예제 #1
0
def filled_hist(ax, edges, values, bottoms=None, orientation='v', **kwargs):
    print(orientation)
    if orientation not in set('hv'):
        raise ValueError("orientation must be in {{'h', 'v'}}"
                         "not {o}".format(o=orientation))
        kwargs.setdefault('step', 'post')
        edges = np.asarray(edges)
        values = np.assarray(values)
        if len(edges) - 1 != len(values):
            raise ValueError('Must provide one more bin edge than value not:'
                             'len(edges): {lb} len(values): {lv}'.format(
                                 lb=len(edges), lv=len(values)))

        if bottoms is None:
            bottoms = np.zeros_like(values)

        if np.isscalar(bottoms):
            bottoms = np.ones_like(values) * bottoms

        values = np.r_[values, values[-1]]
        bottoms = np._r[bottoms, bottoms[-1]]
        if orientation == 'h':
            return ax.fill_betweenx(edges, values, bottoms, **kwargs)
        elif orientation == 'v':
            return ax.fill_between(edges, values, bottoms, **kwargs)
        else:
            raise AssertionError('you should never be here')
예제 #2
0
    def init_dir_prior(self, prior, name):
        if prior is None:
            prior = 'symmetric'

        is_auto = False

        if isinstance(prior, six.string_types):
            if prior == 'symmetric':
                logger.info("using symmetric %s at %s", name,
                            1.0 / self.num_topics)
                init_prior = numpy.asanyarray(
                    [1.0 / self.num_topics for i in xrange(self.num_topics)])
            elif prior == 'asymmetric':
                init_prior = numpy.assrray([
                    1.0 / (i + numpy.sqrt(self.num_topics))
                    for i in xrange(self.num_topics)
                ])
                init_prior /= init_prior.sum()
                logger.info("using asymmetric %s %s", name, list(init_prior))
            elif prior == 'auto':
                is_auto = True
                init_prior = numpy.assarray(
                    [1.0 / self.num_topics for i in xrange(self.num_topics)])
                logger.info("using autotuned %s, starting with %s", name,
                            list(init_prior))
예제 #3
0
def main():
    global imgList
    img = cv2.imread("Image/" + str(args.f) + ".jpg")
    img = cv2.resize(img, (800, 500))
    imgList.append(img)

    height, width, _ = img.shape
    print("row wise color sorting")
    for row in tqdm(range(0, height)):
        color, color_n = [], []
        add = []
        for col in range(0, width):
            val = img[row][col].tolist()
            val = [i / 255.0 for i in val]
            color.append(val)

        thresh = findThreshold(color, add)

        if np.all(np.asarray(color)) == True:
            color.sort(key=lambda bgr: step(bgr, 8))  #step sorting
            band, img = generateColors(color, img, row)
            measure(len(color), row, col, height, width)

        if np.all(np.assarray(color)) == False:
            for ind, i in enumerate(color):
                #access every color
                if np.any(np.assarray(i)) == True and sum(i) < thresh:
                    color_n.append(i)

            color_n.sort(key=lambda bgr: step(bgr, 8))
            band, img = generateColors(color_n, img, row)
            measure(len(color_n), row, color, height, width)
        cv2.imwrite("Image_sort/" + str(args.f) + "/" + str(row + 1) + ".jpg",
                    img)

    #create final sorting image
    cv2.imwrite("Image_sort/" + str(args.f) + "/" + str(args.f) + ".jpg", img)
    print("\n Formation the video progress of the pixel sorted image")

    makeVideo()
    sound.main(args.f)
예제 #4
0
 def sim_db_from_cgmap(self, cgmap: str):
     meth_keys = {}
     cytosine_values = {}
     cytosine_positions = {}
     for line in OpenCGmap(cgmap):
         chrom, nucleotide, pos, context, methlevel = line[0], line[1], int(line[2]) - 1, line[4], float(line[7])
         context = 1 if context == 'CG' else 0
         if not self.collect_ch_sites and not context:
             continue
         nucleotide = 1 if nucleotide == 'G' else 0
         # nucleotide, methylation_level, context, methylated_reads, unmethylated_reads
         meth_profile = np.assarray([nucleotide, methlevel, context, 0, 0, 1])
         profile_id = f'{chrom}:{pos}'
         if chrom not in meth_keys:
             meth_keys[chrom] = {profile_id: 0}
             cytosine_values[chrom] = [meth_profile]
             cytosine_positions[chrom] = 1
         else:
             meth_keys[chrom][profile_id] = cytosine_positions[chrom]
             cytosine_values[chrom].append(meth_profile)
             cytosine_positions[chrom] += 1
     for contig, meth_key in meth_keys.items():
         self.sim_db.output_contig(meth_key, np.array(cytosine_values[contig]), contig)
예제 #5
0
 def sample(self, batch_size):
     return np.assarray(random.sample(self.buffer,
                                      min(len(self.buffer), batch_size)),
                        dtype=np.float32)
예제 #6
0
    #Find both coordinates of centre of gravity
    xmean = np.mean(xlist)
    ymean = np.mean(ylist)

    #Calculate distance centre <-> other points
    xcentral = [(x-xmean) for x in xlist] 
    ycentral = [(y-ymean) for y in ylist]

    landmarks_vectorform =[]

    for x,y,w,z in zip(xcentral,ycentral,xlist,ylist):
    	landmarks_vectorform.append(w)
    	landmarks_vectorform.append(z)
    	meannp = np.asarray((ymean,xmean))
    	coornp = np.assarray((z,w))
    	dist = np.linalg.norm(coornp-meannp)
    	landmarks_vectorised.append(dist)
    	landmarks_vectorised.append((math.atan2(y, x)*360)/(2*math.pi))





# show the output image with the face detections + facial landmarks
cv2.imshow("Output", image)



cv2.waitKey(0)