import sys import os from numpy.testing import Tester sys.path.insert(0, os.path.abspath('sharedmem')) import sharedmem from sys import argv tester = Tester() result = tester.test(extra_argv=['-w', 'tests'] + argv[1:]) if not result: raise Exception("Test Failed")
if func is None: func = getattr(m2, func_name) func.module_name = m2_name else: func.module_name = m1_name if force_clapack and m1 is flapack: func2 = getattr(m2, func_name, None) if func2 is not None: import new exec(_colmajor_func_template % {'func_name': func_name}) func = new.function(func_code, {'clapack_func': func2}, func_name) func.module_name = m2_name func.__doc__ = func2.__doc__ func.prefix = required_prefix func.dtypechar = dtypechar funcs.append(func) return tuple(funcs) _colmajor_func_template = '''\ def %(func_name)s(*args,**kws): if "rowmajor" not in kws: kws["rowmajor"] = 0 return clapack_func(*args,**kws) func_code = %(func_name)s.func_code ''' from numpy.testing import Tester test = Tester().test
# ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """DataLad aims to expose (scientific) data available online as a unified data distribution with the convenience of git-annex repositories as a backend.""" from .version import __version__ from datalad.log import lgr lgr.debug("Importing the rest of datalad.__init__") from .config import ConfigManager cfg = ConfigManager() # be friendly on systems with ancient numpy -- no tests, but at least # importable try: from numpy.testing import Tester test = Tester().test bench = Tester().bench del Tester except ImportError: def test(*args, **kwargs): lgr.warning('Need numpy >= 1.2 for datalad.tests(). Nothing is done') test.__test__ = False # Following fixtures are necessary at the top level __init__ for fixtures which # would cover all **/tests and not just datalad/tests/ def setup_package(): import os # To overcome pybuild overriding HOME but us possibly wanting our # own HOME where we pre-setup git for testing (name, email)
def test(*a, **kw): extra_argv = kw.pop('extra_argv', ()) extra_argv = extra_argv + tests[1:] kw['extra_argv'] = extra_argv from numpy.testing import Tester return Tester(tests[0]).test(*a, **kw)
simplex containing a given point, and barycentric coordinate computations. Functions --------- .. autosummary:: :toctree: generated/ tsearch distance_matrix minkowski_distance minkowski_distance_p """ from __future__ import division, print_function, absolute_import from .kdtree import * from .ckdtree import * from .qhull import * from ._plotutils import * __all__ = [s for s in dir() if not s.startswith('_')] __all__ += ['distance'] from . import distance from numpy.testing import Tester test = Tester().test bench = Tester().bench
for i in range(10): b.bench_run(np.random.uniform(0, 10, 2)) b.print_results() def bench_beale(self): s = funcs.Beale() # print "checking gradient", scipy.optimize.check_grad(s.fun, s.der, np.array([1.1, -2.3])) b = _BenchOptimizers("Beale's function", fun=s.fun, der=s.der, hess=None) for i in range(10): b.bench_run(np.random.uniform(0, 10, 2)) b.print_results() def bench_LJ(self): s = funcs.LJ() # print "checking gradient", scipy.optimize.check_grad(s.get_energy, s.get_gradient, np.random.uniform(-2,2,3*4)) natoms = 4 b = _BenchOptimizers("%d atom Lennard Jones potential" % (natoms), fun=s.fun, der=s.der, hess=None) for i in range(10): b.bench_run(np.random.uniform(-2, 2, natoms * 3)) b.print_results() if __name__ == "__main__": Tester().bench(extra_argv=dict())
def tests(): Tester(testing).test(verbose=10)
import pkg_resources from .info import __doc__ from .core import * from . import extrapolation, limits, step_generators from numpy.testing import Tester try: __version__ = pkg_resources.get_distribution(__name__).version except pkg_resources.DistributionNotFound: __version__ = 'unknown' test = Tester(raise_warnings="release").test
tm_dense = tm_end - tm_start # Optionally use the sparse conjugate gradient solver. if sparse_is_active: tm_start = time.clock() for i in range(repeats): x_sparse, info = sparse.linalg.cg(P_sparse, b) tm_end = time.clock() tm_sparse = tm_end - tm_start # Check that the solutions are close to each other. if dense_is_active and sparse_is_active: assert_allclose(x_dense, x_sparse, rtol=1e-4) # Write the rows. shape = (n * n, n * n) if dense_is_active: print(fmt % (shape, repeats, 'dense solve', tm_dense)) if sparse_is_active: print(fmt % (shape, repeats, 'sparse cg', tm_sparse)) dense_is_active = (tm_dense < 5) sparse_is_active = (tm_sparse < 5) print() if __name__ == '__main__': Tester().bench()
from scipy.version import version as __version__ from scipy._lib._version import NumpyVersion as _NumpyVersion if _NumpyVersion(__numpy_version__) < '1.8.2': import warnings warnings.warn( "Numpy 1.8.2 or above is recommended for this version of " "scipy (detected version %s)" % __numpy_version__, UserWarning) del _NumpyVersion from scipy._lib._ccallback import LowLevelCallable from numpy.testing import Tester def test(*a, **kw): # Nose never recurses into directories with underscores prefix, so we # need to list those explicitly. Note that numpy.testing.Tester inserts # the top-level package path determined from __file__ to argv unconditionally, # so we only need to add the part that is not otherwise recursed into. import os underscore_modules = ['_lib', '_build_utils'] base_dir = os.path.abspath(os.path.dirname(__file__)) underscore_paths = [ os.path.join(base_dir, name) for name in underscore_modules ] kw['extra_argv'] = list(kw.get('extra_argv', [])) + underscore_paths return test._tester.test(*a, **kw) test._tester = Tester() test.__doc__ = test._tester.test.__doc__ test.__test__ = False # Prevent nose from treating test() as a test
def test(level=1, verbosity=1): from numpy.testing import Tester return Tester().test(level, verbosity)
if sys.platform != 'cli': import scalarmath from function_base import * from machar import * from getlimits import * from shape_base import * del nt from fromnumeric import amax as max, amin as min, round_ as round from numeric import absolute as abs __all__ = ['char', 'rec', 'memmap'] __all__ += numeric.__all__ __all__ += fromnumeric.__all__ __all__ += rec.__all__ __all__ += ['chararray'] __all__ += function_base.__all__ __all__ += machar.__all__ __all__ += getlimits.__all__ __all__ += shape_base.__all__ from numpy.testing import Tester test = Tester(__file__).test bench = Tester(__file__).bench