예제 #1
0
    def run(self, img: ndarray, road_ellipse: Ellipse,
            angle: float) -> ndarray:
        x_center = int(img.shape[1] / 2)

        if angle > 0:
            img_debug = cv2.arrowedLine(
                img.copy(),
                pt1=(x_center, 50),
                pt2=(int(x_center + (20 * math.sin(angle * math.pi / 2))),
                     int(50 - (20 * math.cos(angle * math.pi / 2)))),
                color=(255, 20, 100),
                thickness=3,
                tipLength=0.5)
        else:
            img_debug = cv2.arrowedLine(
                img.copy(),
                pt1=(x_center, 50),
                pt2=(int(x_center - (20 * math.sin(-1 * angle * math.pi / 2))),
                     int(50 - (20 * math.cos(angle * math.pi / 2)))),
                color=(255, 20, 100),
                thickness=3,
                tipLength=0.5)
        if not road_ellipse:
            return img

        if road_ellipse.axes:
            reduced_axes = (int(road_ellipse.axes[0] / 5),
                            int(road_ellipse.axes[1] / 5))
        else:
            reduced_axes = (1, 1)
        green = int(road_ellipse.trust * 255)
        red = 255 - int(road_ellipse.trust * 255)
        img_debug = cv2.ellipse(img_debug,
                                center=road_ellipse.center,
                                axes=reduced_axes,
                                angle=road_ellipse.angle,
                                startAngle=0,
                                endAngle=360,
                                color=(20, green, red),
                                thickness=2)
        img_debug = cv2.circle(img_debug,
                               center=road_ellipse.center,
                               radius=5,
                               color=(255, 0, 0))
        img_debug = cv2.putText(img=img_debug,
                                text='{0:.2f}'.format(angle),
                                org=(10, 10),
                                fontFace=cv2.FONT_HERSHEY_PLAIN,
                                fontScale=1,
                                color=(255, 255, 255))
        return img_debug
예제 #2
0
def lasso_hetero_gs(X: ndarray, y: ndarray, lam: ndarray, w_init: ndarray, tol: float,
                    verbose: bool=False) -> ndarray:
    n, m = X.shape
    scaler = np.sqrt(np.sum(X ** 2, axis=0))
    X = X / scaler
    w = w_init.copy()

    if m == 0:
        return w

    def subgradient(w, r):
        return -r @ X + lam * np.sign(w)

    r = 0
    for t in count():
        if t % 100 == 0:
            r = y - X @ w

        sg = subgradient(w, r)
        eff_lam = lam * (w == 0)
        abs_g = abs(soft_threshold(sg, eff_lam))
        i = np.argmax(abs_g)

        if verbose:
            print("lasso_hetero_gs: step: {}\tgrad: {}".format(t, abs_g[i]))
            if t % 100 == 99:
                import pdb
                pdb.set_trace()
        if abs_g[i] / np.fabs(w) < tol:
            break

        w_i_new = soft_threshold(w[i] + X[:, i] @ r, lam[i])
        r += (w[i] - w_i_new) * X[:, i]
        w[i] = w_i_new
    return w * scaler
예제 #3
0
def normalize(img: ndarray, by="area", dtype=np.float64) -> ndarray:
    """Get a normalized copy of an ndarray, e.g. an image or kernel.
    The returned array will be a float.

    Args:
        img: Input ndarray.

        by : Used normalization method. Available methods are:\n
            * 'area': normalize to sum one
            * 'peak': normalize to maximum value
            * 'l2': normalize by L2 norm of the array

        dtype : Output dtype. Either np.float16, np.float32 or np.float64.
                If input is float, output will be of same word size.

    Returns:
        Normalized array of same shape as input array.

    See Also:
        Based on :func:`normalize_in_place()`.

    """
    if img.dtype not in [np.float16, np.float32, np.float64]:
        d_type = dtype
    else:
        d_type = img.dtype

    res = img.copy().astype(d_type)
    normalize_in_place(res, by=by)

    return res
예제 #4
0
def denoise_image_huber(img: ndarray,
                        n_iter: int,
                        w_lambda: Union[ndarray, float] = 0.5) -> ndarray:
    """Primal-dual algorithm for minimization of TV-Huber-norm-L1-functional.
    Algotirhm is based on [R1]_.

    Discrete functional:

    - TV_Huber-L1: min_x( ||_nabla x||_h + lambda*||x - f||_1 )

    Args:
        img:
            Input image.

        n_iter:
            Number of iterations

        w_lambda:
            Weight factor of data term. Pixel-wise weight is possible.

    Returns:
        The filtered image of the same shape as the input image.

    """
    L2 = 8.0
    alpha = 0.05
    gamma = 5
    delta = alpha

    mu = 2 * np.sqrt(gamma * delta) / np.sqrt(L2)
    tau = mu / 2 / gamma
    theta = 1 / (1 + mu)
    sigma = mu / 2 / delta

    # Iterative primal-dual algorithm
    u = img.copy()
    y = _nabla(u)
    for i in range(n_iter):
        # Optimize dual variable ( prox_f ) TV
        y = y + sigma * _nabla(u)

        # Projection (TV with huber norm)
        y = _prox_tv(y, 1 + sigma * alpha) / (1 + sigma * alpha)

        # Optimize primal variable ( prox_g )
        u_new = u - tau * _nablaT(y)

        # l1-norm (shrink)
        u_new = _prox_l1(u_new, img, w_lambda * tau)

        # Extrapolate
        u = u_new + theta * (u_new - u)

        # Break if max accuracy reached
        # if (np.abs(u[:]-u_new[:])).sum() < tol:
        #     print(i)
        #     break

    return u
예제 #5
0
    def _apply_horizon(self, img: ndarray):
        horizon = int(img.shape[0] * self._config.horizon)
        if horizon < 1:
            return img.copy(), img.copy()

        img_horizon = cv2.rectangle(img=img.copy(),
                                    pt1=(0, 0),
                                    pt2=(img.shape[1], horizon - 1),
                                    thickness=cv2.FILLED,
                                    color=(0, ))
        img_debug = cv2.cvtColor(img.copy(), cv2.COLOR_GRAY2RGB)
        img_debug = cv2.line(img=img_debug,
                             pt1=(0, horizon - 1),
                             pt2=(img.shape[1], horizon - 1),
                             thickness=2,
                             color=(0, 0, 250))
        return img_horizon, img_debug
예제 #6
0
def add_visual_box(img_orig: ndarray, left: int, top: int, right: int,
                   bottom: int):
    img = img_orig.copy()
    max_value = np.max(img)
    img[top:bottom + 2, left:left + 3, :] = max_value  # left
    img[top:bottom + 2, right - 1:right + 2, :] = max_value  # right
    img[top:top + 3, left:right + 2, :] = max_value  # top
    img[bottom - 1:bottom + 2, left:right + 2, :] = max_value  # bottom
    return img
예제 #7
0
def denoise_image_tvl1(img: ndarray,
                       n_iter: int,
                       w_lambda: Union[ndarray, float] = 0.5) -> ndarray:
    """Primal-dual algorithm for minimization of TV-L1-functional.
    Algotirhm is based on [R1]_.

    Discrete functional:

    - TV-L1: min_x( ||_nabla x||_1 + lambda*||x - f||_1 )

    Args:
        img:
            Input image.

        n_iter:
            Number of iterations

        w_lambda:
            Weight factor of data term. Pixel-wise weight is possible.

    Returns:
        The filtered image of the same shape as the input image.

    """

    u = img.copy()
    y = _nabla(u)

    L2 = 8.0
    tau = 0.02
    sigma = 1.0 / (L2 * tau)
    theta = 1.0

    # Iterative primal-dual algorithm
    for i in range(n_iter):
        # Calculate gradient
        u_grad = _nabla(u)

        # Optimize dual variable ( prox_f ) TV
        y = y + sigma * u_grad
        # Projection
        y = _prox_tv(y)

        # Optimize primal variable ( prox_g )
        u_new = u - tau * _nablaT(y)
        # l1-norm (shrink) (TV-l1 denoising)
        u_new = _prox_l1(u_new, img, w_lambda * tau)

        # Extrapolate
        u = u_new + theta * (u_new - u)

        # Break if max accuracy reached
        # if (np.abs(u[:]-u_new[:])).sum() < tol:
        #     print(i)
        #     break

    return u
예제 #8
0
 def draw_image_debug(self, centroid: Centroid, img_gray: ndarray,
                      shape: Shape, value: int) -> ndarray:
     img_debug = cv2.cvtColor(img_gray.copy(), cv2.COLOR_GRAY2RGB)
     font = cv2.FONT_HERSHEY_SIMPLEX
     cv2.putText(img_debug, str(value), (20, 20), font, 1, (255, 255, 255),
                 1, cv2.LINE_AA)
     cv2.circle(img_debug, centroid, 3, (0, 100, 100), 1)
     cv2.drawContours(img_debug, shape, -1, (240, 40, 100), 1)
     self._video_frame = img_debug
     return img_debug
예제 #9
0
 def run(self, img: ndarray, shapes: List[Shape]) -> ndarray:
     try:
         img_debug = img.copy()
         nb_contours = self._config.number_centroids_to_use
         colors = self._get_colors_index(nb_contours)
         for i in range(nb_contours):
             cv2.drawContours(img_debug, shapes[i:i + 1], -1, colors[i], 2)
         return img_debug
     except:
         logging.exception("Unexpected error")
         return np.zeros(img.shape)
예제 #10
0
    def _process_contours(self,
                          img_gray: ndarray) -> (ndarray, List[Centroid]):
        shapes, centroids = self._contours_detector.process_image(img_gray)

        img = cv2.cvtColor(img_gray.copy(), cv2.COLOR_GRAY2RGB)
        for centroid in centroids:
            cv2.circle(img, centroid, 3, (0, 100, 100), 1)

        cv2.drawContours(img, shapes, -1, (240, 40, 100), 1)

        logger.debug("Centroids founds: %s", centroids)
        return img, shapes, centroids
예제 #11
0
def lasso_hetero(X: ndarray, y: ndarray, lam: ndarray, w_init: ndarray, tol: float, return_obj: bool=False,
                 copy_X: bool=True, max_iter: int=100, verbose: bool=False) -> Union[ndarray, Tuple[ndarray, float]]:
    n, m = X.shape
    scale = np.sqrt(np.sum(X ** 2, axis=0))
    if copy_X:
        X = X / scale
    else:
        X /= scale

    lam = lam / scale

    w = w_init.copy()

    if m == 0:
        return w

    r = y - X @ w
    gap = np.inf
    for t in range(max_iter):
        w_max = 0
        d_w_max = 0

        for i in range(m):
            w_i_new = soft_threshold(w[i] + X[:, i] @ r, lam[i])
            d_w = w[i] - w_i_new
            r += d_w * X[:, i]
            w[i] = w_i_new

            w_max = max(w_max, np.fabs(w_i_new))
            d_w_max = max(d_w_max, np.fabs(d_w))

        gap = d_w_max / (w_max + 1e-16)

        if verbose:
            print("lasso_hetero_gs: step: {}\tgrad: {}".format(t, gap))

        if gap < tol:
            break
    else:
        warnings.warn("not converged after {} iterations; gap: {}".format(max_iter, gap), ConvergenceWarning)

    ww: ndarray = w / scale
    if return_obj:
        obj: float = 0.5 * np.sum(r) + np.sum(lam * np.fabs(ww))
        return ww, obj
    else:
        return ww
예제 #12
0
    def run(self, img: ndarray) -> ndarray:
        try:
            rows, columns, channel = np.shape(img)
            middle = int(columns / 2)
            mask = np.zeros(img.shape, np.uint8)
            central_zone_delta = int(
                ((columns / 100) * self._config.central_zone_percent) / 2)

            # Draw safe zone
            cv2.rectangle(img=mask,
                          pt1=(middle - central_zone_delta, 0),
                          pt2=(middle + central_zone_delta, rows),
                          color=(0, 255, 0),
                          thickness=cv2.FILLED)

            out_zone_delta = int(
                ((columns / 100) * self._config.out_zone_percent) / 2)

            # Draw dangerous zone
            cv2.rectangle(img=mask,
                          pt1=(0, 0),
                          pt2=(out_zone_delta, rows),
                          color=(255, 0, 0),
                          thickness=cv2.FILLED)
            cv2.rectangle(img=mask,
                          pt1=(columns - out_zone_delta, 0),
                          pt2=(columns, rows),
                          color=(255, 0, 0),
                          thickness=cv2.FILLED)

            # Apply mask
            img_debug = cv2.addWeighted(src1=img.copy(),
                                        alpha=0.7,
                                        src2=mask,
                                        beta=0.3,
                                        gamma=0)

            # Draw central axes
            img_debug = cv2.line(img=img_debug,
                                 pt1=(middle, 0),
                                 pt2=(middle, img.shape[1]),
                                 color=(0, 0, 255),
                                 thickness=2)
            return img_debug
        except:
            logging.exception("Unexpected error")
            return np.zeros(img.shape)
예제 #13
0
def get_weights(edges_with_grouping_orig: ndarray, groups_members: ndarray,
                affinities: ndarray, left: int, top: int, right: int,
                bottom: int) -> List[float]:
    edges_with_grouping = edges_with_grouping_orig.copy()
    edges_with_grouping[top:bottom, left:right, 1] = -1
    groups_not_in_box = np.unique(edges_with_grouping[:, :, 1])

    def calculate_weight(affs: ndarray, group_id: int):
        def generate_paths(group_len: int, length: int):
            paths: list = [[group_id]]
            for _ in range(length):
                paths = [
                    p + [new_group_id] for p in paths
                    for new_group_id in range(group_len)
                    if new_group_id != p[-1] and
                    affs[new_group_id, p[-1]] > 0.0 and not (new_group_id in p)
                ]
            return list(filter(lambda p: p[-1] in groups_not_in_box, paths))

        if group_id in groups_not_in_box:
            return 0.0
        max_path_length = 10
        max_chained_affinity = 0.0
        for i in range(max_path_length):
            for path in generate_paths(len(groups_members), i):
                path1 = path[0:-1]
                path2 = path[1:]
                adjacent_path = zip(path1, path2)
                affinity_path = map(lambda v12: affinities[v12[0], v12[1]],
                                    adjacent_path)
                affinity_reduced = reduce(lambda a1, a2: a1 * a2,
                                          affinity_path)
                max_chained_affinity = max(affinity_reduced,
                                           max_chained_affinity)
        return 1.0 - max_chained_affinity

    w = [
        calculate_weight(affinities, group_id)
        for group_id in range(len(groups_members))
    ]
    return w
예제 #14
0
    def run(self, img_gray: ndarray) -> int:
        try:
            (_, binary) = cv2.threshold(img_gray.copy(),
                                        self._config.centroid_value, 255, 0,
                                        cv2.THRESH_BINARY)
            (shapes, centroids) = self._contours_detector.process_image(
                img_binarized=binary)

            if not centroids:
                return self._config.centroid_value

            value = img_gray.item((centroids[0][1], centroids[0][0]))
            self._config.centroid_value = value
            logger.debug("Threshold value estimate: %s", value)

            self.draw_image_debug(centroids[0], img_gray, [shapes[0]], value)
            return value
        except Exception:
            import numpy
            logging.exception("Unexpected error")
            return self._config.centroid_value
예제 #15
0
def _display_bbs(img: ndarray, bbs: List[Tuple[Point, Size2D]]) -> ndarray:
    _img = img.copy()
    for bb in bbs:
        _img = draw_bbox_on_image(_img, bb, color=(0, 255, 0))
    return _img
예제 #16
0
def denoise_image_rof(img: ndarray,
                      n_iter: int,
                      w_lambda: Union[ndarray, float] = 5) -> ndarray:
    """Primal-dual algorithm for minimization of ROF-functional (TV-L2).
    Fast form of primal-dual algorithm (faster than standard).
    Algotirhm is based on [R1]_.

    Discrete functional:

    - ROF:   min_x( ||_nabla x||_1 + 0.5*lambda*(||x - f||_1)**2 )

    Args:
        img:
            Input image.

        n_iter:
            Number of iterations

        w_lambda:
            Weight factor of data term. Pixel-wise weight is possible.

    Returns:
        The filtered image of the same shape as the input image.

    References:
        .. [R1] Chambolle, Antonin; Pock, Thomas (2011): A First-Order
           Primal-Dual Algorithm for Convex Problems with Applications
           to Imaging. In: Journal of Mathematical Imaging and Vision 40 (1)
    """

    u = img.copy()
    y = _nabla(u)

    L2 = 8
    tau = 0.02
    sigma = 1.0 / (L2 * tau)
    gamma = 0.35 * w_lambda

    for i in range(n_iter):

        # Calculate gradient
        u_grad = _nabla(u)

        # Optimize dual variable ( prox_f )
        y = y + sigma * u_grad

        # Projection
        y = _prox_tv(y)

        # Optimize primal variable ( prox_g )
        u_new = u - tau * _nablaT(y)

        # l2-norm (ROF denoising)
        u_new = _prox_l2(u_new, img, w_lambda * tau)

        # Optimize step-size (faster convergence)
        theta = 1 / np.sqrt(1 + 2 * gamma * tau)
        tau = theta * tau
        sigma = sigma / theta

        # Extrapolate
        u = u_new + theta * (u_new - u)

        # Break if max accuracy reached
        # if (np.abs(u[:]-u_new[:])).sum() < tol:
        #     print(i)
        #     break

    return u