize=False ) ii1 = nscan_min - slt.bb_ns1_orig ii2 = nscan_max - slt.bb_ns1_orig + 1 # median spectrum sp_collapsed = np.median(slitlet2d_rect[ii1:(ii2 + 1), :], axis=0) # smooth median spectrum along the spectral direction sp_median = ndimage.median_filter( sp_collapsed, args.nwindow_median, mode='nearest' ) """ nremove = 5 spl = AdaptiveLSQUnivariateSpline( x=xaxis1[nremove:-nremove], y=sp_collapsed[nremove:-nremove], t=11, adaptive=True ) xknots = spl.get_knots() yknots = spl(xknots) sp_median = spl(xaxis1) # compute rms within each knot interval nknots = len(xknots) rms_array = np.zeros(nknots - 1, dtype=float) for iknot in range(nknots - 1): residuals = [] for xdum, ydum, yydum in \ zip(xaxis1, sp_collapsed, sp_median): if xknots[iknot] <= xdum <= xknots[iknot + 1]: residuals.append(abs(ydum - yydum)) if len(residuals) > 5: rms_array[iknot] = np.std(residuals) else: rms_array[iknot] = 0 # determine in which knot interval falls each pixel iknot_array = np.zeros(len(xaxis1), dtype=int) for idum, xdum in enumerate(xaxis1): for iknot in range(nknots - 1): if xknots[iknot] <= xdum <= xknots[iknot + 1]: iknot_array[idum] = iknot # compute new fit removing deviant points (with fixed knots) xnewfit = [] ynewfit = [] for idum in range(len(xaxis1)): delta_sp = abs(sp_collapsed[idum] - sp_median[idum]) rms_tmp = rms_array[iknot_array[idum]] if idum == 0 or idum == (len(xaxis1) - 1): lok = True elif rms_tmp > 0: if delta_sp < 3.0 * rms_tmp: lok = True else: lok = False else: lok = True if lok: xnewfit.append(xaxis1[idum]) ynewfit.append(sp_collapsed[idum]) nremove = 5 splnew = AdaptiveLSQUnivariateSpline( x=xnewfit[nremove:-nremove], y=ynewfit[nremove:-nremove], t=xknots[1:-1], adaptive=False ) sp_median = splnew(xaxis1) """ ymax_spmedian = sp_median.max() y_threshold = ymax_spmedian * args.minimum_fraction lremove = np.where(sp_median < y_threshold) sp_median[lremove] = 0.0 sp_mask[lremove] = True image2d_sp_median[islitlet - 1, :] = sp_median image2d_sp_mask[islitlet - 1, :] = sp_mask if abs(args.debugplot) % 10 != 0: xaxis1 = np.arange(1, naxis1_slitlet2d + 1) title = 'Slitlet#' + str(islitlet) + ' (median spectrum)' ax = ximplotxy(xaxis1, sp_collapsed, title=title, show=False, **{'label' : 'collapsed spectrum'}) ax.plot(xaxis1, sp_median, label='fitted spectrum') ax.plot([1, naxis1_slitlet2d], 2*[y_threshold], label='threshold') # ax.plot(xknots, yknots, 'o', label='knots') ax.legend() ax.set_ylim(-0.05*ymax_spmedian, 1.05*ymax_spmedian) pause_debugplot(args.debugplot, pltshow=True, tight_layout=True) else: if args.debugplot == 0: islitlet_progress(islitlet, EMIR_NBARS, ignore=True) # ToDo: compute "average" spectrum for each pseudo-longslit, scaling # with the median signal in each slitlet; derive a particular # spectrum for each slitlet (scaling properly) image2d_sp_median_masked = np.ma.masked_array( image2d_sp_median, mask=image2d_sp_mask ) ycut_median = np.ma.median(image2d_sp_median_masked, axis=1).data ycut_median_2d = np.repeat(ycut_median, EMIR_NAXIS1).reshape( EMIR_NBARS, EMIR_NAXIS1) image2d_sp_median_eq = image2d_sp_median_masked / ycut_median_2d image2d_sp_median_eq = image2d_sp_median_eq.data if True: ximshow(image2d_sp_median, title='sp_median', debugplot=12) ximplotxy(np.arange(1, EMIR_NBARS + 1), ycut_median, 'ro', title='median value of each spectrum', debugplot=12) ximshow(image2d_sp_median_eq, title='sp_median_eq', debugplot=12) csu_conf_fitsfile.display_pseudo_longslits( list_valid_slitlets=list_valid_islitlets) dict_longslits = csu_conf_fitsfile.pseudo_longslits() # compute median spectrum for each longslit and insert (properly # scaled) that spectrum in each slitlet belonging to that longslit image2d_sp_median_longslit = np.zeros((EMIR_NBARS, EMIR_NAXIS1)) islitlet = 1 loop = True while loop: if islitlet in list_valid_islitlets: imin = dict_longslits[islitlet].imin() imax = dict_longslits[islitlet].imax() print('--> imin, imax: ', imin, imax) sp_median_longslit = np.median( image2d_sp_median_eq[(imin - 1):imax, :], axis=0) for i in range(imin, imax+1): print('----> i: ', i) image2d_sp_median_longslit[(i - 1), :] = \ sp_median_longslit * ycut_median[i - 1] islitlet = imax else: print('--> ignoring: ', islitlet) if islitlet == EMIR_NBARS: loop = False else: islitlet += 1 if True: ximshow(image2d_sp_median_longslit, debugplot=12) # initialize rectified image image2d_flatfielded = np.zeros((EMIR_NAXIS2, EMIR_NAXIS1)) # main loop for islitlet in list(range(1, EMIR_NBARS + 1)): if islitlet in list_valid_islitlets: if args.debugplot == 0: islitlet_progress(islitlet, EMIR_NBARS, ignore=False) # define Slitlet2D object slt = Slitlet2D(islitlet=islitlet, rectwv_coeff=rectwv_coeff, debugplot=args.debugplot) # extract (distorted) slitlet from the initial image slitlet2d = slt.extract_slitlet2d( image_2k2k=image2d, subtitle='original image' ) # rectify slitlet slitlet2d_rect = slt.rectify( slitlet2d=slitlet2d, resampling=args.resampling, subtitle='original rectified' ) naxis2_slitlet2d, naxis1_slitlet2d = slitlet2d_rect.shape sp_median = image2d_sp_median_longslit[islitlet - 1, :] # generate rectified slitlet region filled with the median spectrum slitlet2d_rect_spmedian = np.tile(sp_median, (naxis2_slitlet2d, 1)) if abs(args.debugplot) > 10: slt.ximshow_rectified( slitlet2d_rect=slitlet2d_rect_spmedian, subtitle='rectified, filled with median spectrum' ) # unrectified image slitlet2d_unrect_spmedian = slt.rectify( slitlet2d=slitlet2d_rect_spmedian, resampling=args.resampling, inverse=True, subtitle='unrectified, filled with median spectrum' ) # normalize initial slitlet image (avoid division by zero) slitlet2d_norm = np.zeros_like(slitlet2d) for j in range(naxis1_slitlet2d): for i in range(naxis2_slitlet2d): den = slitlet2d_unrect_spmedian[i, j] if den == 0: slitlet2d_norm[i, j] = 1.0 else: slitlet2d_norm[i, j] = slitlet2d[i, j] / den if abs(args.debugplot) > 10: slt.ximshow_unrectified( slitlet2d=slitlet2d_norm, subtitle='unrectified, pixel-to-pixel' ) # check for pseudo-longslit with previous slitlet if islitlet > 1: if (islitlet - 1) in list_valid_islitlets: c1 = csu_conf_fitsfile.csu_bar_slit_center(islitlet - 1) w1 = csu_conf_fitsfile.csu_bar_slit_width(islitlet - 1) c2 = csu_conf_fitsfile.csu_bar_slit_center(islitlet) w2 = csu_conf_fitsfile.csu_bar_slit_width(islitlet) if abs(w1-w2)/w1 < 0.25: wmean = (w1 + w2) / 2.0 if abs(c1 - c2) < wmean/4.0: same_slitlet_below = True else: same_slitlet_below = False else: same_slitlet_below = False else: same_slitlet_below = False else: same_slitlet_below = False # check for pseudo-longslit with next slitlet if islitlet < EMIR_NBARS: if (islitlet + 1) in list_valid_islitlets: c1 = csu_conf_fitsfile.csu_bar_slit_center(islitlet) w1 = csu_conf_fitsfile.csu_bar_slit_width(islitlet) c2 = csu_conf_fitsfile.csu_bar_slit_center(islitlet + 1) w2 = csu_conf_fitsfile.csu_bar_slit_width(islitlet + 1) if abs(w1-w2)/w1 < 0.25: wmean = (w1 + w2) / 2.0 if abs(c1 - c2) < wmean/4.0: same_slitlet_above = True else: same_slitlet_above = False else: same_slitlet_above = False else: same_slitlet_above = False else: same_slitlet_above = False for j in range(EMIR_NAXIS1): xchannel = j + 1 y0_lower = slt.list_frontiers[0](xchannel) y0_upper = slt.list_frontiers[1](xchannel) n1, n2 = nscan_minmax_frontiers(y0_frontier_lower=y0_lower, y0_frontier_upper=y0_upper, resize=True) # note that n1 and n2 are scans (ranging from 1 to NAXIS2) nn1 = n1 - slt.bb_ns1_orig + 1 nn2 = n2 - slt.bb_ns1_orig + 1 image2d_flatfielded[(n1 - 1):n2, j] = \ slitlet2d_norm[(nn1 - 1):nn2, j] # force to 1.0 region around frontiers if not same_slitlet_below: image2d_flatfielded[(n1 - 1):(n1 + 2), j] = 1 if not same_slitlet_above: image2d_flatfielded[(n2 - 5):n2, j] = 1 else: if args.debugplot == 0: islitlet_progress(islitlet, EMIR_NBARS, ignore=True) if args.debugplot == 0: print('OK!') # restore global offsets image2d_flatfielded = apply_integer_offsets( image2d=image2d_flatfielded , offx=-rectwv_coeff.global_integer_offset_x_pix, offy=-rectwv_coeff.global_integer_offset_y_pix ) # set pixels below minimum value to 1.0 filtered = np.where(image2d_flatfielded < args.minimum_value_in_output) image2d_flatfielded[filtered] = 1.0 # set pixels above maximum value to 1.0 filtered = np.where(image2d_flatfielded > args.maximum_value_in_output) image2d_flatfielded[filtered] = 1.0 # save output file save_ndarray_to_fits( array=image2d_flatfielded, file_name=args.outfile, main_header=header, overwrite=True ) print('>>> Saving file ' + args.outfile.name)
def median_slitlets_rectified( input_image, mode=0, minimum_slitlet_width_mm=EMIR_MINIMUM_SLITLET_WIDTH_MM, maximum_slitlet_width_mm=EMIR_MAXIMUM_SLITLET_WIDTH_MM, debugplot=0 ): """Compute median spectrum for each slitlet. Parameters ---------- input_image : HDUList object Input 2D image. mode : int Indicate desired result: 0 : image with the same size as the input image, with the median spectrum of each slitlet spanning all the spectra of the corresponding slitlet 1 : image with 55 spectra, containing the median spectra of each slitlet 2 : single collapsed median spectrum, using exclusively the useful slitlets from the input image minimum_slitlet_width_mm : float Minimum slitlet width (mm) for a valid slitlet. maximum_slitlet_width_mm : float Maximum slitlet width (mm) for a valid slitlet. debugplot : int Determines whether intermediate computations and/or plots are displayed. The valid codes are defined in numina.array.display.pause_debugplot. Returns ------- image_median : HDUList object Output image. """ image_header = input_image[0].header image2d = input_image[0].data # check image dimensions naxis2_expected = EMIR_NBARS * EMIR_NPIXPERSLIT_RECTIFIED naxis2, naxis1 = image2d.shape if naxis2 != naxis2_expected: raise ValueError("NAXIS2={0} should be {1}".format( naxis2, naxis2_expected )) # check that the FITS file has been obtained with EMIR instrument = image_header['instrume'] if instrument != 'EMIR': raise ValueError("INSTRUME keyword is not 'EMIR'!") # initialize output image if mode == 0: image2d_median = np.zeros((naxis2, naxis1)) else: image2d_median = np.zeros((EMIR_NBARS, naxis1)) # main loop for i in range(EMIR_NBARS): ns1 = i * EMIR_NPIXPERSLIT_RECTIFIED + 1 ns2 = ns1 + EMIR_NPIXPERSLIT_RECTIFIED - 1 sp_median = np.median(image2d[(ns1-1):ns2, :], axis=0) if mode == 0: image2d_median[(ns1-1):ns2, :] = np.tile( sp_median, (EMIR_NPIXPERSLIT_RECTIFIED, 1) ) else: image2d_median[i] = np.copy(sp_median) if mode == 2: # get CSU configuration from FITS header csu_config = CsuConfiguration.define_from_header(image_header) # define wavelength calibration parameters crpix1 = image_header['crpix1'] crval1 = image_header['crval1'] cdelt1 = image_header['cdelt1'] # segregate slitlets list_useful_slitlets = csu_config.widths_in_range_mm( minwidth=minimum_slitlet_width_mm, maxwidth=maximum_slitlet_width_mm ) list_not_useful_slitlets = [i for i in list(range(1, EMIR_NBARS + 1)) if i not in list_useful_slitlets] if abs(debugplot) != 0: print('>>> list_useful_slitlets....:', list_useful_slitlets) print('>>> list_not_useful_slitlets:', list_not_useful_slitlets) # define mask from array data mask2d, borders = define_mask_borders(image2d_median, sought_value=0) if abs(debugplot) % 10 != 0: ximshow(mask2d.astype(int), z1z2=(-.2, 1.2), crpix1=crpix1, crval1=crval1, cdelt1=cdelt1, debugplot=debugplot) # update mask with unused slitlets for islitlet in list_not_useful_slitlets: mask2d[islitlet - 1, :] = np.array([True] * naxis1) if abs(debugplot) % 10 != 0: ximshow(mask2d.astype(int), z1z2=(-.2, 1.2), crpix1=crpix1, crval1=crval1, cdelt1=cdelt1, debugplot=debugplot) # useful image pixels image2d_masked = image2d_median * (1 - mask2d.astype(int)) if abs(debugplot) % 10 != 0: ximshow(image2d_masked, crpix1=crpix1, crval1=crval1, cdelt1=cdelt1, debugplot=debugplot) # masked image image2d_masked = np.ma.masked_array(image2d_median, mask=mask2d) # median spectrum image1d_median = np.ma.median(image2d_masked, axis=0).data image_median = fits.PrimaryHDU(data=image1d_median, header=image_header) else: image_median = fits.PrimaryHDU(data=image2d_median, header=image_header) return fits.HDUList([image_median])