def test_tostring_c(self): language = Language.C x = as_symbol('x') y = as_symbol('y') z = as_symbol('z') n = as_number(123) assert Expr(Op.FACTORS, {x: 2}).tostring(language=language) == 'x * x' assert Expr(Op.FACTORS, { x + y: 2 }).tostring(language=language) == '(x + y) * (x + y)' assert Expr(Op.FACTORS, { x: 12 }).tostring(language=language) == 'pow(x, 12)' assert as_apply(ArithOp.DIV, x, y).tostring(language=language) == 'x / y' assert as_apply(ArithOp.DIV, x, x + y).tostring(language=language) == 'x / (x + y)' assert as_apply(ArithOp.DIV, x - y, x + y).tostring(language=language) == '(x - y) / (x + y)' assert (x + (x - y) / (x + y) + n).tostring(language=language) == '123 + x + (x - y) / (x + y)' assert as_ternary(x, y, z).tostring(language=language) == '(x ? y : z)' assert as_eq(x, y).tostring(language=language) == 'x == y' assert as_ne(x, y).tostring(language=language) == 'x != y' assert as_lt(x, y).tostring(language=language) == 'x < y' assert as_le(x, y).tostring(language=language) == 'x <= y' assert as_gt(x, y).tostring(language=language) == 'x > y' assert as_ge(x, y).tostring(language=language) == 'x >= y'
def test_tostring_c(self): language = Language.C x = as_symbol("x") y = as_symbol("y") z = as_symbol("z") n = as_number(123) assert Expr(Op.FACTORS, {x: 2}).tostring(language=language) == "x * x" assert (Expr(Op.FACTORS, { x + y: 2 }).tostring(language=language) == "(x + y) * (x + y)") assert Expr(Op.FACTORS, { x: 12 }).tostring(language=language) == "pow(x, 12)" assert as_apply(ArithOp.DIV, x, y).tostring(language=language) == "x / y" assert (as_apply(ArithOp.DIV, x, x + y).tostring(language=language) == "x / (x + y)") assert (as_apply(ArithOp.DIV, x - y, x + y).tostring(language=language) == "(x - y) / (x + y)") assert (x + (x - y) / (x + y) + n).tostring(language=language) == "123 + x + (x - y) / (x + y)" assert as_ternary(x, y, z).tostring(language=language) == "(x?y:z)" assert as_eq(x, y).tostring(language=language) == "x == y" assert as_ne(x, y).tostring(language=language) == "x != y" assert as_lt(x, y).tostring(language=language) == "x < y" assert as_le(x, y).tostring(language=language) == "x <= y" assert as_gt(x, y).tostring(language=language) == "x > y" assert as_ge(x, y).tostring(language=language) == "x >= y"
def test_substitute(self): x = as_symbol('x') y = as_symbol('y') z = as_symbol('z') a = as_array((x, y)) assert x.substitute({x: y}) == y assert (x + y).substitute({x: z}) == y + z assert (x * y).substitute({x: z}) == y * z assert (x**4).substitute({x: z}) == z**4 assert (x / y).substitute({x: z}) == z / y assert x.substitute({x: y + z}) == y + z assert a.substitute({x: y + z}) == as_array((y + z, y)) assert as_ternary(x, y, z).substitute({x: y + z}) == as_ternary(y + z, y, z) assert as_eq(x, y).substitute({x: y + z}) == as_eq(y + z, y)
def test_tostring_fortran(self): x = as_symbol('x') y = as_symbol('y') z = as_symbol('z') n = as_number(123) m = as_number(456) a = as_array((n, m)) c = as_complex(n, m) assert str(x) == 'x' assert str(n) == '123' assert str(a) == '[123, 456]' assert str(c) == '(123, 456)' assert str(Expr(Op.TERMS, {x: 1})) == 'x' assert str(Expr(Op.TERMS, {x: 2})) == '2 * x' assert str(Expr(Op.TERMS, {x: -1})) == '-x' assert str(Expr(Op.TERMS, {x: -2})) == '-2 * x' assert str(Expr(Op.TERMS, {x: 1, y: 1})) == 'x + y' assert str(Expr(Op.TERMS, {x: -1, y: -1})) == '-x - y' assert str(Expr(Op.TERMS, {x: 2, y: 3})) == '2 * x + 3 * y' assert str(Expr(Op.TERMS, {x: -2, y: 3})) == '-2 * x + 3 * y' assert str(Expr(Op.TERMS, {x: 2, y: -3})) == '2 * x - 3 * y' assert str(Expr(Op.FACTORS, {x: 1})) == 'x' assert str(Expr(Op.FACTORS, {x: 2})) == 'x ** 2' assert str(Expr(Op.FACTORS, {x: -1})) == 'x ** -1' assert str(Expr(Op.FACTORS, {x: -2})) == 'x ** -2' assert str(Expr(Op.FACTORS, {x: 1, y: 1})) == 'x * y' assert str(Expr(Op.FACTORS, {x: 2, y: 3})) == 'x ** 2 * y ** 3' v = Expr(Op.FACTORS, {x: 2, Expr(Op.TERMS, {x: 1, y: 1}): 3}) assert str(v) == 'x ** 2 * (x + y) ** 3', str(v) v = Expr(Op.FACTORS, {x: 2, Expr(Op.FACTORS, {x: 1, y: 1}): 3}) assert str(v) == 'x ** 2 * (x * y) ** 3', str(v) assert str(Expr(Op.APPLY, ('f', (), {}))) == 'f()' assert str(Expr(Op.APPLY, ('f', (x, ), {}))) == 'f(x)' assert str(Expr(Op.APPLY, ('f', (x, y), {}))) == 'f(x, y)' assert str(Expr(Op.INDEXING, ('f', x))) == 'f[x]' assert str(as_ternary(x, y, z)) == 'merge(y, z, x)' assert str(as_eq(x, y)) == 'x .eq. y' assert str(as_ne(x, y)) == 'x .ne. y' assert str(as_lt(x, y)) == 'x .lt. y' assert str(as_le(x, y)) == 'x .le. y' assert str(as_gt(x, y)) == 'x .gt. y' assert str(as_ge(x, y)) == 'x .ge. y'
def test_tostring_fortran(self): x = as_symbol("x") y = as_symbol("y") z = as_symbol("z") n = as_number(123) m = as_number(456) a = as_array((n, m)) c = as_complex(n, m) assert str(x) == "x" assert str(n) == "123" assert str(a) == "[123, 456]" assert str(c) == "(123, 456)" assert str(Expr(Op.TERMS, {x: 1})) == "x" assert str(Expr(Op.TERMS, {x: 2})) == "2 * x" assert str(Expr(Op.TERMS, {x: -1})) == "-x" assert str(Expr(Op.TERMS, {x: -2})) == "-2 * x" assert str(Expr(Op.TERMS, {x: 1, y: 1})) == "x + y" assert str(Expr(Op.TERMS, {x: -1, y: -1})) == "-x - y" assert str(Expr(Op.TERMS, {x: 2, y: 3})) == "2 * x + 3 * y" assert str(Expr(Op.TERMS, {x: -2, y: 3})) == "-2 * x + 3 * y" assert str(Expr(Op.TERMS, {x: 2, y: -3})) == "2 * x - 3 * y" assert str(Expr(Op.FACTORS, {x: 1})) == "x" assert str(Expr(Op.FACTORS, {x: 2})) == "x ** 2" assert str(Expr(Op.FACTORS, {x: -1})) == "x ** -1" assert str(Expr(Op.FACTORS, {x: -2})) == "x ** -2" assert str(Expr(Op.FACTORS, {x: 1, y: 1})) == "x * y" assert str(Expr(Op.FACTORS, {x: 2, y: 3})) == "x ** 2 * y ** 3" v = Expr(Op.FACTORS, {x: 2, Expr(Op.TERMS, {x: 1, y: 1}): 3}) assert str(v) == "x ** 2 * (x + y) ** 3", str(v) v = Expr(Op.FACTORS, {x: 2, Expr(Op.FACTORS, {x: 1, y: 1}): 3}) assert str(v) == "x ** 2 * (x * y) ** 3", str(v) assert str(Expr(Op.APPLY, ("f", (), {}))) == "f()" assert str(Expr(Op.APPLY, ("f", (x, ), {}))) == "f(x)" assert str(Expr(Op.APPLY, ("f", (x, y), {}))) == "f(x, y)" assert str(Expr(Op.INDEXING, ("f", x))) == "f[x]" assert str(as_ternary(x, y, z)) == "merge(y, z, x)" assert str(as_eq(x, y)) == "x .eq. y" assert str(as_ne(x, y)) == "x .ne. y" assert str(as_lt(x, y)) == "x .lt. y" assert str(as_le(x, y)) == "x .le. y" assert str(as_gt(x, y)) == "x .gt. y" assert str(as_ge(x, y)) == "x .ge. y"
def test_fromstring(self): x = as_symbol('x') y = as_symbol('y') z = as_symbol('z') f = as_symbol('f') s = as_string('"ABC"') t = as_string('"123"') a = as_array((x, y)) assert fromstring('x') == x assert fromstring('+ x') == x assert fromstring('- x') == -x assert fromstring('x + y') == x + y assert fromstring('x + 1') == x + 1 assert fromstring('x * y') == x * y assert fromstring('x * 2') == x * 2 assert fromstring('x / y') == x / y assert fromstring('x ** 2', language=Language.Python) == x**2 assert fromstring('x ** 2 ** 3', language=Language.Python) == x**2**3 assert fromstring('(x + y) * z') == (x + y) * z assert fromstring('f(x)') == f(x) assert fromstring('f(x,y)') == f(x, y) assert fromstring('f[x]') == f[x] assert fromstring('f[x][y]') == f[x][y] assert fromstring('"ABC"') == s assert normalize( fromstring('"ABC" // "123" ', language=Language.Fortran)) == s // t assert fromstring('f("ABC")') == f(s) assert fromstring('MYSTRKIND_"ABC"') == as_string('"ABC"', 'MYSTRKIND') assert fromstring('(/x, y/)') == a, fromstring('(/x, y/)') assert fromstring('f((/x, y/))') == f(a) assert fromstring('(/(x+y)*z/)') == as_array(((x + y) * z, )) assert fromstring('123') == as_number(123) assert fromstring('123_2') == as_number(123, 2) assert fromstring('123_myintkind') == as_number(123, 'myintkind') assert fromstring('123.0') == as_number(123.0, 4) assert fromstring('123.0_4') == as_number(123.0, 4) assert fromstring('123.0_8') == as_number(123.0, 8) assert fromstring('123.0e0') == as_number(123.0, 4) assert fromstring('123.0d0') == as_number(123.0, 8) assert fromstring('123d0') == as_number(123.0, 8) assert fromstring('123e-0') == as_number(123.0, 4) assert fromstring('123d+0') == as_number(123.0, 8) assert fromstring('123.0_myrealkind') == as_number(123.0, 'myrealkind') assert fromstring('3E4') == as_number(30000.0, 4) assert fromstring('(1, 2)') == as_complex(1, 2) assert fromstring('(1e2, PI)') == as_complex(as_number(100.0), as_symbol('PI')) assert fromstring('[1, 2]') == as_array((as_number(1), as_number(2))) assert fromstring('POINT(x, y=1)') == as_apply(as_symbol('POINT'), x, y=as_number(1)) assert (fromstring('PERSON(name="John", age=50, shape=(/34, 23/))') == as_apply(as_symbol('PERSON'), name=as_string('"John"'), age=as_number(50), shape=as_array((as_number(34), as_number(23))))) assert fromstring('x?y:z') == as_ternary(x, y, z) assert fromstring('*x') == as_deref(x) assert fromstring('**x') == as_deref(as_deref(x)) assert fromstring('&x') == as_ref(x) assert fromstring('(*x) * (*y)') == as_deref(x) * as_deref(y) assert fromstring('(*x) * *y') == as_deref(x) * as_deref(y) assert fromstring('*x * *y') == as_deref(x) * as_deref(y) assert fromstring('*x**y') == as_deref(x) * as_deref(y) assert fromstring('x == y') == as_eq(x, y) assert fromstring('x != y') == as_ne(x, y) assert fromstring('x < y') == as_lt(x, y) assert fromstring('x > y') == as_gt(x, y) assert fromstring('x <= y') == as_le(x, y) assert fromstring('x >= y') == as_ge(x, y) assert fromstring('x .eq. y', language=Language.Fortran) == as_eq(x, y) assert fromstring('x .ne. y', language=Language.Fortran) == as_ne(x, y) assert fromstring('x .lt. y', language=Language.Fortran) == as_lt(x, y) assert fromstring('x .gt. y', language=Language.Fortran) == as_gt(x, y) assert fromstring('x .le. y', language=Language.Fortran) == as_le(x, y) assert fromstring('x .ge. y', language=Language.Fortran) == as_ge(x, y)
def test_sanity(self): x = as_symbol('x') y = as_symbol('y') z = as_symbol('z') assert x.op == Op.SYMBOL assert repr(x) == "Expr(Op.SYMBOL, 'x')" assert x == x assert x != y assert hash(x) is not None n = as_number(123) m = as_number(456) assert n.op == Op.INTEGER assert repr(n) == "Expr(Op.INTEGER, (123, 4))" assert n == n assert n != m assert hash(n) is not None fn = as_number(12.3) fm = as_number(45.6) assert fn.op == Op.REAL assert repr(fn) == "Expr(Op.REAL, (12.3, 4))" assert fn == fn assert fn != fm assert hash(fn) is not None c = as_complex(1, 2) c2 = as_complex(3, 4) assert c.op == Op.COMPLEX assert repr(c) == ("Expr(Op.COMPLEX, (Expr(Op.INTEGER, (1, 4))," " Expr(Op.INTEGER, (2, 4))))") assert c == c assert c != c2 assert hash(c) is not None s = as_string("'123'") s2 = as_string('"ABC"') assert s.op == Op.STRING assert repr(s) == "Expr(Op.STRING, (\"'123'\", 1))", repr(s) assert s == s assert s != s2 a = as_array((n, m)) b = as_array((n, )) assert a.op == Op.ARRAY assert repr(a) == ("Expr(Op.ARRAY, (Expr(Op.INTEGER, (123, 4))," " Expr(Op.INTEGER, (456, 4))))") assert a == a assert a != b t = as_terms(x) u = as_terms(y) assert t.op == Op.TERMS assert repr(t) == "Expr(Op.TERMS, {Expr(Op.SYMBOL, 'x'): 1})" assert t == t assert t != u assert hash(t) is not None v = as_factors(x) w = as_factors(y) assert v.op == Op.FACTORS assert repr(v) == "Expr(Op.FACTORS, {Expr(Op.SYMBOL, 'x'): 1})" assert v == v assert w != v assert hash(v) is not None t = as_ternary(x, y, z) u = as_ternary(x, z, y) assert t.op == Op.TERNARY assert t == t assert t != u assert hash(t) is not None e = as_eq(x, y) f = as_lt(x, y) assert e.op == Op.RELATIONAL assert e == e assert e != f assert hash(e) is not None
def test_fromstring(self): x = as_symbol("x") y = as_symbol("y") z = as_symbol("z") f = as_symbol("f") s = as_string('"ABC"') t = as_string('"123"') a = as_array((x, y)) assert fromstring("x") == x assert fromstring("+ x") == x assert fromstring("- x") == -x assert fromstring("x + y") == x + y assert fromstring("x + 1") == x + 1 assert fromstring("x * y") == x * y assert fromstring("x * 2") == x * 2 assert fromstring("x / y") == x / y assert fromstring("x ** 2", language=Language.Python) == x**2 assert fromstring("x ** 2 ** 3", language=Language.Python) == x**2**3 assert fromstring("(x + y) * z") == (x + y) * z assert fromstring("f(x)") == f(x) assert fromstring("f(x,y)") == f(x, y) assert fromstring("f[x]") == f[x] assert fromstring("f[x][y]") == f[x][y] assert fromstring('"ABC"') == s assert (normalize( fromstring('"ABC" // "123" ', language=Language.Fortran)) == s // t) assert fromstring('f("ABC")') == f(s) assert fromstring('MYSTRKIND_"ABC"') == as_string('"ABC"', "MYSTRKIND") assert fromstring("(/x, y/)") == a, fromstring("(/x, y/)") assert fromstring("f((/x, y/))") == f(a) assert fromstring("(/(x+y)*z/)") == as_array(((x + y) * z, )) assert fromstring("123") == as_number(123) assert fromstring("123_2") == as_number(123, 2) assert fromstring("123_myintkind") == as_number(123, "myintkind") assert fromstring("123.0") == as_number(123.0, 4) assert fromstring("123.0_4") == as_number(123.0, 4) assert fromstring("123.0_8") == as_number(123.0, 8) assert fromstring("123.0e0") == as_number(123.0, 4) assert fromstring("123.0d0") == as_number(123.0, 8) assert fromstring("123d0") == as_number(123.0, 8) assert fromstring("123e-0") == as_number(123.0, 4) assert fromstring("123d+0") == as_number(123.0, 8) assert fromstring("123.0_myrealkind") == as_number(123.0, "myrealkind") assert fromstring("3E4") == as_number(30000.0, 4) assert fromstring("(1, 2)") == as_complex(1, 2) assert fromstring("(1e2, PI)") == as_complex(as_number(100.0), as_symbol("PI")) assert fromstring("[1, 2]") == as_array((as_number(1), as_number(2))) assert fromstring("POINT(x, y=1)") == as_apply(as_symbol("POINT"), x, y=as_number(1)) assert fromstring( 'PERSON(name="John", age=50, shape=(/34, 23/))') == as_apply( as_symbol("PERSON"), name=as_string('"John"'), age=as_number(50), shape=as_array((as_number(34), as_number(23))), ) assert fromstring("x?y:z") == as_ternary(x, y, z) assert fromstring("*x") == as_deref(x) assert fromstring("**x") == as_deref(as_deref(x)) assert fromstring("&x") == as_ref(x) assert fromstring("(*x) * (*y)") == as_deref(x) * as_deref(y) assert fromstring("(*x) * *y") == as_deref(x) * as_deref(y) assert fromstring("*x * *y") == as_deref(x) * as_deref(y) assert fromstring("*x**y") == as_deref(x) * as_deref(y) assert fromstring("x == y") == as_eq(x, y) assert fromstring("x != y") == as_ne(x, y) assert fromstring("x < y") == as_lt(x, y) assert fromstring("x > y") == as_gt(x, y) assert fromstring("x <= y") == as_le(x, y) assert fromstring("x >= y") == as_ge(x, y) assert fromstring("x .eq. y", language=Language.Fortran) == as_eq(x, y) assert fromstring("x .ne. y", language=Language.Fortran) == as_ne(x, y) assert fromstring("x .lt. y", language=Language.Fortran) == as_lt(x, y) assert fromstring("x .gt. y", language=Language.Fortran) == as_gt(x, y) assert fromstring("x .le. y", language=Language.Fortran) == as_le(x, y) assert fromstring("x .ge. y", language=Language.Fortran) == as_ge(x, y)