예제 #1
0
    def __call__(self, g):
        """return `list` of AL penalties for constraints values in `g`.

        Penalties are zero in the optimum and can be negative down to
        ``-lam**2 / mu / 2``.
        """
        if self.lam is None:
            return [0.] * len(g)
        assert len(self.lam) == len(self.mu)
        if len(g) != len(self.lam):
            raise ValueError("len(g) = %d != %d = # of Lagrange coefficients"
                             % (len(g), len(self.lam)))
        assert self._equality.dtype == 'bool'
        idx = _and(_not(self._equality), self.mu * g < -1 * self.lam)
        if any(idx):
            g = np.array(g, copy=True)
            g[idx] = -self.lam[idx] / self.mu[idx]
        return [self.lam[i] * g[i] + 0.5 * self.mu[i] * g[i]**2
                for i in range(len(g))]
예제 #2
0
    def set_coefficients(self, F, G):
        """compute initial coefficients based on some f- and g-values.

        The formulas to set the coefficients::

            lam = iqr(f) / (sqrt(n) * iqr(g))
            mu = 2 * iqr(f) / (5 * n * (iqr(g) + iqr(g**2)))

        are taken out of thin air and not thoroughly tested. They are
        additionally protected against division by zero.

        Each row of `G` represents the constraints of one sample measure.

        Set lam and mu until a population contains more than 10% infeasible
        and more than 10% feasible at the same time. Afterwards, this at least...?...
        """
        self.F, self.G = F, G  # versatile storage
        if self.mu is not None and all(self._initialized * (self.mu > 0)):
            return  # we're all set
        G = np.asarray(G).T  # now row G[i] contains all values of constraint i
        sign_average = np.mean(np.sign(G),
                               axis=1)  # caveat: equality vs inequality
        if self.lam is None:  # destroys all coefficients
            self.set_m(len(G))
        elif not self._initialized.shape:
            self.lam_old, self.mu_old = self.lam[:], self.mu[:]  # in case the user didn't mean to
            self._initialized = np.array(self.m * [self._initialized])
        self._check_dtypes()
        idx = _and(_or(_not(self._initialized), self.mu == 0),
                   _or(sign_average > -0.8, self.isequality))
        # print(len(F), len(self.G))
        if np.any(idx):
            df = _Mh.iqr(F)
            dG = np.asarray([_Mh.iqr(g)
                             for g in G])  # only needed for G[idx], but like
            dG2 = np.asarray([_Mh.iqr(g**2)
                              for g in G])  # this simpler in later indexing
            if np.any(df == 0) or np.any(dG == 0) or np.any(dG2 == 0):
                _warnings.warn("iqr(f), iqr(G), iqr(G**2)) == %s, %s, %s" %
                               (str(df), str(dG), str(dG2)))
            assert np.all(df >= 0) and np.all(dG >= 0) and np.all(dG2 >= 0)
            # 1 * dG2 leads to much too small values for Himmelblau
            mu_new = 2. / 5 * df / self.dimension / (
                dG + 1e-6 * dG2 + 1e-11 *
                (df + 1))  # TODO: totally out of thin air
            idx_inequ = _and(idx, _not(self.isequality))
            if np.any(idx_inequ):
                self.lam[idx_inequ] = df / (self.dimension * dG[idx_inequ] +
                                            1e-11 * (df + 1))

            # take min or max with existing value depending on the sign average
            # we don't know whether this is necessary
            isclose = np.abs(sign_average) <= 0.2
            idx1 = _and(
                _and(
                    _or(isclose,
                        _and(_not(self.isequality), sign_average <= 0.2)),
                    _or(self.mu == 0, self.mu > mu_new)), idx)  # only decrease
            idx2 = _and(
                _and(
                    _and(_not(isclose), _or(self.isequality,
                                            sign_average > 0.2)),
                    self.mu < mu_new), idx)  # only increase
            idx3 = _and(idx, _not(_or(idx1, idx2)))  # others
            assert np.sum(_and(idx1, idx2)) == 0
            if np.any(idx1):  # decrease
                iidx1 = self.mu[idx1] > 0
                if np.any(iidx1):
                    self.lam[idx1][
                        iidx1] *= mu_new[idx1][iidx1] / self.mu[idx1][iidx1]
                self.mu[idx1] = mu_new[idx1]
            if np.any(idx2):  # increase
                self.mu[idx2] = mu_new[idx2]
            if np.any(idx3):
                self.mu[idx3] = mu_new[idx3]
            if 11 < 3:  # simple version, this may be good enough
                self.mu[idx] = mu_new[idx]
            self._initialized[_and(
                idx,
                _or(
                    self.count >
                    2 + self.dimension,  # in case sign average remains 1
                    np.abs(sign_average) < 0.8))] = True
        elif all(self._initialized) and all(self.mu > 0):
            _warnings.warn(
                "Coefficients are already fully initialized. This can (only?) happen if\n"
                "the coefficients are set before the `_initialized` array.")