예제 #1
0
  def testFieldMetaTypeIsValid(self):
    self.assertEqual(FieldMetaType.isValid(FieldMetaType.string), True)
    self.assertEqual(FieldMetaType.isValid(FieldMetaType.datetime), True)
    self.assertEqual(FieldMetaType.isValid(FieldMetaType.integer), True)
    self.assertEqual(FieldMetaType.isValid(FieldMetaType.float), True)
    self.assertEqual(FieldMetaType.isValid(FieldMetaType.boolean), True)
    self.assertEqual(FieldMetaType.isValid(FieldMetaType.list), True)
    self.assertEqual(FieldMetaType.isValid(FieldMetaType.sdr), True)

    self.assertEqual(FieldMetaType.isValid("bogus-type"), False)
예제 #2
0
    def testFieldMetaTypeIsValid(self):
        self.assertEqual(FieldMetaType.isValid(FieldMetaType.string), True)
        self.assertEqual(FieldMetaType.isValid(FieldMetaType.datetime), True)
        self.assertEqual(FieldMetaType.isValid(FieldMetaType.integer), True)
        self.assertEqual(FieldMetaType.isValid(FieldMetaType.float), True)
        self.assertEqual(FieldMetaType.isValid(FieldMetaType.boolean), True)
        self.assertEqual(FieldMetaType.isValid(FieldMetaType.list), True)
        self.assertEqual(FieldMetaType.isValid(FieldMetaType.sdr), True)

        self.assertEqual(FieldMetaType.isValid("bogus-type"), False)
예제 #3
0
  def __init__(self, streamDef, bookmark=None, saveOutput=False,
               isBlocking=True, maxTimeout=0, eofOnTimeout=False):
    """ Base class constructor, performs common initialization

    Parameters:
    ----------------------------------------------------------------
    streamDef:  The stream definition, potentially containing multiple sources
                (not supported yet). See
                /nupic/frameworks/opf/jsonschema/stream_def.json for the format
                of this dict

    bookmark: Bookmark to start reading from. This overrides the first_record
                field of the streamDef if provided.

    saveOutput: If true, save the output to a csv file in a temp directory.
                The path to the generated file can be found in the log
                output.

    isBlocking: should read operation block *forever* if the next row of data
                is not available, but the stream is not marked as 'completed'
                yet?

    maxTimeout: if isBlocking is False, max seconds to wait for more data before
                timing out; ignored when isBlocking is True.

    eofOnTimeout: If True and we get a read timeout (isBlocking must be False
                to get read timeouts), assume we've reached the end of the
                input and produce the last aggregated record, if one can be
                completed.

    """

    # Call superclass constructor
    super(StreamReader, self).__init__()

    loggerPrefix = 'com.numenta.nupic.data.StreamReader'
    self._logger = logging.getLogger(loggerPrefix)
    jsonhelpers.validate(streamDef,
                         schemaPath=pkg_resources.resource_filename(
                             jsonschema.__name__, "stream_def.json"))
    assert len(streamDef['streams']) == 1, "Only 1 source stream is supported"

    # Save constructor args
    sourceDict = streamDef['streams'][0]
    self._recordCount = 0
    self._eofOnTimeout = eofOnTimeout
    self._logger.debug('Reading stream with the def: %s', sourceDict)

    # Dictionary to store record statistics (min and max of scalars for now)
    self._stats = None

    # ---------------------------------------------------------------------
    # Get the stream definition params

    # Limiting window of the stream. It would not return any records until
    # 'first_record' ID is read (or very first with the ID above that). The
    # stream will return EOS once it reads record with ID 'last_record' or
    # above (NOTE: the name 'lastRecord' is misleading because it is NOT
    #  inclusive).
    firstRecordIdx = sourceDict.get('first_record', None)
    self._sourceLastRecordIdx = sourceDict.get('last_record', None)

    # If a bookmark was given, then override first_record from the stream
    #  definition.
    if bookmark is not None:
      firstRecordIdx = None


    # Column names must be provided in the streamdef json
    # Special case is ['*'], meaning all available names from the record stream
    self._streamFieldNames = sourceDict.get('columns', None)
    if self._streamFieldNames != None and self._streamFieldNames[0] == '*':
      self._needFieldsFiltering = False
    else:
      self._needFieldsFiltering = True

    # Types must be specified in streamdef json, or in case of the
    #  file_recod_stream types could be implicit from the file
    streamFieldTypes = sourceDict.get('types', None)
    self._logger.debug('Types from the def: %s', streamFieldTypes)
    # Validate that all types are valid
    if streamFieldTypes is not None:
      for dataType in streamFieldTypes:
        assert FieldMetaType.isValid(dataType)

    # Reset, sequence and time fields might be provided by streamdef json
    streamResetFieldName = streamDef.get('resetField', None)
    streamTimeFieldName = streamDef.get('timeField', None)
    streamSequenceFieldName = streamDef.get('sequenceIdField', None)
    self._logger.debug('r, t, s fields: %s, %s, %s', streamResetFieldName,
                                                      streamTimeFieldName,
                                                      streamSequenceFieldName)


    # =======================================================================
    # Open up the underlying record store
    dataUrl = sourceDict.get('source', None)
    assert dataUrl is not None
    self._recordStore = self._openStream(dataUrl, isBlocking, maxTimeout,
                                         bookmark, firstRecordIdx)
    assert self._recordStore is not None


    # =======================================================================
    # Prepare the data structures we need for returning just the fields
    #  the caller wants from each record
    recordStoreFields = self._recordStore.getFields()
    self._recordStoreFieldNames = self._recordStore.getFieldNames()

    if not self._needFieldsFiltering:
      self._streamFieldNames = self._recordStoreFieldNames

    # Build up the field definitions for each field. This is a list of tuples
    #  of (name, type, special)
    self._streamFields = []
    for dstIdx, name in enumerate(self._streamFieldNames):
      if name not in self._recordStoreFieldNames:
        raise RuntimeError("The column '%s' from the stream definition "
          "is not present in the underlying stream which has the following "
          "columns: %s" % (name, self._recordStoreFieldNames))

      fieldIdx = self._recordStoreFieldNames.index(name)
      fieldType = recordStoreFields[fieldIdx].type
      fieldSpecial = recordStoreFields[fieldIdx].special

      # If the types or specials were defined in the stream definition,
      #   then override what was found in the record store
      if streamFieldTypes is not None:
        fieldType = streamFieldTypes[dstIdx]

      if streamResetFieldName is not None and streamResetFieldName == name:
        fieldSpecial = FieldMetaSpecial.reset
      if streamTimeFieldName is not None and streamTimeFieldName == name:
        fieldSpecial = FieldMetaSpecial.timestamp
      if (streamSequenceFieldName is not None and
          streamSequenceFieldName == name):
        fieldSpecial = FieldMetaSpecial.sequence

      self._streamFields.append(FieldMetaInfo(name, fieldType, fieldSpecial))


    # ========================================================================
    # Create the aggregator which will handle aggregation of records before
    #  returning them.
    self._aggregator = Aggregator(
            aggregationInfo=streamDef.get('aggregation', None),
            inputFields=recordStoreFields,
            timeFieldName=streamDef.get('timeField', None),
            sequenceIdFieldName=streamDef.get('sequenceIdField', None),
            resetFieldName=streamDef.get('resetField', None))

    # We rely on the aggregator to tell us the bookmark of the last raw input
    #  that contributed to the aggregated record
    self._aggBookmark = None

    # Compute the aggregation period in terms of months and seconds
    if 'aggregation' in streamDef:
      self._aggMonthsAndSeconds = nupic.support.aggregationToMonthsSeconds(
                streamDef.get('aggregation'))
    else:
      self._aggMonthsAndSeconds = None


    # ========================================================================
    # Are we saving the generated output to a csv?
    if saveOutput:
      tmpDir = tempfile.mkdtemp()
      outFilename = os.path.join(tmpDir, "generated_output.csv")
      self._logger.info("StreamReader: Saving generated records to: '%s'" %
                        outFilename)
      self._writer = FileRecordStream(streamID=outFilename,
                                      write=True,
                                      fields=self._streamFields)
    else:
      self._writer = None
예제 #4
0
    def __init__(self,
                 streamDef,
                 bookmark=None,
                 saveOutput=False,
                 isBlocking=True,
                 maxTimeout=0,
                 eofOnTimeout=False):
        """ Base class constructor, performs common initialization

    Parameters:
    ----------------------------------------------------------------
    streamDef:  The stream definition, potentially containing multiple sources
                (not supported yet). See
                /nupic/frameworks/opf/jsonschema/stream_def.json for the format
                of this dict

    bookmark: Bookmark to start reading from. This overrides the first_record
                field of the streamDef if provided.

    saveOutput: If true, save the output to a csv file in a temp directory.
                The path to the generated file can be found in the log
                output.

    isBlocking: should read operation block *forever* if the next row of data
                is not available, but the stream is not marked as 'completed'
                yet?

    maxTimeout: if isBlocking is False, max seconds to wait for more data before
                timing out; ignored when isBlocking is True.

    eofOnTimeout: If True and we get a read timeout (isBlocking must be False
                to get read timeouts), assume we've reached the end of the
                input and produce the last aggregated record, if one can be
                completed.

    """

        # Call superclass constructor
        super(StreamReader, self).__init__()

        loggerPrefix = 'com.numenta.nupic.data.StreamReader'
        self._logger = logging.getLogger(loggerPrefix)
        jsonhelpers.validate(streamDef,
                             schemaPath=pkg_resources.resource_filename(
                                 jsonschema.__name__, "stream_def.json"))
        assert len(
            streamDef['streams']) == 1, "Only 1 source stream is supported"

        # Save constructor args
        sourceDict = streamDef['streams'][0]
        self._recordCount = 0
        self._eofOnTimeout = eofOnTimeout
        self._logger.debug('Reading stream with the def: %s', sourceDict)

        # Dictionary to store record statistics (min and max of scalars for now)
        self._stats = None

        # ---------------------------------------------------------------------
        # Get the stream definition params

        # Limiting window of the stream. It would not return any records until
        # 'first_record' ID is read (or very first with the ID above that). The
        # stream will return EOS once it reads record with ID 'last_record' or
        # above (NOTE: the name 'lastRecord' is misleading because it is NOT
        #  inclusive).
        firstRecordIdx = sourceDict.get('first_record', None)
        self._sourceLastRecordIdx = sourceDict.get('last_record', None)

        # If a bookmark was given, then override first_record from the stream
        #  definition.
        if bookmark is not None:
            firstRecordIdx = None

        # Column names must be provided in the streamdef json
        # Special case is ['*'], meaning all available names from the record stream
        self._streamFieldNames = sourceDict.get('columns', None)
        if self._streamFieldNames != None and self._streamFieldNames[0] == '*':
            self._needFieldsFiltering = False
        else:
            self._needFieldsFiltering = True

        # Types must be specified in streamdef json, or in case of the
        #  file_recod_stream types could be implicit from the file
        streamFieldTypes = sourceDict.get('types', None)
        self._logger.debug('Types from the def: %s', streamFieldTypes)
        # Validate that all types are valid
        if streamFieldTypes is not None:
            for dataType in streamFieldTypes:
                assert FieldMetaType.isValid(dataType)

        # Reset, sequence and time fields might be provided by streamdef json
        streamResetFieldName = streamDef.get('resetField', None)
        streamTimeFieldName = streamDef.get('timeField', None)
        streamSequenceFieldName = streamDef.get('sequenceIdField', None)
        self._logger.debug('r, t, s fields: %s, %s, %s', streamResetFieldName,
                           streamTimeFieldName, streamSequenceFieldName)

        # =======================================================================
        # Open up the underlying record store
        dataUrl = sourceDict.get('source', None)
        assert dataUrl is not None
        self._recordStore = self._openStream(dataUrl, isBlocking, maxTimeout,
                                             bookmark, firstRecordIdx)
        assert self._recordStore is not None

        # =======================================================================
        # Prepare the data structures we need for returning just the fields
        #  the caller wants from each record
        recordStoreFields = self._recordStore.getFields()
        self._recordStoreFieldNames = self._recordStore.getFieldNames()

        if not self._needFieldsFiltering:
            self._streamFieldNames = self._recordStoreFieldNames

        # Build up the field definitions for each field. This is a list of tuples
        #  of (name, type, special)
        self._streamFields = []
        for dstIdx, name in enumerate(self._streamFieldNames):
            if name not in self._recordStoreFieldNames:
                raise RuntimeError(
                    "The column '%s' from the stream definition "
                    "is not present in the underlying stream which has the following "
                    "columns: %s" % (name, self._recordStoreFieldNames))

            fieldIdx = self._recordStoreFieldNames.index(name)
            fieldType = recordStoreFields[fieldIdx].type
            fieldSpecial = recordStoreFields[fieldIdx].special

            # If the types or specials were defined in the stream definition,
            #   then override what was found in the record store
            if streamFieldTypes is not None:
                fieldType = streamFieldTypes[dstIdx]

            if streamResetFieldName is not None and streamResetFieldName == name:
                fieldSpecial = FieldMetaSpecial.reset
            if streamTimeFieldName is not None and streamTimeFieldName == name:
                fieldSpecial = FieldMetaSpecial.timestamp
            if (streamSequenceFieldName is not None
                    and streamSequenceFieldName == name):
                fieldSpecial = FieldMetaSpecial.sequence

            self._streamFields.append(
                FieldMetaInfo(name, fieldType, fieldSpecial))

        # ========================================================================
        # Create the aggregator which will handle aggregation of records before
        #  returning them.
        self._aggregator = Aggregator(
            aggregationInfo=streamDef.get('aggregation', None),
            inputFields=recordStoreFields,
            timeFieldName=streamDef.get('timeField', None),
            sequenceIdFieldName=streamDef.get('sequenceIdField', None),
            resetFieldName=streamDef.get('resetField', None))

        # We rely on the aggregator to tell us the bookmark of the last raw input
        #  that contributed to the aggregated record
        self._aggBookmark = None

        # Compute the aggregation period in terms of months and seconds
        if 'aggregation' in streamDef:
            self._aggMonthsAndSeconds = nupic.support.aggregationToMonthsSeconds(
                streamDef.get('aggregation'))
        else:
            self._aggMonthsAndSeconds = None

        # ========================================================================
        # Are we saving the generated output to a csv?
        if saveOutput:
            tmpDir = tempfile.mkdtemp()
            outFilename = os.path.join(tmpDir, "generated_output.csv")
            self._logger.info(
                "StreamReader: Saving generated records to: '%s'" %
                outFilename)
            self._writer = FileRecordStream(streamID=outFilename,
                                            write=True,
                                            fields=self._streamFields)
        else:
            self._writer = None
예제 #5
0
  def __init__(self, streamID, write=False, fields=None, missingValues=None,
               bookmark=None, includeMS=True, firstRecord=None):
    super(FileRecordStream, self).__init__()

    # Only bookmark or firstRow can be specified, not both
    if bookmark is not None and firstRecord is not None:
      raise RuntimeError(
          "Only bookmark or firstRecord can be specified, not both")

    if fields is None:
      fields = []
    if missingValues is None:
      missingValues = ['']

    # We'll be operating on csvs with arbitrarily long fields
    size = 2**27
    csv.field_size_limit(size)

    self._filename = streamID
    # We can't guarantee what system files are coming from, use universal
    # newlines
    self._write = write
    self._mode = self._FILE_WRITE_MODE if write else self._FILE_READ_MODE
    self._file = open(self._filename, self._mode)
    self._sequences = set()
    self.rewindAtEOF = False

    if write:
      assert fields is not None
      assert isinstance(fields, (tuple, list))
      # Verify all fields are 3-tuple
      assert all(isinstance(f, (tuple, FieldMetaInfo)) and len(f) == 3
                 for f in fields)
      names, types, specials = zip(*fields)
      self._writer = csv.writer(self._file)
    else:
      # Read header lines
      self._reader = csv.reader(self._file, dialect="excel")
      try:
        names = [n.strip() for n in self._reader.next()]
      except:
        raise Exception('The header line of the file %s contained a NULL byte' \
                        % self._filename)
      types = [t.strip() for t in self._reader.next()]
      specials = [s.strip() for s in self._reader.next()]

      # If there are no specials, this means there was a blank line
      if len(specials) == 0:
        specials=[""]

    if not len(names) == len(types) == len(specials):
      raise Exception('Invalid file format: different number of fields '
                      'in the header rows of file %s (%d, %d, %d)' %
                      (streamID, len(names), len(types), len(specials)))

    # Verify standard file format
    for t in types:
      if not FieldMetaType.isValid(t):
        raise Exception('Invalid file format for "%s" - field type "%s" '
                        'not a valid FieldMetaType' % (self._filename, t,))

    for s in specials:
      if not FieldMetaSpecial.isValid(s):
        raise Exception('Invalid file format. \'%s\' is not a valid special '
                        'flag' % s)

    self._fields = [FieldMetaInfo(*attrs)
                    for attrs in zip(names, types, specials)]
    self._fieldCount = len(self._fields)

    # Keep track on how many records have been read/written
    self._recordCount = 0

    self._timeStampIdx = (specials.index(FieldMetaSpecial.timestamp)
                          if FieldMetaSpecial.timestamp in specials else None)
    self._resetIdx = (specials.index(FieldMetaSpecial.reset)
                      if FieldMetaSpecial.reset in specials else None)
    self._sequenceIdIdx = (specials.index(FieldMetaSpecial.sequence)
                           if FieldMetaSpecial.sequence in specials else None)
    self._categoryIdx = (specials.index(FieldMetaSpecial.category)
                         if FieldMetaSpecial.category in specials else None)
    self._learningIdx = (specials.index(FieldMetaSpecial.learning)
                         if FieldMetaSpecial.learning in specials else None)

    # keep track of the current sequence
    self._currSequence = None
    self._currTime = None

    if self._timeStampIdx:
      assert types[self._timeStampIdx] == FieldMetaType.datetime
    if self._sequenceIdIdx:
      assert types[self._sequenceIdIdx] in (FieldMetaType.string,
                                            FieldMetaType.integer)
    if self._resetIdx:
      assert types[self._resetIdx] == FieldMetaType.integer
    if self._categoryIdx:
      assert types[self._categoryIdx] in (FieldMetaType.list,
                                          FieldMetaType.integer)
    if self._learningIdx:
      assert types[self._learningIdx] == FieldMetaType.integer

    # Convert the types to the actual types in order to convert the strings
    if self._mode == self._FILE_READ_MODE:
      m = {FieldMetaType.integer: intOrNone,
           FieldMetaType.float: floatOrNone,
           FieldMetaType.boolean: parseBool,
           FieldMetaType.string: unescape,
           FieldMetaType.datetime: parseTimestamp,
           FieldMetaType.sdr: parseSdr,
           FieldMetaType.list: parseStringList}
    else:
      if includeMS:
        datetimeFunc = serializeTimestamp
      else:
        datetimeFunc = serializeTimestampNoMS
      m = {FieldMetaType.integer: str,
           FieldMetaType.float: str,
           FieldMetaType.string: escape,
           FieldMetaType.boolean: str,
           FieldMetaType.datetime: datetimeFunc,
           FieldMetaType.sdr: serializeSdr,
           FieldMetaType.list: stripList}

    self._adapters = [m[t] for t in types]

    self._missingValues = missingValues

    #
    # If the bookmark is set, we need to skip over first N records
    #
    if bookmark is not None:
      rowsToSkip = self._getStartRow(bookmark)
    elif firstRecord is not None:
      rowsToSkip = firstRecord
    else:
      rowsToSkip = 0

    while rowsToSkip > 0:
      self.next()
      rowsToSkip -= 1


    # Dictionary to store record statistics (min and max of scalars for now)
    self._stats = None
예제 #6
0
  def __init__(self, streamID, write=False, fields=None, missingValues=None,
               bookmark=None, includeMS=True, firstRecord=None):
    """
    streamID:
        CSV file name, input or output
    write:
        True or False, open for writing if True
    fields:
        a list of nupic.data.fieldmeta.FieldMetaInfo field descriptors, only
        applicable when write==True
    missingValues:
        what missing values should be replaced with?
    bookmark:
        a reference to the previous reader, if passed in, the records will be
        returned starting from the point where bookmark was requested. Either
        bookmark or firstRecord can be specified, not both. If bookmark is used,
        then firstRecord MUST be None.
    includeMS:
        If false, the microseconds portion is not included in the
        generated output file timestamp fields. This makes it compatible
        with reading in from Excel.
    firstRecord:
        0-based index of the first record to start reading from. Either bookmark
        or firstRecord can be specified, not both. If bookmark is used, then
        firstRecord MUST be None.

    Each field is a 3-tuple (name, type, special or FieldMetaSpecial.none)

    The name is the name of the field. The type is one of the constants in
    `FieldMetaType`. The special is one of the `FieldMetaSpecial` values
    that designate their field as the sequenceId, reset, timestamp, or category.
    With exception of multiple categories, there can be at most one of each.
    There may be multiple fields of type datetime, but no more than one of them
    may be the timestamp field (FieldMetaSpecial.timestamp). The sequence id
    field must be either a string or an int. The reset field must be an int (and
    must contain 0 or 1).

    The category field must be an int or space-separated list of ints, where
    the former represents single-label classification and the latter is for
    multi-label classification (e.g. "1 3 4" designates a record for labels 1,
    3, and 4). The number of categories is allowed to vary record to record;
    sensor regions represent non-categories with -1, thus the category values
    must be >= 0.

    The FileRecordStream iterates over the field names, types and specials and
    stores the information.
    """
    super(FileRecordStream, self).__init__()

    # Only bookmark or firstRow can be specified, not both
    if bookmark is not None and firstRecord is not None:
      raise RuntimeError(
          "Only bookmark or firstRecord can be specified, not both")

    if fields is None:
      fields = []
    if missingValues is None:
      missingValues = ['']

    # We'll be operating on csvs with arbitrarily long fields
    size = 2**27
    csv.field_size_limit(size)

    self._filename = streamID
    # We can't guarantee what system files are coming from, use universal
    # newlines
    self._write = write
    self._mode = self._FILE_WRITE_MODE if write else self._FILE_READ_MODE
    self._file = open(self._filename, self._mode)
    self._sequences = set()
    self.rewindAtEOF = False

    if write:
      assert fields is not None
      assert isinstance(fields, (tuple, list))
      # Verify all fields are 3-tuple
      assert all(isinstance(f, (tuple, FieldMetaInfo)) and len(f) == 3
                 for f in fields)
      names, types, specials = zip(*fields)
      self._writer = csv.writer(self._file)
    else:
      # Make sure readline() works on windows too
      os.linesep = '\n'
      # Read header lines
      self._reader = csv.reader(self._file, dialect="excel")
      try:
        names = [n.strip() for n in self._reader.next()]
      except:
        raise Exception('The header line of the file %s contained a NULL byte' \
                        % self._filename)
      types = [t.strip() for t in self._reader.next()]
      specials = [s.strip() for s in self._reader.next()]

      # If there are no specials, this means there was a blank line
      if len(specials) == 0:
        specials=[""]

    if not len(names) == len(types) == len(specials):
      raise Exception('Invalid file format: different number of fields '
                      'in the header rows of file %s (%d, %d, %d)' %
                      (streamID, len(names), len(types), len(specials)))

    # Verify standard file format
    for t in types:
      if not FieldMetaType.isValid(t):
        raise Exception('Invalid file format for "%s" - field type "%s" '
                        'not a valid FieldMetaType' % (self._filename, t,))

    for s in specials:
      if not FieldMetaSpecial.isValid(s):
        raise Exception('Invalid file format. \'%s\' is not a valid special '
                        'flag' % s)

    self._fields = [FieldMetaInfo(*attrs)
                    for attrs in zip(names, types, specials)]
    self._fieldCount = len(self._fields)

    # Keep track on how many records have been read/written
    self._recordCount = 0

    self._timeStampIdx = (specials.index(FieldMetaSpecial.timestamp)
                          if FieldMetaSpecial.timestamp in specials else None)
    self._resetIdx = (specials.index(FieldMetaSpecial.reset)
                      if FieldMetaSpecial.reset in specials else None)
    self._sequenceIdIdx = (specials.index(FieldMetaSpecial.sequence)
                           if FieldMetaSpecial.sequence in specials else None)
    self._categoryIdx = (specials.index(FieldMetaSpecial.category)
                         if FieldMetaSpecial.category in specials else None)
    self._learningIdx = (specials.index(FieldMetaSpecial.learning)
                         if FieldMetaSpecial.learning in specials else None)

    # keep track of the current sequence
    self._currSequence = None
    self._currTime = None

    if self._timeStampIdx:
      assert types[self._timeStampIdx] == FieldMetaType.datetime
    if self._sequenceIdIdx:
      assert types[self._sequenceIdIdx] in (FieldMetaType.string,
                                            FieldMetaType.integer)
    if self._resetIdx:
      assert types[self._resetIdx] == FieldMetaType.integer
    if self._categoryIdx:
      assert types[self._categoryIdx] in (FieldMetaType.list,
                                          FieldMetaType.integer)
    if self._learningIdx:
      assert types[self._learningIdx] == FieldMetaType.integer

    # Convert the types to the actual types in order to convert the strings
    if self._mode == self._FILE_READ_MODE:
      m = {FieldMetaType.integer: intOrNone,
           FieldMetaType.float: floatOrNone,
           FieldMetaType.boolean: parseBool,
           FieldMetaType.string: unescape,
           FieldMetaType.datetime: parseTimestamp,
           FieldMetaType.sdr: parseSdr,
           FieldMetaType.list: parseStringList}
    else:
      if includeMS:
        datetimeFunc = serializeTimestamp
      else:
        datetimeFunc = serializeTimestampNoMS
      m = {FieldMetaType.integer: str,
           FieldMetaType.float: str,
           FieldMetaType.string: escape,
           FieldMetaType.boolean: str,
           FieldMetaType.datetime: datetimeFunc,
           FieldMetaType.sdr: serializeSdr,
           FieldMetaType.list: stripList}

    self._adapters = [m[t] for t in types]

    self._missingValues = missingValues

    #
    # If the bookmark is set, we need to skip over first N records
    #
    if bookmark is not None:
      rowsToSkip = self._getStartRow(bookmark)
    elif firstRecord is not None:
      rowsToSkip = firstRecord
    else:
      rowsToSkip = 0

    while rowsToSkip > 0:
      self.next()
      rowsToSkip -= 1


    # Dictionary to store record statistics (min and max of scalars for now)
    self._stats = None
예제 #7
0
    def __init__(self,
                 streamID,
                 write=False,
                 fields=None,
                 missingValues=None,
                 bookmark=None,
                 includeMS=True,
                 firstRecord=None):
        """
    streamID:
        CSV file name, input or output
    write:
        True or False, open for writing if True
    fields:
        a list of nupic.data.fieldmeta.FieldMetaInfo field descriptors, only
        applicable when write==True
    missingValues:
        what missing values should be replaced with?
    bookmark:
        a reference to the previous reader, if passed in, the records will be
        returned starting from the point where bookmark was requested. Either
        bookmark or firstRecord can be specified, not both. If bookmark is used,
        then firstRecord MUST be None.
    includeMS:
        If false, the microseconds portion is not included in the
        generated output file timestamp fields. This makes it compatible
        with reading in from Excel.
    firstRecord:
        0-based index of the first record to start reading from. Either bookmark
        or firstRecord can be specified, not both. If bookmark is used, then
        firstRecord MUST be None.

    Each field is a 3-tuple (name, type, special or FieldMetaSpecial.none)

    The name is the name of the field. The type is one of the constants in
    `FieldMetaType`. The special is one of the `FieldMetaSpecial` values
    that designate their field as the sequenceId, reset, timestamp, or category.
    With exception of multiple categories, there can be at most one of each.
    There may be multiple fields of type datetime, but no more than one of them
    may be the timestamp field (FieldMetaSpecial.timestamp). The sequence id
    field must be either a string or an int. The reset field must be an int (and
    must contain 0 or 1).

    The category field must be an int or space-separated list of ints, where
    the former represents single-label classification and the latter is for
    multi-label classification (e.g. "1 3 4" designates a record for labels 1,
    3, and 4). The number of categories is allowed to vary record to record;
    sensor regions represent non-categories with -1, thus the category values
    must be >= 0.

    The FileRecordStream iterates over the field names, types and specials and
    stores the information.
    """
        super(FileRecordStream, self).__init__()

        # Only bookmark or firstRow can be specified, not both
        if bookmark is not None and firstRecord is not None:
            raise RuntimeError(
                "Only bookmark or firstRecord can be specified, not both")

        if fields is None:
            fields = []
        if missingValues is None:
            missingValues = ['']

        # We'll be operating on csvs with arbitrarily long fields
        size = 2**27
        csv.field_size_limit(size)

        self._filename = streamID
        # We can't guarantee what system files are coming from, use universal
        # newlines
        self._write = write
        self._mode = self._FILE_WRITE_MODE if write else self._FILE_READ_MODE
        self._file = open(self._filename, self._mode)
        self._sequences = set()
        self.rewindAtEOF = False

        if write:
            assert fields is not None
            assert isinstance(fields, (tuple, list))
            # Verify all fields are 3-tuple
            assert all(
                isinstance(f, (tuple, FieldMetaInfo)) and len(f) == 3
                for f in fields)
            names, types, specials = zip(*fields)
            self._writer = csv.writer(self._file)
        else:
            # Read header lines
            self._reader = csv.reader(self._file, dialect="excel")
            try:
                names = [n.strip() for n in self._reader.next()]
            except:
                raise Exception('The header line of the file %s contained a NULL byte' \
                                % self._filename)
            types = [t.strip() for t in self._reader.next()]
            specials = [s.strip() for s in self._reader.next()]

            # If there are no specials, this means there was a blank line
            if len(specials) == 0:
                specials = [""]

        if not len(names) == len(types) == len(specials):
            raise Exception('Invalid file format: different number of fields '
                            'in the header rows of file %s (%d, %d, %d)' %
                            (streamID, len(names), len(types), len(specials)))

        # Verify standard file format
        for t in types:
            if not FieldMetaType.isValid(t):
                raise Exception(
                    'Invalid file format for "%s" - field type "%s" '
                    'not a valid FieldMetaType' % (
                        self._filename,
                        t,
                    ))

        for s in specials:
            if not FieldMetaSpecial.isValid(s):
                raise Exception(
                    'Invalid file format. \'%s\' is not a valid special '
                    'flag' % s)

        self._fields = [
            FieldMetaInfo(*attrs) for attrs in zip(names, types, specials)
        ]
        self._fieldCount = len(self._fields)

        # Keep track on how many records have been read/written
        self._recordCount = 0

        self._timeStampIdx = (specials.index(FieldMetaSpecial.timestamp) if
                              FieldMetaSpecial.timestamp in specials else None)
        self._resetIdx = (specials.index(FieldMetaSpecial.reset)
                          if FieldMetaSpecial.reset in specials else None)
        self._sequenceIdIdx = (specials.index(FieldMetaSpecial.sequence) if
                               FieldMetaSpecial.sequence in specials else None)
        self._categoryIdx = (specials.index(FieldMetaSpecial.category) if
                             FieldMetaSpecial.category in specials else None)
        self._learningIdx = (specials.index(FieldMetaSpecial.learning) if
                             FieldMetaSpecial.learning in specials else None)

        # keep track of the current sequence
        self._currSequence = None
        self._currTime = None

        if self._timeStampIdx:
            assert types[self._timeStampIdx] == FieldMetaType.datetime
        if self._sequenceIdIdx:
            assert types[self._sequenceIdIdx] in (FieldMetaType.string,
                                                  FieldMetaType.integer)
        if self._resetIdx:
            assert types[self._resetIdx] == FieldMetaType.integer
        if self._categoryIdx:
            assert types[self._categoryIdx] in (FieldMetaType.list,
                                                FieldMetaType.integer)
        if self._learningIdx:
            assert types[self._learningIdx] == FieldMetaType.integer

        # Convert the types to the actual types in order to convert the strings
        if self._mode == self._FILE_READ_MODE:
            m = {
                FieldMetaType.integer: intOrNone,
                FieldMetaType.float: floatOrNone,
                FieldMetaType.boolean: parseBool,
                FieldMetaType.string: unescape,
                FieldMetaType.datetime: parseTimestamp,
                FieldMetaType.sdr: parseSdr,
                FieldMetaType.list: parseStringList
            }
        else:
            if includeMS:
                datetimeFunc = serializeTimestamp
            else:
                datetimeFunc = serializeTimestampNoMS
            m = {
                FieldMetaType.integer: str,
                FieldMetaType.float: str,
                FieldMetaType.string: escape,
                FieldMetaType.boolean: str,
                FieldMetaType.datetime: datetimeFunc,
                FieldMetaType.sdr: serializeSdr,
                FieldMetaType.list: stripList
            }

        self._adapters = [m[t] for t in types]

        self._missingValues = missingValues

        #
        # If the bookmark is set, we need to skip over first N records
        #
        if bookmark is not None:
            rowsToSkip = self._getStartRow(bookmark)
        elif firstRecord is not None:
            rowsToSkip = firstRecord
        else:
            rowsToSkip = 0

        while rowsToSkip > 0:
            self.next()
            rowsToSkip -= 1

        # Dictionary to store record statistics (min and max of scalars for now)
        self._stats = None