def plot1(gp, ngrid=100, lim=None, k=range(-3, 4)): k = sorted(k) if lim is None: lim = (np.amin(gp.x[:, 1]), np.amax(gp.x[:, 1])) x = np.linspace(lim[0], lim[1], ngrid).T (m, v) = gp.inf(x) m = np.asarray(m).squeeze() v = np.asarray(v).squeeze() plt.plot(x, m, color=DARKBLUE, linewidth=2) for i in k: if i == 0: continue lo = m - i*np.sqrt(v) hi = m + i*np.sqrt(v) plt.fill_between(x, lo, hi, linestyle='solid', edgecolor=DARKGRAY, facecolor=LIGHTGRAY, alpha=0.2) plt.plot(gp.x, gp.y, 'o', markersize=8, markeredgewidth=1, markeredgecolor=DARKGRAY, markerfacecolor=LIGHTBLUE) plt.xlim(lim)
def __init__(self, trainingSet, outputFile): self.trainingSet_ = trainingSet self.outputFile_ = outputFile # initialize weights self.weights1_ = matlib.rand(self.HIDDEN, self.FEATURES) self.weights1_ = self.weights1_ / matlib.sqrt(self.FEATURES) self.weights2_ = matlib.rand(self.FEATURES, self.HIDDEN) self.weights2_ = self.weights2_ / matlib.sqrt(self.HIDDEN) # initialize bias self.bias1_ = matlib.zeros((self.HIDDEN, )) self.bias2_ = matlib.zeros((self.FEATURES, )) # initialize rho estimate vector self.rho_est_ = matlib.zeros((self.HIDDEN, )).T
def auclidic_distance(x: pn.DataFrame, y: pn.DataFrame) -> float: sum = 0 params = [ 'Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age' ] for p in params: sum += abs(x[p] - y[p])**2 return np.sqrt(sum)
def __init_learner(self, outputFile): self.outputFile_ = outputFile # initialize weights self.weights1_ = matlib.rand(self.HIDDEN, self.FEATURES) self.weights1_ = self.weights1_ / matlib.sqrt(self.FEATURES) self.weights2_ = matlib.rand(self.FEATURES, self.HIDDEN) self.weights2_ = self.weights2_ / matlib.sqrt(self.HIDDEN) # initialize bias self.bias1_ = matlib.zeros((self.HIDDEN, )) self.bias2_ = matlib.zeros((self.FEATURES, )) # initialize rho estimate vector self.rho_est_ = matlib.zeros((self.HIDDEN, )).T self.errors = []
def __init_learner(self, outputFile): self.outputFile_ = outputFile # initialize weights self.weights1_ = matlib.rand(self.HIDDEN, self.FEATURES) self.weights1_ = self.weights1_ / matlib.sqrt(self.FEATURES) self.weights2_ = matlib.rand(self.FEATURES, self.HIDDEN) self.weights2_ = self.weights2_ / matlib.sqrt(self.HIDDEN) # initialize bias self.bias1_ = matlib.zeros((self.HIDDEN,)) self.bias2_ = matlib.zeros((self.FEATURES,)) # initialize rho estimate vector self.rho_est_ = matlib.zeros((self.HIDDEN,)).T self.errors = []
def __init_projector(self, inputFile): handle = open(inputFile, "r+") # initialize weights self.weights1_ = matlib.zeros((self.HIDDEN, self.FEATURES)) self.weights1_ = self.weights1_ / matlib.sqrt(self.FEATURES) for r, line in enumerate(handle.readlines()): for c, col in enumerate(line.strip().split(" ")): self.weights1_[r, c] = float(col) handle.close() # initialize bias self.bias1_ = matlib.zeros((self.HIDDEN, ))
def plot_cov(mu, sigma): mu = np.asarray(mu) sigma = np.asarray(sigma) t = np.linspace(-math.pi, math.pi, 2*math.pi/.1) x = np.sin(t) y = np.cos(t) D_diag, V = ml.linalg.eigh(sigma) D = np.diag(D_diag) A = np.real((np.dot(V,ml.sqrt(D))).T) z = np.dot(np.vstack((x.T,y.T)).T,A) plt.plot(z[:,0]+mu[0], z[:,1]+mu[1], 'y-')
def plot_cov(mu, sigma, plotType = 'b-', alpha=1): mu = np.asarray(mu) sigma = np.asarray(sigma) t = np.linspace(-np.pi, np.pi, 2*np.pi/.1) x = np.sin(t) y = np.cos(t) D_diag, V = ml.linalg.eigh(sigma) D = np.diag(D_diag) A = np.real((np.dot(V,ml.sqrt(D))).T) z = np.dot(np.vstack((x.T,y.T)).T,A) plt.plot(z[:,0]+mu[0], z[:,1]+mu[1], plotType, alpha=alpha, linewidth=4, mew=2.0)
def plot_cov(mu, sigma, plotType='b-', alpha=1): mu = np.asarray(mu) sigma = np.asarray(sigma) t = np.linspace(-math.pi, math.pi, 2 * math.pi / .1) x = np.sin(t) y = np.cos(t) D_diag, V = ml.linalg.eigh(sigma) D = np.diag(D_diag) A = np.real((np.dot(V, ml.sqrt(D))).T) z = np.dot(np.vstack((x.T, y.T)).T, A) plt.plot(z[:, 0] + mu[0], z[:, 1] + mu[1], plotType, alpha=alpha)
def __init_projector(self, inputFile): handle = open(inputFile, "r+") # initialize weights self.weights1_ = matlib.zeros((self.HIDDEN, self.FEATURES)) self.weights1_ = self.weights1_ / matlib.sqrt(self.FEATURES) for r, line in enumerate(handle.readlines()): for c, col in enumerate(line.strip().split(" ")): self.weights1_[r, c] = float(col) handle.close() # initialize bias self.bias1_ = matlib.zeros((self.HIDDEN,))
def auclidic_distance(x: pn.DataFrame, y: pn.DataFrame, subset: list) -> float: sum = 0 params = [ 'Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age' ] modified_params = [] if subset is None: modified_params = params elif len(subset) == 1: modified_params.append(params[subset[0]]) else: for idx in subset: modified_params.append(params[idx]) for p in modified_params: sum += abs(x[p] - y[p])**2 return np.sqrt(sum)
def return_magnitude(self): """Returns the magnitude matrix of this matrixvector""" from numpy.matlib import sqrt return sqrt(elementwise_dot_product(self, self))
def rand_init(fan_in, fan_out): ret = np.asarray(rng.uniform(low=-np.sqrt(3. / fan_in), high=np.sqrt(3. / fan_in), size=(fan_in, fan_out)), dtype=T.config.floatX) return ret
def haar_matrix(dim): ''' Generate haar transformation matrix. ''' Q = M.matrix('1 1;-1 1') return 1 / M.sqrt(2) * M.kron(M.eye(dim / 2), Q)
def scaleParams(self): for con in self.network._containerIterator(): factor = 1.0 / sqrt(con.indim) for param in range(len(con.params)): con.params[param] *= factor
def rand_init(fan_in, fan_out): ret = np.asarray(rng.uniform( low = -np.sqrt(3. / fan_in), high = np.sqrt(3. / fan_in), size = (fan_in, fan_out)), dtype = T.config.floatX) return ret
def return_magnitude(self) -> matrix: """Returns the magnitude matrix of this matrix vector""" return sqrt(square(self.x) + square(self.y))