예제 #1
0
 def _simulate(self):
     # Note: the features matrix already exists, and is created by
     # the super class
     features = self.features
     n_samples, n_features = features.shape
     link = self.link
     u = features.dot(self.weights)
     # Add the intercept if necessary
     if self.intercept is not None:
         u += self.intercept
     # Compute the intensities
     if link == "identity":
         if np.any(u <= 0):
             raise ValueError(("features and weights leads to ,",
                               "non-negative intensities for ", "Poisson."))
         intensity = u
     else:
         intensity = np.exp(u)
     # Simulate the Poisson variables. We want it in float64 for
     #   later computations, hence the next line.
     labels = np.empty(n_samples)
     labels[:] = poisson(intensity)
     self._set("labels", labels)
     return features, labels
def poisson(mean, shape=[]):
    """poisson(mean) or poisson(mean, [n, m, ...]) returns array of poisson
           distributed random integers with specified mean."""
    if shape == []:
        shape = None
    return mt.poisson(mean, shape)
예제 #3
0
def poisson(mean, shape=[]):
    """poisson(mean) or poisson(mean, [n, m, ...]) returns array of poisson
           distributed random integers with specified mean."""
    if shape == []:
        shape = None
    return mt.poisson(mean, shape)
예제 #4
0
파일: gnuplot.py 프로젝트: tybiot/biskit
 def test_scatter(self):
     """gnuplot.scatter test (interactive only)"""
     from numpy.random.mtrand import poisson
     if self.local:
         self.p = scatter(poisson(50, (1000, 2)))
예제 #5
0
파일: gnuplot.py 프로젝트: graik/biskit
 def test_scatter(self):
     """gnuplot.scatter test (interactive only)"""
     from numpy.random.mtrand import poisson
     if self.local:
         self.p = scatter( poisson(50,(1000,2))  )