def _createLPFNetwork(addSP = True, addTP = False): """Create an 'old-style' network ala LPF and return it.""" # ========================================================================== # Create the encoder and data source stuff we need to configure the sensor sensorParams = dict(verbosity = _VERBOSITY) encoder = _createEncoder() trainFile = findDataset("extra/gym/gym.csv") dataSource = FileRecordStream(streamID=trainFile) dataSource.setAutoRewind(True) # Create all the stuff we need to configure the CLARegion g_claConfig['spEnable'] = addSP g_claConfig['tpEnable'] = addTP claParams = _getCLAParams(encoder = encoder, config= g_claConfig) claParams['spSeed'] = g_claConfig['spSeed'] claParams['tpSeed'] = g_claConfig['tpSeed'] # ========================================================================== # Now create the network itself n = Network() n.addRegion("sensor", "py.RecordSensor", json.dumps(sensorParams)) sensor = n.regions['sensor'].getSelf() sensor.encoder = encoder sensor.dataSource = dataSource n.addRegion("level1", "py.CLARegion", json.dumps(claParams)) n.link("sensor", "level1", "UniformLink", "") n.link("sensor", "level1", "UniformLink", "", srcOutput="resetOut", destInput="resetIn") return n
def __init__(self, inputFilePath, verbosity=1, numLabels=3, spTrainingSize=0, tmTrainingSize=0, clsTrainingSize=0, classifierType="KNN"): """ @param inputFilePath (str) Path to data formatted for network API @param spTrainingSize (int) Number of samples the network has to be trained on before training the spatial pooler @param tmTrainingSize (int) Number of samples the network has to be trained on before training the temporal memory @param clsTrainingSize (int) Number of samples the network has to be trained on before training the classifier @param classifierType (str) Either "KNN" or "CLA" See ClassificationModel for remaining parameters """ self.spTrainingSize = spTrainingSize self.tmTrainingSize = tmTrainingSize self.clsTrainingSize = clsTrainingSize super(ClassificationModelHTM, self).__init__(verbosity=verbosity, numLabels=numLabels) # Initialize Network self.classifierType = classifierType self.recordStream = FileRecordStream(streamID=inputFilePath) self.encoder = CioEncoder(cacheDir="./experiments/cache") self._initModel()
def testCopyOneRow(self): expectedOutput = ("Timestamp,Value\n" "datetime,int\n" "T,\n" "2011-09-04 02:00:00.000000,1\n" "2011-09-04 02:05:00.000000,2\n" "2011-09-04 02:10:00.000000,2\n" "2011-09-04 02:15:00.000000,3\n" "2011-09-04 02:20:00.000000,4\n" "2011-09-04 02:25:00.000000,5\n" "2011-09-04 02:30:00.000000,6\n") mockInput = MagicMock(return_value=StringIO(self.sampleInput)) output = StringIO() mockOutput = MagicMock(return_value=output) with patch("__builtin__.open", mockInput): inputFile = FileRecordStream("input_path") with patch("__builtin__.open", mockOutput): outputFile = FileRecordStream("output_path", fields=inputFile.getFields(), write=True) anomalyzer.copy(inputFile, outputFile, 1, 1, 1) result = output.getvalue() result = result.replace("\r\n", "\n") result = result.replace("\r", "\n") self.assertSequenceEqual(expectedOutput, result)
def run(numRecords): ''' Run the Hot Gym example. ''' # Create a data source for the network. dataSource = FileRecordStream(streamID=_INPUT_FILE_PATH) numRecords = min(numRecords, dataSource.getDataRowCount()) network = createNetwork(dataSource) network.regions["sensor"].getSelf().predictedField = "price" # Set predicted field network.regions["sensor"].setParameter("predictedField", "price") # Enable learning for all regions. network.regions["SP"].setParameter("learningMode", 1) network.regions["TM"].setParameter("learningMode", 1) network.regions["classifier"].setParameter("learningMode", 1) # Enable inference for all regions. network.regions["SP"].setParameter("inferenceMode", 1) network.regions["TM"].setParameter("inferenceMode", 1) network.regions["classifier"].setParameter("inferenceMode", 1) results = [] N = _RUN_EPOCH # Run the network, N iterations at a time. graph = Graph({ 'title': 'Bitcoin Prediction', 'y_label': 'price', 'y_lim': 'auto', 'prediction_num': 2, 'line_labels': ['1-step', '5-step'] }) for iteration in range(0, numRecords, N): if iteration % _RUN_INTERVAL == 0: network.run(N) price = network.regions["sensor"].getOutputData("sourceOut")[0] predictionResults = getPredictionResults(network, "classifier") oneStep = predictionResults[1]["predictedValue"] oneStepConfidence = predictionResults[1]["predictionConfidence"] fiveStep = predictionResults[5]["predictedValue"] fiveStepConfidence = predictionResults[5]["predictionConfidence"] result = (oneStep, oneStepConfidence * 100, fiveStep, fiveStepConfidence * 100) if iteration % _PRINT_INTERVAL == 0: print "iteration: {}".format(iteration) print "1-step: {:16} ({:4.4}%)\t 5-step: {:16} ({:4.4}%)".format(*result) results.append(result) graph.write(price, [oneStep, fiveStep]) graph.close() return results
def _createLPFNetwork(addSP=True, addTP=False): """Create an 'old-style' network ala LPF and return it.""" # ========================================================================== # Create the encoder and data source stuff we need to configure the sensor sensorParams = dict(verbosity=_VERBOSITY) encoder = _createEncoder() trainFile = findDataset("extra/gym/gym.csv") dataSource = FileRecordStream(streamID=trainFile) dataSource.setAutoRewind(True) # Create all the stuff we need to configure the CLARegion g_claConfig["spEnable"] = addSP g_claConfig["tpEnable"] = addTP claParams = _getCLAParams(encoder=encoder, config=g_claConfig) claParams["spSeed"] = g_claConfig["spSeed"] claParams["tpSeed"] = g_claConfig["tpSeed"] # ========================================================================== # Now create the network itself n = Network() n.addRegion("sensor", "py.RecordSensor", json.dumps(sensorParams)) sensor = n.regions["sensor"].getSelf() sensor.encoder = encoder sensor.dataSource = dataSource n.addRegion("level1", "py.CLARegion", json.dumps(claParams)) n.link("sensor", "level1", "UniformLink", "") n.link("sensor", "level1", "UniformLink", "", srcOutput="resetOut", destInput="resetIn") return n
def _createNetwork(): """Create a network with a RecordSensor region and a SDRClassifier region""" network = Network() network.addRegion('sensor', 'py.RecordSensor', '{}') network.addRegion('classifier', 'py.SDRClassifierRegion', '{}') _createSensorToClassifierLinks(network, 'sensor', 'classifier') # Add encoder to sensor region. sensorRegion = network.regions['sensor'].getSelf() encoderParams = {'consumption': {'fieldname': 'consumption', 'resolution': 0.88, 'seed': 1, 'name': 'consumption', 'type': 'RandomDistributedScalarEncoder'}} encoder = MultiEncoder() encoder.addMultipleEncoders(encoderParams) sensorRegion.encoder = encoder # Add data source. testDir = os.path.dirname(os.path.abspath(__file__)) inputFile = os.path.join(testDir, 'fixtures', 'gymdata-test.csv') dataSource = FileRecordStream(streamID=inputFile) sensorRegion.dataSource = dataSource # Get and set what field index we want to predict. predictedIdx = dataSource.getFieldNames().index('consumption') network.regions['sensor'].setParameter('predictedFieldIdx', predictedIdx) return network
def testBadDataset(self): filename = _getTempFileName() print 'Creating tempfile:', filename # Write bad dataset with records going backwards in time fields = [('timestamp', 'datetime', 'T')] o = FileRecordStream(streamID=filename, write=True, fields=fields) # Records records = ( [datetime(day=3, month=3, year=2010)], [datetime(day=2, month=3, year=2010)]) o.appendRecord(records[0]) o.appendRecord(records[1]) o.close() # Write bad dataset with broken sequences fields = [('sid', 'int', 'S')] o = FileRecordStream(streamID=filename, write=True, fields=fields) # Records records = ([1], [2], [1]) o.appendRecord(records[0]) o.appendRecord(records[1]) self.assertRaises(Exception, o.appendRecord, (records[2],)) o.close()
def test_WeightedMean(self): # Cleanup old files #for f in glob.glob('*.*'): # if 'auto_specials' in f: # os.remove(f) fields = [ ('dummy1', 'int', ''), ('dummy2', 'int', ''), ('timestamp', 'datetime', 'T'), ] records = ( [10, 1, datetime.datetime(2000, 3, 1)], [5, 2, datetime.datetime(2000, 3, 2)], [1, 100, datetime.datetime(2000, 3, 3)], [2, 4, datetime.datetime(2000, 3, 4)], [4, 1, datetime.datetime(2000, 3, 5)], [4, 0, datetime.datetime(2000, 3, 6)], [5, 0, datetime.datetime(2000, 3, 7)], [6, 0, datetime.datetime(2000, 3, 8)], ) if not os.path.isdir('data'): os.makedirs('data') with FileRecordStream('data/weighted_mean.csv', write=True, fields=fields) \ as o: for r in records: o.appendRecord(r) # Aggregate just the dummy field, all the specials should be added ai = dict(fields=[('dummy1', 'wmean:dummy2', None), ('dummy2', 'mean', None)], days=2) handle = \ tempfile.NamedTemporaryFile(prefix='weighted_mean', suffix='.csv', dir='.') tempFile = handle.name handle.close() outputFile = generateDataset(ai, 'weighted_mean.csv', tempFile) result = [] with FileRecordStream(outputFile) as f: print f.getFields() for r in f: result.append(r) self.assertEqual(result[0][0], 6.0) self.assertEqual(result[0][1], 1.0) self.assertEqual(result[1][0], 1.0) self.assertEqual(result[1][1], 52.0) self.assertEqual(result[2][0], 4.0) self.assertEqual(result[2][1], 0.0) self.assertEqual(result[3][0], None) self.assertEqual(result[3][1], 0.0) return
def initialize(self): """ Initialize this node. """ Node.initialize(self) # Initialize input bits self.bits = [] for x in range(self.width): for y in range(self.height): bit = Bit() bit.x = x bit.y = y self.bits.append(bit) if self.data_source_type == DataSourceType.FILE: """ Initialize this node opening the file and place cursor on the first record. """ # If file name provided is a relative path, use project file path if self.file_name != '' and os.path.dirname(self.file_name) == '': full_file_name = os.path.dirname(Global.project.file_name) + '/' + self.file_name else: full_file_name = self.file_name # Check if file really exists if not os.path.isfile(full_file_name): QtWidgets.QMessageBox.warning(None, "Warning", "Input stream file '" + full_file_name + "' was not found or specified.", QtWidgets.QMessageBox.Ok) return # Create a data source for read the file self.data_source = FileRecordStream(full_file_name) elif self.data_source_type == DataSourceType.DATABASE: pass self.encoder = MultiEncoder() for encoding in self.encodings: encoding.initialize() # Create an instance class for an encoder given its module, class and constructor params encoding.encoder = getInstantiatedClass(encoding.encoder_module, encoding.encoder_class, encoding.encoder_params) # Take the first part of encoder field name as encoder name # Ex: timestamp_weekend.weekend => timestamp_weekend encoding.encoder.name = encoding.encoder_field_name.split('.')[0] # Add sub-encoder to multi-encoder list self.encoder.addEncoder(encoding.data_source_field_name, encoding.encoder) # If encoder size is not the same to sensor size then throws exception encoder_size = self.encoder.getWidth() sensor_size = self.width * self.height if encoder_size > sensor_size: QtWidgets.QMessageBox.warning(None, "Warning", "'" + self.name + "': Encoder size (" + str(encoder_size) + ") is different from sensor size (" + str(self.width) + " x " + str(self.height) + " = " + str(sensor_size) + ").", QtWidgets.QMessageBox.Ok) return return True
def _createOPFNetwork(addSP=True, addTP=False): """Create a 'new-style' network ala OPF and return it. If addSP is true, an SPRegion will be added named 'level1SP'. If addTP is true, a TPRegion will be added named 'level1TP' """ # ========================================================================== # Create the encoder and data source stuff we need to configure the sensor sensorParams = dict(verbosity=_VERBOSITY) encoder = _createEncoder() trainFile = findDataset("extra/gym/gym.csv") dataSource = FileRecordStream(streamID=trainFile) dataSource.setAutoRewind(True) # ========================================================================== # Now create the network itself n = Network() n.addRegion("sensor", "py.RecordSensor", json.dumps(sensorParams)) sensor = n.regions["sensor"].getSelf() sensor.encoder = encoder sensor.dataSource = dataSource # ========================================================================== # Add the SP if requested if addSP: print "Adding SPRegion" g_spRegionConfig["inputWidth"] = encoder.getWidth() n.addRegion("level1SP", "py.SPRegion", json.dumps(g_spRegionConfig)) n.link("sensor", "level1SP", "UniformLink", "") n.link("sensor", "level1SP", "UniformLink", "", srcOutput="resetOut", destInput="resetIn") n.link("level1SP", "sensor", "UniformLink", "", srcOutput="spatialTopDownOut", destInput="spatialTopDownIn") n.link("level1SP", "sensor", "UniformLink", "", srcOutput="temporalTopDownOut", destInput="temporalTopDownIn") # ========================================================================== if addTP and addSP: # Add the TP on top of SP if requested # The input width of the TP is set to the column count of the SP print "Adding TPRegion on top of SP" g_tpRegionConfig["inputWidth"] = g_spRegionConfig["columnCount"] n.addRegion("level1TP", "py.TPRegion", json.dumps(g_tpRegionConfig)) n.link("level1SP", "level1TP", "UniformLink", "") n.link("level1TP", "level1SP", "UniformLink", "", srcOutput="topDownOut", destInput="topDownIn") n.link("sensor", "level1TP", "UniformLink", "", srcOutput="resetOut", destInput="resetIn") elif addTP: # Add a lone TPRegion if requested # The input width of the TP is set to the encoder width print "Adding TPRegion" g_tpRegionConfig["inputWidth"] = encoder.getWidth() n.addRegion("level1TP", "py.TPRegion", json.dumps(g_tpRegionConfig)) n.link("sensor", "level1TP", "UniformLink", "") n.link("sensor", "level1TP", "UniformLink", "", srcOutput="resetOut", destInput="resetIn") return n
def train(self, training_file, num_records): """Create a network and training it on a CSV data source""" dataSource = FileRecordStream(streamID=training_file) dataSource.setAutoRewind(True) self._network = configureNetwork(dataSource, self.network_config) for i in xrange(num_records): # Equivalent to: network.run(num_records) self._network.run(1) self._network.save(self.trained_network_path)
def test_AutoSpecialFields(self): # Cleanup old files #for f in glob.glob('*.*'): # if 'auto_specials' in f: # os.remove(f) fields = [ ('dummy', 'string', ''), ('timestamp', 'datetime', 'T'), ('reset', 'int', 'R'), ('sid', 'int', 'S'), ] records = ( ['dummy-1', datetime.datetime(2000, 3, 1), 1, 1], ['dummy-2', datetime.datetime(2000, 3, 2), 0, 1], ['dummy-3', datetime.datetime(2000, 3, 3), 0, 1], ['dummy-4', datetime.datetime(2000, 3, 4), 1, 2], ['dummy-5', datetime.datetime(2000, 3, 5), 0, 2], ) if not os.path.isdir('data'): os.makedirs('data') with FileRecordStream('data/auto_specials.csv', write=True, fields=fields) \ as o: for r in records: o.appendRecord(r) # Aggregate just the dummy field, all the specials should be added ai = dict(fields=[('dummy', lambda x: x[0])], weeks=3) handle = \ tempfile.NamedTemporaryFile(prefix='auto_specials', suffix='.csv', dir='.') tempFile = handle.name handle.close() outputFile = generateDataset(ai, 'auto_specials.csv', tempFile) result = [] with FileRecordStream(outputFile) as f: print f.getFields() for r in f: result.append(r) self.assertEqual(result[0][2], 1) # reset self.assertEqual(result[0][3], 1) # seq id self.assertEqual(result[0][0], 'dummy-1') self.assertEqual(result[1][2], 1) # reset self.assertEqual(result[1][3], 2) # seq id self.assertEqual(result[1][0], 'dummy-4') return
def createSensors(network, sensors): for sensor in sensors: dataSource = FileRecordStream(streamID=sensor["source"]) dataSource.setAutoRewind(True) encoder = MultiEncoder() encoder.addMultipleEncoders(fieldEncodings=sensor["encodings"]) s = createRegion(network, sensor) s = s.getSelf() s.dataSource = dataSource s.encoder = encoder return network
def _openStream(self, dataUrl, isBlocking, maxTimeout, bookmark, firstRecordIdx): """Open the underlying file stream. This only supports 'file://' prefixed paths. """ self._recordStoreName = findDataset(dataUrl[len(FILE_PREF):]) self._recordStore = FileRecordStream(streamID=self._recordStoreName, write=False, bookmark=bookmark, firstRecord=firstRecordIdx)
def runDemo(): dataSource = FileRecordStream(streamID=_INPUT_FILE_PATH) numRecords = dataSource.getDataRowCount() print "Creating network" network = createNetwork(dataSource) outputPath = os.path.join(os.path.dirname(__file__), _OUTPUT_FILE_NAME) with open(outputPath, "w") as outputFile: writer = csv.writer(outputFile) print "Running network" print "Writing output to: %s" % outputPath runNetwork(network, numRecords, writer) print "Hierarchy demo finished"
def _openStream(self, dataUrl, isBlocking, maxTimeout, bookmark, firstRecordIdx): """Open the underlying file stream. This only supports 'file://' prefixed paths. """ filePath = dataUrl[len(FILE_PREF):] if not os.path.isabs(filePath): filePath = os.path.join(os.getcwd(), filePath) self._recordStoreName = filePath self._recordStore = FileRecordStream(streamID=self._recordStoreName, write=False, bookmark=bookmark, firstRecord=firstRecordIdx)
def run(numRecords): ''' Run the Hot Gym example. ''' # Create a data source for the network. dataSource = FileRecordStream(streamID=_INPUT_FILE_PATH) numRecords = min(numRecords, dataSource.getDataRowCount()) network = createNetwork(dataSource) network.regions["sensor"].getSelf().predictedField = "sine" # Set predicted field network.regions["sensor"].setParameter("predictedField", "sine") # Enable learning for all regions. network.regions["SP"].setParameter("learningMode", 1) network.regions["TM"].setParameter("learningMode", 1) network.regions["classifier"].setParameter("learningMode", 1) # Enable inference for all regions. network.regions["SP"].setParameter("inferenceMode", 1) network.regions["TM"].setParameter("inferenceMode", 1) network.regions["classifier"].setParameter("inferenceMode", 1) results = [] N = 1 # Run the network, N iterations at a time. output = nupic_output.NuPICPlotOutput("Sine", show_anomaly_score=True) for iteration in range(0, numRecords, N): network.run(N) sine = network.regions["sensor"].getOutputData("sourceOut")[0] predictionResults = getPredictionResults(network, "classifier") oneStep = predictionResults[1]["predictedValue"] oneStepConfidence = predictionResults[1]["predictionConfidence"] fiveStep = predictionResults[10]["predictedValue"] fiveStepConfidence = predictionResults[10]["predictionConfidence"] result = (oneStep, oneStepConfidence * 100, fiveStep, fiveStepConfidence * 100) print "1-step: {:16} ({:4.4}%)\t 10-step: {:16} ({:4.4}%)".format( *result) results.append(result) output.write(sine, oneStep, 0) output.close() return results
def main(args): inputPath, outputPath, action = args[:3] with FileRecordStream(inputPath) as reader: with FileRecordStream(outputPath, write=True, fields=reader.fields) as writer: assert action in Actions.ACTIONS, USAGE if action == Actions.ADD: assert len(args) == 7, USAGE start = int(args[4]) stop = int(args[5]) column = int(args[3]) valueType = eval(reader.fields[column][1]) value = valueType(args[6]) add(reader, writer, column, start, stop, value) elif action == Actions.SCALE: assert len(args) == 7, USAGE start = int(args[4]) stop = int(args[5]) column = int(args[3]) valueType = eval(reader.fields[column][1]) multiple = valueType(args[6]) scale(reader, writer, column, start, stop, multiple) elif action == Actions.COPY: assert 5 <= len(args) <= 8, USAGE start = int(args[3]) stop = int(args[4]) if len(args) > 5: insertLocation = int(args[5]) else: insertLocation = None if len(args) == 7: tsCol = int(args[6]) else: tsCol = None copy(reader, writer, start, stop, insertLocation, tsCol) elif action == Actions.SAMPLE or action == Actions.SAMPLE2: assert 4 <= len(args) <= 7, USAGE n = int(args[3]) start = None if len(args) > 4: start = int(args[4]) stop = None if len(args) > 5: stop = int(args[5]) tsCol = None if len(args) > 6: tsCol = int(args[6]) writeSampleOnly = action == Actions.SAMPLE sample(reader, writer, n, start, stop, tsCol, writeSampleOnly)
def createAndRunNetwork(testRegionType, testOutputName, checkpointMidway=False, temporalImp=None): dataSource = FileRecordStream(streamID=_INPUT_FILE_PATH) if temporalImp is None: network = createNetwork(dataSource) else: network = createNetwork(dataSource, enableTP=True, temporalImp=temporalImp) network.initialize() results = [] for i in xrange(_NUM_RECORDS): if checkpointMidway and i == (_NUM_RECORDS / 2): network = saveAndLoadNetwork(network) # Run the network for a single iteration network.run(1) testRegion = network.getRegionsByType(testRegionType)[0] output = testRegion.getOutputData(testOutputName).copy() results.append(output) return results
def aggregate(dataPath, outputPath, days=0, hours=0): with FileRecordStream(dataPath) as reader: aggregator = Aggregator({'fields': [('messages', 'sum')], 'days': days, 'hours': hours}, reader.getFields()) with open(outputPath, 'w') as outfile: writer = csv.writer(outfile) writer.writerow(['timestamp', 'messages']) writer.writerow(['datetime', 'int']) writer.writerow(['T', '']) while True: inRecord = reader.getNextRecord() bookmark = reader.getBookmark() (aggRecord, aggBookmark) = aggregator.next(inRecord, bookmark) # reached EOF? if inRecord is None and aggRecord is None: break if aggRecord is not None: timestamp = aggRecord[0].strftime('%Y-%m-%d %H:%M:%S.0') writer.writerow([timestamp, aggRecord[1]])
def _sortChunk(records, key, chunkIndex, fields): """Sort in memory chunk of records records - a list of records read from the original dataset key - a list of indices to sort the records by chunkIndex - the index of the current chunk The records contain only the fields requested by the user. _sortChunk() will write the sorted records to a standard File named "chunk_<chunk index>.csv" (chunk_0.csv, chunk_1.csv,...). """ title(additional='(key=%s, chunkIndex=%d)' % (str(key), chunkIndex)) assert len(records) > 0 # Sort the current records records.sort(key=itemgetter(*key)) # Write to a chunk file if chunkIndex is not None: filename = 'chunk_%d.csv' % chunkIndex with FileRecordStream(filename, write=True, fields=fields) as o: for r in records: o.appendRecord(r) assert os.path.getsize(filename) > 0 return records
def initialize(self): """ Initialize this node. """ Node.initialize(self) # Initialize input bits self.bits = [] for x in range(self.width): for y in range(self.height): bit = Bit() bit.x = x bit.y = y self.bits.append(bit) if self.dataSourceType == DataSourceType.file: """ Initialize this node opening the file and place cursor on the first record. """ # If file name provided is a relative path, use project file path if self.fileName != '' and os.path.dirname(self.fileName) == '': fullFileName = os.path.dirname(Global.project.fileName) + '/' + self.fileName else: fullFileName = self.fileName # Check if file really exists if not os.path.isfile(fullFileName): QtGui.QMessageBox.warning(None, "Warning", "Input stream file '" + fullFileName + "' was not found or specified.", QtGui.QMessageBox.Ok) return # Create a data source for read the file self.dataSource = FileRecordStream(fullFileName) elif self.dataSourceType == DataSourceType.database: pass self.encoder = MultiEncoder() for encoding in self.encodings: encoding.initialize() # Create an instance class for an encoder given its module, class and constructor params encoding.encoder = getInstantiatedClass(encoding.encoderModule, encoding.encoderClass, encoding.encoderParams) # Take the first part of encoder field name as encoder name # Ex: timestamp_weekend.weekend => timestamp_weekend encoding.encoder.name = encoding.encoderFieldName.split('.')[0] # Add sub-encoder to multi-encoder list self.encoder.addEncoder(encoding.dataSourceFieldName, encoding.encoder) # If encoder size is not the same to sensor size then throws exception encoderSize = self.encoder.getWidth() sensorSize = self.width * self.height if encoderSize > sensorSize: QtGui.QMessageBox.warning(None, "Warning", "'" + self.name + "': Encoder size (" + str(encoderSize) + ") is different from sensor size (" + str(self.width) + " x " + str(self.height) + " = " + str(sensorSize) + ").", QtGui.QMessageBox.Ok) return return True
def _createNetwork(): """Create network with one RecordSensor region.""" network = Network() network.addRegion('sensor', 'py.RecordSensor', '{}') sensorRegion = network.regions['sensor'].getSelf() # Add an encoder. encoderParams = {'consumption': {'fieldname': 'consumption', 'resolution': 0.88, 'seed': 1, 'name': 'consumption', 'type': 'RandomDistributedScalarEncoder'}} encoder = MultiEncoder() encoder.addMultipleEncoders(encoderParams) sensorRegion.encoder = encoder # Add a data source. testDir = os.path.dirname(os.path.abspath(__file__)) inputFile = os.path.join(testDir, 'fixtures', 'gymdata-test.csv') dataSource = FileRecordStream(streamID=inputFile) sensorRegion.dataSource = dataSource # Get and set what field index we want to predict. network.regions['sensor'].setParameter('predictedField', 'consumption') return network
def test_GenerateDataset(self): dataset = 'extra/gym/gym.csv' print "Using input dataset: ", dataset gymFileds = None with FileRecordStream(findDataset(dataset)) as f: gymFields = f.getFieldNames() aggregationOptions = dict(timeField=gymFields.index('timestamp'), fields=[('attendeeCount', sum), ('consumption', sum), ('timestamp', lambda x: x[0])], hours=5) handle = \ tempfile.NamedTemporaryFile(prefix='agg_gym_hours_5', suffix='.csv', dir=os.path.dirname(findDataset(dataset))) outputFile = handle.name handle.close() print "Expected outputFile path: ", outputFile print "Files in the destination folder before the test:" print os.listdir(os.path.abspath(os.path.dirname( findDataset(dataset)))) if os.path.isfile(outputFile): print "Removing existing outputFile: ", outputFile os.remove(outputFile) self.assertFalse(os.path.exists(outputFile), msg="Shouldn't exist, but does: " + str(outputFile)) result = generateDataset(aggregationOptions, dataset, outputFile) print "generateDataset() returned: ", result f1 = os.path.abspath(os.path.normpath(result)) print "normalized generateDataset() result path: ", f1 f2 = os.path.normpath(outputFile) print "normalized outputFile path: ", f2 self.assertEqual(f1, f2) print "Checking for presence of outputFile: ", outputFile self.assertTrue( os.path.isfile(outputFile), msg= "Missing outputFile: %r; normalized generateDataset() result: %r" % (outputFile, f1)) print "Files in the destination folder after the test:" print os.listdir(os.path.abspath(os.path.dirname( findDataset(dataset)))) print result print '-' * 30 return
def initModel(self): """ Initialize the network; self.networdDataPath must already be set. """ recordStream = FileRecordStream(streamID=self.networkDataPath) encoder = CioEncoder(cacheDir="./experiments/cache") return configureNetwork(recordStream, self.networkConfig, encoder)
def _generateScalar(filename="simple.csv", numSequences=2, elementsPerSeq=1, numRepeats=10, stepSize=0.1, resets=False): """ Generate a simple dataset. This contains a bunch of non-overlapping sequences of scalar values. Parameters: ---------------------------------------------------- filename: name of the file to produce, including extension. It will be created in a 'datasets' sub-directory within the directory containing this script. numSequences: how many sequences to generate elementsPerSeq: length of each sequence numRepeats: how many times to repeat each sequence in the output stepSize: how far apart each scalar is resets: if True, turn on reset at start of each sequence """ # Create the output file scriptDir = os.path.dirname(__file__) pathname = os.path.join(scriptDir, 'datasets', filename) print "Creating %s..." % (pathname) fields = [('reset', 'int', 'R'), ('category', 'int', 'C'), ('field1', 'float', '')] outFile = FileRecordStream(pathname, write=True, fields=fields) # Create the sequences sequences = [] for i in range(numSequences): seq = [x for x in range(i*elementsPerSeq, (i+1)*elementsPerSeq)] sequences.append(seq) # Write out the sequences in random order seqIdxs = [] for i in range(numRepeats): seqIdxs += range(numSequences) random.shuffle(seqIdxs) for seqIdx in seqIdxs: reset = int(resets) seq = sequences[seqIdx] for x in seq: outFile.appendRecord([reset, str(seqIdx), x*stepSize]) reset = 0 outFile.close()
def _openStream(self, dataUrl, isBlocking, maxTimeout, bookmark, firstRecordIdx): """Open the underlying file stream. This only supports 'file://' prefixed paths. """ self._recordStoreName = findDataset(dataUrl[len(FILE_PREF) :]) self._recordStore = FileRecordStream( streamID=self._recordStoreName, write=False, bookmark=bookmark, firstRecord=firstRecordIdx )
def _generateScalar(filename="simple.csv", numSequences=2, elementsPerSeq=1, numRepeats=10, stepSize=0.1, includeRandom=False): """ Generate a simple dataset. This contains a bunch of non-overlapping sequences of scalar values. Parameters: ---------------------------------------------------- filename: name of the file to produce, including extension. It will be created in a 'datasets' sub-directory within the directory containing this script. numSequences: how many sequences to generate elementsPerSeq: length of each sequence numRepeats: how many times to repeat each sequence in the output stepSize: how far apart each scalar is includeRandom: if true, include another random field """ # Create the output file scriptDir = os.path.dirname(__file__) pathname = os.path.join(scriptDir, 'datasets', filename) print "Creating %s..." % (pathname) fields = [('classification', 'float', ''), ('field1', 'float', '')] if includeRandom: fields += [('randomData', 'float', '')] outFile = FileRecordStream(pathname, write=True, fields=fields) # Create the sequences sequences = [] for i in range(numSequences): seq = [x for x in range(i * elementsPerSeq, (i + 1) * elementsPerSeq)] sequences.append(seq) random.seed(42) # Write out the sequences in random order seqIdxs = [] for i in range(numRepeats): seqIdxs += range(numSequences) random.shuffle(seqIdxs) for seqIdx in seqIdxs: seq = sequences[seqIdx] for x in seq: if includeRandom: outFile.appendRecord([seqIdx, x * stepSize, random.random()]) else: outFile.appendRecord([seqIdx, x * stepSize]) outFile.close()
def test_GymAggregate(self): filename = resource_filename( "nupic.datafiles", "extra/gym/gym.csv" ) input = [] gymFields = None with FileRecordStream(filename) as f: gymFields = f.getFields() for i in range(10): input.append(f.getNextRecord()) for h in (1,3): aggregationOptions = dict( fields=[ ('timestamp', lambda x: x[0],), ('attendeeCount', sum), ('consumption', sum)], hours=h ) handle = \ tempfile.NamedTemporaryFile(prefix='test', suffix='.bin') outputFile = handle.name handle.close() dataInput = DataInputList(input, gymFields) dataOutput = DataOutputMyFile(FileRecordStream(outputFile, write=True, fields=gymFields)) _aggregate(input=dataInput, options=aggregationOptions, timeFieldName='timestamp', output=dataOutput) dataOutput.close() for r in FileRecordStream(outputFile): print(r) print('-' * 30) return
def testSample(self): mockInput = MagicMock(return_value=StringIO(self.sampleInput)) output = StringIO() mockOutput = MagicMock(return_value=output) with patch("__builtin__.open", mockInput): inputFile = FileRecordStream("input_path") with patch("__builtin__.open", mockOutput): outputFile = FileRecordStream("output_path", fields=inputFile.getFields(), write=True) anomalyzer.sample(inputFile, outputFile, 1) result = StringIO(output.getvalue()) result.next() result.next() result.next() reader = csv.reader(result) _, value = reader.next() self.assertIn(int(value), (1, 2, 3, 4, 5, 6)) self.assertRaises(StopIteration, result.next)
def _mergeFiles(key, chunkCount, outputFile, fields): """Merge sorted chunk files into a sorted output file chunkCount - the number of available chunk files outputFile the name of the sorted output file _mergeFiles() """ title() # Open all chun files files = [FileRecordStream('chunk_%d.csv' % i) for i in range(chunkCount)] # Open output file with FileRecordStream(outputFile, write=True, fields=fields) as o: # Open all chunk files files = [ FileRecordStream('chunk_%d.csv' % i) for i in range(chunkCount) ] records = [f.getNextRecord() for f in files] # This loop will run until all files are exhausted while not all(r is None for r in records): # Cleanup None values (files that were exhausted) indices = [i for i, r in enumerate(records) if r is not None] records = [records[i] for i in indices] files = [files[i] for i in indices] # Find the current record r = min(records, key=itemgetter(*key)) # Write it to the file o.appendRecord(r) # Find the index of file that produced the current record index = records.index(r) # Read a new record from the file records[index] = files[index].getNextRecord() # Cleanup chunk files for i, f in enumerate(files): f.close() os.remove('chunk_%d.csv' % i)
def run(): """ Run classification network(s) on artificial sensor data """ with open("network_config_template.json", "rb") as jsonFile: templateNetworkConfig = json.load(jsonFile) networkConfigurations = generateSampleNetworkConfig( templateNetworkConfig, NUM_CATEGORIES) for networkConfig in networkConfigurations: for noiseAmplitude in WHITE_NOISE_AMPLITUDES: for signalMean in SIGNAL_MEANS: for signalAmplitude in SIGNAL_AMPLITUDES: for signalPeriod in SIGNAL_PERIODS: sensorType = networkConfig["sensorRegionConfig"].get( "regionType") spEnabled = networkConfig["sensorRegionConfig"].get( "regionEnabled") tmEnabled = networkConfig["tmRegionConfig"].get( "regionEnabled") upEnabled = networkConfig["tpRegionConfig"].get( "regionEnabled") classifierType = networkConfig[ "classifierRegionConfig"].get("regionType") expParams = ( "RUNNING EXPERIMENT WITH PARAMS:\n" " * numRecords=%s\n" " * signalAmplitude=%s\n" " * signalMean=%s\n" " * signalPeriod=%s\n" " * noiseAmplitude=%s\n" " * sensorType=%s\n" " * spEnabled=%s\n" " * tmEnabled=%s\n" " * tpEnabled=%s\n" " * classifierType=%s\n") % ( NUM_RECORDS, signalAmplitude, signalMean, signalPeriod, noiseAmplitude, sensorType.split(".")[1], spEnabled, tmEnabled, upEnabled, classifierType.split(".")[1]) print expParams inputFile = generateSensorData( DATA_DIR, OUTFILE_NAME, signalMean, signalPeriod, SEQUENCE_LENGTH, NUM_RECORDS, signalAmplitude, NUM_CATEGORIES, noiseAmplitude) dataSource = FileRecordStream(streamID=inputFile) network = configureNetwork(dataSource, networkConfig) partitions = generateNetworkPartitions( networkConfig, NUM_RECORDS) trainNetwork(network, networkConfig, partitions, NUM_RECORDS)
def _generateCategory(filename="simple.csv", numSequences=2, elementsPerSeq=1, numRepeats=10): """ Generate a simple dataset. This contains a bunch of non-overlapping sequences. Parameters: ---------------------------------------------------- filename: name of the file to produce, including extension. It will be created in a 'datasets' sub-directory within the directory containing this script. numSequences: how many sequences to generate elementsPerSeq: length of each sequence numRepeats: how many times to repeat each sequence in the output """ # Create the output file scriptDir = os.path.dirname(__file__) pathname = os.path.join(scriptDir, 'datasets', filename) print "Creating %s..." % (pathname) fields = [('classification', 'string', ''), ('field1', 'string', '')] outFile = FileRecordStream(pathname, write=True, fields=fields) # Create the sequences sequences = [] for i in range(numSequences): seq = [x for x in range(i*elementsPerSeq, (i+1)*elementsPerSeq)] sequences.append(seq) # Write out the sequences in random order seqIdxs = [] for i in range(numRepeats): seqIdxs += range(numSequences) random.shuffle(seqIdxs) for seqIdx in seqIdxs: seq = sequences[seqIdx] for x in seq: outFile.appendRecord([str(seqIdx), str(x)]) outFile.close()
def test_GymAggregateWithOldData(self): filename = resource_filename( "nupic.datafiles", "extra/gym/gym.csv" ) input = [] gymFields = None with FileRecordStream(filename) as f: gymFields = f.getFields() for i in range(10): input.append(f.getNextRecord()) #Append the records from the beginning to the end of the dataset input.extend(input[0:3]) for h in (1,3): aggregationOptions = dict( fields=[ ('timestamp', lambda x: x[0],), ('attendeeCount', sum), ('consumption', sum)], hours=h ) handle = \ tempfile.NamedTemporaryFile(prefix='test', suffix='.bin') outputFile = handle.name handle.close() dataInput = DataInputList(input, gymFields) dataOutput = DataOutputList(None) _aggregate(input=dataInput, options=aggregationOptions, timeFieldName='timestamp', output=dataOutput) dataOutput.close() outputRecords = dataOutput._store timeFieldIdx = [f[0] for f in gymFields].index('timestamp') diffs = [] for i in range(1,len(outputRecords)): diffs.append(outputRecords[i][timeFieldIdx] - \ outputRecords[i-1][timeFieldIdx]) positiveTimeFlow = list(map((lambda x: x < datetime.timedelta(seconds=0)), diffs)) #Make sure that old records are in the aggregated output and at the same #time make sure that they are in consecutive order after being inserted self.assertEqual(sum(positiveTimeFlow), 1) return
def testFileRecordStreamReadData(self): ndg = NetworkDataGenerator() filename = os.path.join(self.dirName, "test_data/multi_sample.csv") ndg.split(filename, 3, False) dataOutputFile = os.path.join(self.dirName, "test_data/multi_sample_split.csv") categoriesOutputFile = os.path.join( self.dirName, "test_data/multi_sample_categories.json") ndg.saveData(dataOutputFile, categoriesOutputFile) # If no error is raised, then the data is in the correct format frs = FileRecordStream(dataOutputFile)
def runHotgym(numRecords): """Run the Hot Gym example.""" # Create a data source for the network. dataSource = FileRecordStream(streamID=_INPUT_FILE_PATH) numRecords = min(numRecords, dataSource.getDataRowCount()) network = createNetwork(dataSource) # Set predicted field index. It needs to be the same index as the data source. predictedIdx = dataSource.getFieldNames().index("consumption") network.regions["sensor"].setParameter("predictedFieldIdx", predictedIdx) # Enable learning for all regions. network.regions["SP"].setParameter("learningMode", 1) network.regions["TM"].setParameter("learningMode", 1) network.regions["classifier"].setParameter("learningMode", 1) # Enable inference for all regions. network.regions["SP"].setParameter("inferenceMode", 1) network.regions["TM"].setParameter("inferenceMode", 1) network.regions["classifier"].setParameter("inferenceMode", 1) results = [] N = 1 # Run the network, N iterations at a time. for iteration in range(0, numRecords, N): network.run(N) predictionResults = getPredictionResults(network, "classifier") oneStep = predictionResults[1]["predictedValue"] oneStepConfidence = predictionResults[1]["predictionConfidence"] fiveStep = predictionResults[5]["predictedValue"] fiveStepConfidence = predictionResults[5]["predictionConfidence"] result = (oneStep, oneStepConfidence * 100, fiveStep, fiveStepConfidence * 100) print "1-step: {:16} ({:4.4}%)\t 5-step: {:16} ({:4.4}%)".format( *result) results.append(result) return results
def runHotgym(numRecords): """Run the Hot Gym example.""" # Create a data source for the network. dataSource = FileRecordStream(streamID=_INPUT_FILE_PATH) numRecords = min(numRecords, dataSource.getDataRowCount()) network = createNetwork(dataSource) # Set predicted field index. It needs to be the same index as the data source. predictedIdx = dataSource.getFieldNames().index("consumption") network.regions["sensor"].setParameter("predictedFieldIdx", predictedIdx) # Enable learning for all regions. network.regions["SP"].setParameter("learningMode", 1) network.regions["TM"].setParameter("learningMode", 1) network.regions["classifier"].setParameter("learningMode", 1) # Enable inference for all regions. network.regions["SP"].setParameter("inferenceMode", 1) network.regions["TM"].setParameter("inferenceMode", 1) network.regions["classifier"].setParameter("inferenceMode", 1) results = [] N = 1 # Run the network, N iterations at a time. for iteration in range(0, numRecords, N): network.run(N) predictionResults = getPredictionResults(network, "classifier") oneStep = predictionResults[1]["predictedValue"] oneStepConfidence = predictionResults[1]["predictionConfidence"] fiveStep = predictionResults[5]["predictedValue"] fiveStepConfidence = predictionResults[5]["predictionConfidence"] result = (oneStep, oneStepConfidence * 100, fiveStep, fiveStepConfidence * 100) print "1-step: {:16} ({:4.4}%)\t 5-step: {:16} ({:4.4}%)".format(*result) results.append(result) return results
def _generateScalar( filename="simple.csv", numSequences=2, elementsPerSeq=1, numRepeats=10, stepSize=0.1, includeRandom=False ): """ Generate a simple dataset. This contains a bunch of non-overlapping sequences of scalar values. Parameters: ---------------------------------------------------- filename: name of the file to produce, including extension. It will be created in a 'datasets' sub-directory within the directory containing this script. numSequences: how many sequences to generate elementsPerSeq: length of each sequence numRepeats: how many times to repeat each sequence in the output stepSize: how far apart each scalar is includeRandom: if true, include another random field """ # Create the output file scriptDir = os.path.dirname(__file__) pathname = os.path.join(scriptDir, "datasets", filename) print "Creating %s..." % (pathname) fields = [("classification", "float", ""), ("field1", "float", "")] if includeRandom: fields += [("randomData", "float", "")] outFile = FileRecordStream(pathname, write=True, fields=fields) # Create the sequences sequences = [] for i in range(numSequences): seq = [x for x in range(i * elementsPerSeq, (i + 1) * elementsPerSeq)] sequences.append(seq) random.seed(42) # Write out the sequences in random order seqIdxs = [] for i in range(numRepeats): seqIdxs += range(numSequences) random.shuffle(seqIdxs) for seqIdx in seqIdxs: seq = sequences[seqIdx] for x in seq: if includeRandom: outFile.appendRecord([seqIdx, x * stepSize, random.random()]) else: outFile.appendRecord([seqIdx, x * stepSize]) outFile.close()
def writeTestFile(testFile, fields, big): if big: print 'Creating big test file (763MB)...' payload = 'x' * 10 ** 8 else: print 'Creating a small big test file...' payload = 'x' * 3 with FileRecordStream(testFile, write=True, fields=fields) as o: print '.'; o.appendRecord([1,3,6, payload]) print '.'; o.appendRecord([2,3,6, payload]) print '.'; o.appendRecord([1,4,6, payload]) print '.'; o.appendRecord([2,4,6, payload]) print '.'; o.appendRecord([1,3,5, payload]) print '.'; o.appendRecord([2,3,5, payload]) print '.'; o.appendRecord([1,4,5, payload]) print '.'; o.appendRecord([2,4,5, payload])
def testSaveAndReload(self): """ This function tests saving and loading. It will train a network for 500 iterations, then save it and reload it as a second network instance. It will then run both networks for 100 iterations and ensure they return identical results. """ print "Creating network..." netOPF = _createOPFNetwork() level1OPF = netOPF.regions['level1SP'] # ========================================================================== print "Training network for 500 iterations" level1OPF.setParameter('learningMode', 1) level1OPF.setParameter('inferenceMode', 0) netOPF.run(500) level1OPF.setParameter('learningMode', 0) level1OPF.setParameter('inferenceMode', 1) # ========================================================================== # Save network and reload as a second instance. We need to reset the data # source for the unsaved network so that both instances start at the same # place print "Saving and reload network" _, tmpNetworkFilename = _setupTempDirectory("trained.nta") netOPF.save(tmpNetworkFilename) netOPF2 = Network(tmpNetworkFilename) level1OPF2 = netOPF2.regions['level1SP'] sensor = netOPF.regions['sensor'].getSelf() trainFile = resource_filename("nupic.datafiles", "extra/gym/gym.csv") sensor.dataSource = FileRecordStream(streamID=trainFile) sensor.dataSource.setAutoRewind(True) # ========================================================================== print "Running inference on the two networks for 100 iterations" for _ in xrange(100): netOPF2.run(1) netOPF.run(1) l1outputOPF2 = level1OPF2.getOutputData("bottomUpOut") l1outputOPF = level1OPF.getOutputData("bottomUpOut") opfHash2 = l1outputOPF2.nonzero()[0].sum() opfHash = l1outputOPF.nonzero()[0].sum() self.assertEqual(opfHash2, opfHash)
def initModel(self): """ Initialize the network; self.networdDataPath must already be set. """ if self.networkDataPath is not None: recordStream = FileRecordStream(streamID=self.networkDataPath) else: recordStream = None root = os.path.dirname(os.path.realpath(__file__)) encoder = CioEncoder(retinaScaling=self.retinaScaling, cacheDir=os.path.join(root, "CioCache"), retina=self.retina, apiKey=self.apiKey) # This encoder specifies the LanguageSensor output width. return configureNetwork(recordStream, self.networkConfig, encoder)
def __init__(self, streamDef, bookmark=None, saveOutput=False, isBlocking=True, maxTimeout=0, eofOnTimeout=False): """ Base class constructor, performs common initialization Parameters: ---------------------------------------------------------------- streamDef: The stream definition, potentially containing multiple sources (not supported yet). See /nupic/frameworks/opf/jsonschema/stream_def.json for the format of this dict bookmark: Bookmark to start reading from. This overrides the first_record field of the streamDef if provided. saveOutput: If true, save the output to a csv file in a temp directory. The path to the generated file can be found in the log output. isBlocking: should read operation block *forever* if the next row of data is not available, but the stream is not marked as 'completed' yet? maxTimeout: if isBlocking is False, max seconds to wait for more data before timing out; ignored when isBlocking is True. eofOnTimeout: If True and we get a read timeout (isBlocking must be False to get read timeouts), assume we've reached the end of the input and produce the last aggregated record, if one can be completed. """ # Call superclass constructor super(StreamReader, self).__init__() loggerPrefix = 'com.numenta.nupic.data.StreamReader' self._logger = logging.getLogger(loggerPrefix) jsonhelpers.validate(streamDef, schemaPath=pkg_resources.resource_filename( jsonschema.__name__, "stream_def.json")) assert len(streamDef['streams']) == 1, "Only 1 source stream is supported" # Save constructor args sourceDict = streamDef['streams'][0] self._recordCount = 0 self._eofOnTimeout = eofOnTimeout self._logger.debug('Reading stream with the def: %s', sourceDict) # Dictionary to store record statistics (min and max of scalars for now) self._stats = None # --------------------------------------------------------------------- # Get the stream definition params # Limiting window of the stream. It would not return any records until # 'first_record' ID is read (or very first with the ID above that). The # stream will return EOS once it reads record with ID 'last_record' or # above (NOTE: the name 'lastRecord' is misleading because it is NOT # inclusive). firstRecordIdx = sourceDict.get('first_record', None) self._sourceLastRecordIdx = sourceDict.get('last_record', None) # If a bookmark was given, then override first_record from the stream # definition. if bookmark is not None: firstRecordIdx = None # Column names must be provided in the streamdef json # Special case is ['*'], meaning all available names from the record stream self._streamFieldNames = sourceDict.get('columns', None) if self._streamFieldNames != None and self._streamFieldNames[0] == '*': self._needFieldsFiltering = False else: self._needFieldsFiltering = True # Types must be specified in streamdef json, or in case of the # file_recod_stream types could be implicit from the file streamFieldTypes = sourceDict.get('types', None) self._logger.debug('Types from the def: %s', streamFieldTypes) # Validate that all types are valid if streamFieldTypes is not None: for dataType in streamFieldTypes: assert FieldMetaType.isValid(dataType) # Reset, sequence and time fields might be provided by streamdef json streamResetFieldName = streamDef.get('resetField', None) streamTimeFieldName = streamDef.get('timeField', None) streamSequenceFieldName = streamDef.get('sequenceIdField', None) self._logger.debug('r, t, s fields: %s, %s, %s', streamResetFieldName, streamTimeFieldName, streamSequenceFieldName) # ======================================================================= # Open up the underlying record store dataUrl = sourceDict.get('source', None) assert dataUrl is not None self._recordStore = self._openStream(dataUrl, isBlocking, maxTimeout, bookmark, firstRecordIdx) assert self._recordStore is not None # ======================================================================= # Prepare the data structures we need for returning just the fields # the caller wants from each record recordStoreFields = self._recordStore.getFields() self._recordStoreFieldNames = self._recordStore.getFieldNames() if not self._needFieldsFiltering: self._streamFieldNames = self._recordStoreFieldNames # Build up the field definitions for each field. This is a list of tuples # of (name, type, special) self._streamFields = [] for dstIdx, name in enumerate(self._streamFieldNames): if name not in self._recordStoreFieldNames: raise RuntimeError("The column '%s' from the stream definition " "is not present in the underlying stream which has the following " "columns: %s" % (name, self._recordStoreFieldNames)) fieldIdx = self._recordStoreFieldNames.index(name) fieldType = recordStoreFields[fieldIdx].type fieldSpecial = recordStoreFields[fieldIdx].special # If the types or specials were defined in the stream definition, # then override what was found in the record store if streamFieldTypes is not None: fieldType = streamFieldTypes[dstIdx] if streamResetFieldName is not None and streamResetFieldName == name: fieldSpecial = FieldMetaSpecial.reset if streamTimeFieldName is not None and streamTimeFieldName == name: fieldSpecial = FieldMetaSpecial.timestamp if (streamSequenceFieldName is not None and streamSequenceFieldName == name): fieldSpecial = FieldMetaSpecial.sequence self._streamFields.append(FieldMetaInfo(name, fieldType, fieldSpecial)) # ======================================================================== # Create the aggregator which will handle aggregation of records before # returning them. self._aggregator = Aggregator( aggregationInfo=streamDef.get('aggregation', None), inputFields=recordStoreFields, timeFieldName=streamDef.get('timeField', None), sequenceIdFieldName=streamDef.get('sequenceIdField', None), resetFieldName=streamDef.get('resetField', None)) # We rely on the aggregator to tell us the bookmark of the last raw input # that contributed to the aggregated record self._aggBookmark = None # Compute the aggregation period in terms of months and seconds if 'aggregation' in streamDef: self._aggMonthsAndSeconds = nupic.support.aggregationToMonthsSeconds( streamDef.get('aggregation')) else: self._aggMonthsAndSeconds = None # ======================================================================== # Are we saving the generated output to a csv? if saveOutput: tmpDir = tempfile.mkdtemp() outFilename = os.path.join(tmpDir, "generated_output.csv") self._logger.info("StreamReader: Saving generated records to: '%s'" % outFilename) self._writer = FileRecordStream(streamID=outFilename, write=True, fields=self._streamFields) else: self._writer = None
class _BasicPredictionWriter(PredictionWriterIface): """ This class defines the basic (file-based) implementation of PredictionWriterIface, whose instances are returned by BasicPredictionWriterFactory """ def __init__(self, experimentDir, label, inferenceType, fields, metricNames=None, checkpointSource=None): """ Constructor experimentDir: experiment directory path that contains description.py label: A label string to incorporate into the filename. inferenceElements: inferenceType: An constant from opfutils.InferenceType for the requested prediction writer fields: a non-empty sequence of nupic.data.fieldmeta.FieldMetaInfo representing fields that will be emitted to this prediction writer metricNames: OPTIONAL - A list of metric names that well be emiited by this prediction writer checkpointSource: If not None, a File-like object containing the previously-checkpointed predictions for setting the initial contents of this PredictionOutputStream. Will be copied before returning, if needed. """ #assert len(fields) > 0 self.__experimentDir = experimentDir # opfutils.InferenceType kind value self.__inferenceType = inferenceType # A tuple of nupic.data.fieldmeta.FieldMetaInfo self.__inputFieldsMeta = tuple(copy.deepcopy(fields)) self.__numInputFields = len(self.__inputFieldsMeta) self.__label = label if metricNames is not None: metricNames.sort() self.__metricNames = metricNames # Define our output field meta info self.__outputFieldsMeta = [] # The list of inputs that we include in the prediction output self._rawInputNames = [] # Output dataset self.__datasetPath = None self.__dataset = None # Save checkpoint data until we're ready to create the output dataset self.__checkpointCache = None if checkpointSource is not None: checkpointSource.seek(0) self.__checkpointCache = StringIO.StringIO() shutil.copyfileobj(checkpointSource, self.__checkpointCache) return def __openDatafile(self, modelResult): """Open the data file and write the header row""" # Write reset bit resetFieldMeta = FieldMetaInfo( name="reset", type=FieldMetaType.integer, special = FieldMetaSpecial.reset) self.__outputFieldsMeta.append(resetFieldMeta) # ----------------------------------------------------------------------- # Write each of the raw inputs that go into the encoders rawInput = modelResult.rawInput rawFields = rawInput.keys() rawFields.sort() for field in rawFields: if field.startswith('_') or field == 'reset': continue value = rawInput[field] meta = FieldMetaInfo(name=field, type=FieldMetaType.string, special=FieldMetaSpecial.none) self.__outputFieldsMeta.append(meta) self._rawInputNames.append(field) # ----------------------------------------------------------------------- # Handle each of the inference elements for inferenceElement, value in modelResult.inferences.iteritems(): inferenceLabel = InferenceElement.getLabel(inferenceElement) # TODO: Right now we assume list inferences are associated with # The input field metadata if type(value) in (list, tuple): # Append input and prediction field meta-info self.__outputFieldsMeta.extend(self.__getListMetaInfo(inferenceElement)) elif isinstance(value, dict): self.__outputFieldsMeta.extend(self.__getDictMetaInfo(inferenceElement, value)) else: if InferenceElement.getInputElement(inferenceElement): self.__outputFieldsMeta.append(FieldMetaInfo(name=inferenceLabel+".actual", type=FieldMetaType.string, special = '')) self.__outputFieldsMeta.append(FieldMetaInfo(name=inferenceLabel, type=FieldMetaType.string, special = '')) if self.__metricNames: for metricName in self.__metricNames: metricField = FieldMetaInfo( name = metricName, type = FieldMetaType.float, special = FieldMetaSpecial.none) self.__outputFieldsMeta.append(metricField) # Create the inference directory for our experiment inferenceDir = _FileUtils.createExperimentInferenceDir(self.__experimentDir) # Consctruct the prediction dataset file path filename = (self.__label + "." + opfutils.InferenceType.getLabel(self.__inferenceType) + ".predictionLog.csv") self.__datasetPath = os.path.join(inferenceDir, filename) # Create the output dataset print "OPENING OUTPUT FOR PREDICTION WRITER AT: {0!r}".format(self.__datasetPath) print "Prediction field-meta: {0!r}".format([tuple(i) for i in self.__outputFieldsMeta]) self.__dataset = FileRecordStream(streamID=self.__datasetPath, write=True, fields=self.__outputFieldsMeta) # Copy data from checkpoint cache if self.__checkpointCache is not None: self.__checkpointCache.seek(0) reader = csv.reader(self.__checkpointCache, dialect='excel') # Skip header row try: header = reader.next() except StopIteration: print "Empty record checkpoint initializer for {0!r}".format(self.__datasetPath) else: assert tuple(self.__dataset.getFieldNames()) == tuple(header), \ "dataset.getFieldNames(): {0!r}; predictionCheckpointFieldNames: {1!r}".format( tuple(self.__dataset.getFieldNames()), tuple(header)) # Copy the rows from checkpoint numRowsCopied = 0 while True: try: row = reader.next() except StopIteration: break #print "DEBUG: restoring row from checkpoint: %r" % (row,) self.__dataset.appendRecord(row) numRowsCopied += 1 self.__dataset.flush() print "Restored {0:d} rows from checkpoint for {1!r}".format( numRowsCopied, self.__datasetPath) # Dispose of our checkpoint cache self.__checkpointCache.close() self.__checkpointCache = None return def setLoggedMetrics(self, metricNames): """ Tell the writer which metrics should be written Parameters: ----------------------------------------------------------------------- metricsNames: A list of metric lables to be written """ if metricNames is None: self.__metricNames = set([]) else: self.__metricNames = set(metricNames) def close(self): """ [virtual method override] Closes the writer (e.g., close the underlying file) """ if self.__dataset: self.__dataset.close() self.__dataset = None return def __getListMetaInfo(self, inferenceElement): """ Get field metadata information for inferences that are of list type TODO: Right now we assume list inferences are associated with the input field metadata """ fieldMetaInfo = [] inferenceLabel = InferenceElement.getLabel(inferenceElement) for inputFieldMeta in self.__inputFieldsMeta: if InferenceElement.getInputElement(inferenceElement): outputFieldMeta = FieldMetaInfo( name=inputFieldMeta.name + ".actual", type=inputFieldMeta.type, special=inputFieldMeta.special ) predictionField = FieldMetaInfo( name=inputFieldMeta.name + "." + inferenceLabel, type=inputFieldMeta.type, special=inputFieldMeta.special ) fieldMetaInfo.append(outputFieldMeta) fieldMetaInfo.append(predictionField) return fieldMetaInfo def __getDictMetaInfo(self, inferenceElement, inferenceDict): """Get field metadate information for inferences that are of dict type""" fieldMetaInfo = [] inferenceLabel = InferenceElement.getLabel(inferenceElement) if InferenceElement.getInputElement(inferenceElement): fieldMetaInfo.append(FieldMetaInfo(name=inferenceLabel+".actual", type=FieldMetaType.string, special = '')) keys = sorted(inferenceDict.keys()) for key in keys: fieldMetaInfo.append(FieldMetaInfo(name=inferenceLabel+"."+str(key), type=FieldMetaType.string, special='')) return fieldMetaInfo def append(self, modelResult): """ [virtual method override] Emits a single prediction as input versus predicted. modelResult: An opfutils.ModelResult object that contains the model input and output for the current timestep. """ #print "DEBUG: _BasicPredictionWriter: writing modelResult: %r" % (modelResult,) # If there are no inferences, don't write anything inferences = modelResult.inferences hasInferences = False if inferences is not None: for value in inferences.itervalues(): hasInferences = hasInferences or (value is not None) if not hasInferences: return if self.__dataset is None: self.__openDatafile(modelResult) inputData = modelResult.sensorInput sequenceReset = int(bool(inputData.sequenceReset)) outputRow = [sequenceReset] # ----------------------------------------------------------------------- # Write out the raw inputs rawInput = modelResult.rawInput for field in self._rawInputNames: outputRow.append(str(rawInput[field])) # ----------------------------------------------------------------------- # Write out the inference element info for inferenceElement, outputVal in inferences.iteritems(): inputElement = InferenceElement.getInputElement(inferenceElement) if inputElement: inputVal = getattr(inputData, inputElement) else: inputVal = None if type(outputVal) in (list, tuple): assert type(inputVal) in (list, tuple, None) for iv, ov in zip(inputVal, outputVal): # Write actual outputRow.append(str(iv)) # Write inferred outputRow.append(str(ov)) elif isinstance(outputVal, dict): if inputVal is not None: # If we have a predicted field, include only that in the actuals if modelResult.predictedFieldName is not None: outputRow.append(str(inputVal[modelResult.predictedFieldName])) else: outputRow.append(str(inputVal)) for key in sorted(outputVal.keys()): outputRow.append(str(outputVal[key])) else: if inputVal is not None: outputRow.append(str(inputVal)) outputRow.append(str(outputVal)) metrics = modelResult.metrics for metricName in self.__metricNames: outputRow.append(metrics.get(metricName, 0.0)) #print "DEBUG: _BasicPredictionWriter: writing outputRow: %r" % (outputRow,) self.__dataset.appendRecord(outputRow) self.__dataset.flush() return def checkpoint(self, checkpointSink, maxRows): """ [virtual method override] Save a checkpoint of the prediction output stream. The checkpoint comprises up to maxRows of the most recent inference records. Parameters: ---------------------------------------------------------------------- checkpointSink: A File-like object where predictions checkpoint data, if any, will be stored. maxRows: Maximum number of most recent inference rows to checkpoint. """ checkpointSink.truncate() if self.__dataset is None: if self.__checkpointCache is not None: self.__checkpointCache.seek(0) shutil.copyfileobj(self.__checkpointCache, checkpointSink) checkpointSink.flush() return else: # Nothing to checkpoint return self.__dataset.flush() totalDataRows = self.__dataset.getDataRowCount() if totalDataRows == 0: # Nothing to checkpoint return # Open reader of prediction file (suppress missingValues conversion) reader = FileRecordStream(self.__datasetPath, missingValues=[]) # Create CSV writer for writing checkpoint rows writer = csv.writer(checkpointSink) # Write the header row to checkpoint sink -- just field names writer.writerow(reader.getFieldNames()) # Determine number of rows to checkpoint numToWrite = min(maxRows, totalDataRows) # Skip initial rows to get to the rows that we actually need to checkpoint numRowsToSkip = totalDataRows - numToWrite for i in xrange(numRowsToSkip): reader.next() # Write the data rows to checkpoint sink numWritten = 0 while True: row = reader.getNextRecord() if row is None: break; row = [str(element) for element in row] #print "DEBUG: _BasicPredictionWriter: checkpointing row: %r" % (row,) writer.writerow(row) numWritten +=1 assert numWritten == numToWrite, \ "numWritten ({0!s}) != numToWrite ({1!s})".format(numWritten, numToWrite) checkpointSink.flush() return
def testExperimentResults(self): """Run specific experiments and verify that they are producing the correct results. opfDir is the examples/opf directory in the install path and is used to find run_opf_experiment.py The testdir is the directory that contains the experiments we will be running. When running in the auto-build setup, this will be a temporary directory that has had this script, as well as the specific experiments we will be running, copied into it by the qa/autotest/prediction_results.py script. When running stand-alone from the command line, this will point to the examples/prediction directory in the install tree (same as predictionDir) """ nupic_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "..", "..", "..", "..") opfDir = os.path.join(nupic_dir, "examples", "opf") testDir = opfDir # The testdir is the directory that contains the experiments we will be # running. When running in the auto-build setup, this will be a temporary # directory that has had this script, as well as the specific experiments # we will be running, copied into it by the # qa/autotest/prediction_results.py script. # When running stand-alone from the command line, we can simply point to the # examples/prediction directory in the install tree. if not os.path.exists(os.path.join(testDir, "experiments/classification")): testDir = opfDir # Generate any dynamically generated datasets now command = ['python', os.path.join(testDir, 'experiments', 'classification', 'makeDatasets.py')] retval = call(command) self.assertEqual(retval, 0) # Generate any dynamically generated datasets now command = ['python', os.path.join(testDir, 'experiments', 'multistep', 'make_datasets.py')] retval = call(command) self.assertEqual(retval, 0) # Generate any dynamically generated datasets now command = ['python', os.path.join(testDir, 'experiments', 'spatial_classification', 'make_datasets.py')] retval = call(command) self.assertEqual(retval, 0) # Run from the test directory so that we can find our experiments os.chdir(testDir) runExperiment = os.path.join(nupic_dir, "scripts", "run_opf_experiment.py") # A list of experiments to run. Valid attributes: # experimentDir - Required, path to the experiment directory containing # description.py # args - optional. List of arguments for run_opf_experiment # results - A dictionary of expected results. The keys are tuples # containing (predictionLogFileName, columnName). The # value is a (min, max) expected value from the last row # in the prediction log. multistepTests = [ # For this one, in theory the error for 1 step should be < 0.20 { 'experimentDir': 'experiments/multistep/simple_0', 'results': { ('DefaultTask.TemporalMultiStep.predictionLog.csv', "multiStepBestPredictions:multiStep:errorMetric='avg_err':steps=1:window=200:field=field1"): (0.0, 0.20), } }, # For this one, in theory the error for 1 step should be < 0.50, but we # get slightly higher because our sample size is smaller than ideal { 'experimentDir': 'experiments/multistep/simple_0_f2', 'results': { ('DefaultTask.TemporalMultiStep.predictionLog.csv', "multiStepBestPredictions:multiStep:errorMetric='aae':steps=1:window=200:field=field2"): (0.0, 0.66), } }, # For this one, in theory the error for 1 step should be < 0.20 { 'experimentDir': 'experiments/multistep/simple_1', 'results': { ('DefaultTask.TemporalMultiStep.predictionLog.csv', "multiStepBestPredictions:multiStep:errorMetric='avg_err':steps=1:window=200:field=field1"): (0.0, 0.20), } }, # For this test, we haven't figured out the theoretical error, this # error is determined empirically from actual results { 'experimentDir': 'experiments/multistep/simple_1_f2', 'results': { ('DefaultTask.TemporalMultiStep.predictionLog.csv', "multiStepBestPredictions:multiStep:errorMetric='aae':steps=1:window=200:field=field2"): (0.0, 3.76), } }, # For this one, in theory the error for 1 step should be < 0.20, but we # get slightly higher because our sample size is smaller than ideal { 'experimentDir': 'experiments/multistep/simple_2', 'results': { ('DefaultTask.TemporalMultiStep.predictionLog.csv', "multiStepBestPredictions:multiStep:errorMetric='avg_err':steps=1:window=200:field=field1"): (0.0, 0.31), } }, # For this one, in theory the error for 1 step should be < 0.10 and for # 3 step < 0.30, but our actual results are better. { 'experimentDir': 'experiments/multistep/simple_3', 'results': { ('DefaultTask.TemporalMultiStep.predictionLog.csv', "multiStepBestPredictions:multiStep:errorMetric='avg_err':steps=1:window=200:field=field1"): (0.0, 0.06), ('DefaultTask.TemporalMultiStep.predictionLog.csv', "multiStepBestPredictions:multiStep:errorMetric='avg_err':steps=3:window=200:field=field1"): (0.0, 0.20), } }, # For this test, we haven't figured out the theoretical error, this # error is determined empirically from actual results { 'experimentDir': 'experiments/multistep/simple_3_f2', 'results': { ('DefaultTask.TemporalMultiStep.predictionLog.csv', "multiStepBestPredictions:multiStep:errorMetric='aae':steps=1:window=200:field=field2"): (0.0, 0.6), ('DefaultTask.TemporalMultiStep.predictionLog.csv', "multiStepBestPredictions:multiStep:errorMetric='aae':steps=3:window=200:field=field2"): (0.0, 1.8), } }, # Test missing record support. # Should have 0 error by the end of the dataset { 'experimentDir': 'experiments/missing_record/simple_0', 'results': { ('DefaultTask.NontemporalMultiStep.predictionLog.csv', "multiStepBestPredictions:multiStep:errorMetric='avg_err':steps=1:window=25:field=field1"): (1.0, 1.0), } }, ] # end of multistepTests classificationTests = [ # ---------------------------------------------------------------------- # Classification Experiments { 'experimentDir': 'experiments/classification/category_hub_TP_0', 'results': { ('OnlineLearning.TemporalClassification.predictionLog.csv', 'classification:avg_err:window=200'): (0.0, 0.020), } }, { 'experimentDir': 'experiments/classification/category_TM_0', 'results': { ('OnlineLearning.TemporalClassification.predictionLog.csv', 'classification:avg_err:window=200'): (0.0, 0.045), ('OnlineLearning.TemporalClassification.predictionLog.csv', 'classConfidences:neg_auc:computeEvery=10:window=200'): (-1.0, -0.98), } }, { 'experimentDir': 'experiments/classification/category_TM_1', 'results': { ('OnlineLearning.TemporalClassification.predictionLog.csv', 'classification:avg_err:window=200'): (0.0, 0.005), } }, { 'experimentDir': 'experiments/classification/scalar_TP_0', 'results': { ('OnlineLearning.TemporalClassification.predictionLog.csv', 'classification:avg_err:window=200'): (0.0, 0.155), ('OnlineLearning.TemporalClassification.predictionLog.csv', 'classConfidences:neg_auc:computeEvery=10:window=200'): (-1.0, -0.900), } }, { 'experimentDir': 'experiments/classification/scalar_TP_1', 'results': { ('OnlineLearning.TemporalClassification.predictionLog.csv', 'classification:avg_err:window=200'): (0.0, 0.03), } }, ] # End of classification tests spatialClassificationTests = [ { 'experimentDir': 'experiments/spatial_classification/category_0', 'results': { ('DefaultTask.NontemporalClassification.predictionLog.csv', "multiStepBestPredictions:multiStep:errorMetric='avg_err':steps=0:window=100:field=classification"): (0.0, 0.05), } }, { 'experimentDir': 'experiments/spatial_classification/category_1', 'results': { ('DefaultTask.NontemporalClassification.predictionLog.csv', "multiStepBestPredictions:multiStep:errorMetric='avg_err':steps=0:window=100:field=classification"): (0.0, 0.0), } }, { 'experimentDir': 'experiments/spatial_classification/scalar_0', 'results': { ('DefaultTask.NontemporalClassification.predictionLog.csv', "multiStepBestPredictions:multiStep:errorMetric='aae':steps=0:window=100:field=classification"): (0.0, 0.025), } }, { 'experimentDir': 'experiments/spatial_classification/scalar_1', 'results': { ('DefaultTask.NontemporalClassification.predictionLog.csv', "multiStepBestPredictions:multiStep:errorMetric='aae':steps=0:window=100:field=classification"): (-1e-10, 0.01), } }, ] anomalyTests = [ # ---------------------------------------------------------------------- # Classification Experiments { 'experimentDir': 'experiments/anomaly/temporal/simple', 'results': { ('DefaultTask.TemporalAnomaly.predictionLog.csv', 'anomalyScore:passThruPrediction:window=1000:field=f'): (0.02, 0.04), } }, ] # End of anomaly tests tests = [] tests += multistepTests tests += classificationTests tests += spatialClassificationTests tests += anomalyTests # Uncomment this to only run a specific experiment(s) #tests = tests[7:8] # This contains a list of tuples: (expDir, key, results) summaryOfResults = [] startTime = time.time() testIdx = -1 for test in tests: testIdx += 1 expDirectory = test['experimentDir'] # ------------------------------------------------------------------- # Remove files/directories generated by previous tests: toDelete = [] # Remove inference results path = os.path.join(expDirectory, "inference") toDelete.append(path) path = os.path.join(expDirectory, "savedmodels") toDelete.append(path) for path in toDelete: if not os.path.exists(path): continue print "Removing %s ..." % path if os.path.isfile(path): os.remove(path) else: shutil.rmtree(path) # ------------------------------------------------------------------------ # Run the test. args = test.get('args', []) print "Running experiment %s ..." % (expDirectory) command = ['python', runExperiment, expDirectory] + args retVal = call(command) # If retVal is non-zero and this was not a negative test or if retVal is # zero and this is a negative test something went wrong. if retVal: print "Details of failed test: %s" % test print("TestIdx %d, OPF experiment '%s' failed with return code %i." % (testIdx, expDirectory, retVal)) self.assertFalse(retVal) # ----------------------------------------------------------------------- # Check the results for (key, expValues) in test['results'].items(): (logFilename, colName) = key # Open the prediction log file logFile = FileRecordStream(os.path.join(expDirectory, 'inference', logFilename)) colNames = [x[0] for x in logFile.getFields()] if not colName in colNames: print "TestIdx %d: %s not one of the columns in " \ "prediction log file. Available column names are: %s" % (testIdx, colName, colNames) self.assertTrue(colName in colNames) colIndex = colNames.index(colName) # Read till we get to the last line while True: try: row = logFile.next() except StopIteration: break result = row[colIndex] # Save summary of results summaryOfResults.append((expDirectory, colName, result)) print "Actual result for %s, %s:" % (expDirectory, colName), result print "Expected range:", expValues failed = (expValues[0] is not None and result < expValues[0]) \ or (expValues[1] is not None and result > expValues[1]) if failed: print ("TestIdx %d: Experiment %s failed. \nThe actual result" " for %s (%s) was outside the allowed range of %s" % (testIdx, expDirectory, colName, result, expValues)) else: print " Within expected range." self.assertFalse(failed) # ======================================================================= # Print summary of results: print print "Summary of results in all experiments run:" print "=========================================" prevExpDir = None for (expDir, key, results) in summaryOfResults: if expDir != prevExpDir: print print expDir prevExpDir = expDir print " %s: %s" % (key, results) print "\nElapsed time: %.1f seconds" % (time.time() - startTime)
def __openDatafile(self, modelResult): """Open the data file and write the header row""" # Write reset bit resetFieldMeta = FieldMetaInfo( name="reset", type=FieldMetaType.integer, special = FieldMetaSpecial.reset) self.__outputFieldsMeta.append(resetFieldMeta) # ----------------------------------------------------------------------- # Write each of the raw inputs that go into the encoders rawInput = modelResult.rawInput rawFields = rawInput.keys() rawFields.sort() for field in rawFields: if field.startswith('_') or field == 'reset': continue value = rawInput[field] meta = FieldMetaInfo(name=field, type=FieldMetaType.string, special=FieldMetaSpecial.none) self.__outputFieldsMeta.append(meta) self._rawInputNames.append(field) # ----------------------------------------------------------------------- # Handle each of the inference elements for inferenceElement, value in modelResult.inferences.iteritems(): inferenceLabel = InferenceElement.getLabel(inferenceElement) # TODO: Right now we assume list inferences are associated with # The input field metadata if type(value) in (list, tuple): # Append input and prediction field meta-info self.__outputFieldsMeta.extend(self.__getListMetaInfo(inferenceElement)) elif isinstance(value, dict): self.__outputFieldsMeta.extend(self.__getDictMetaInfo(inferenceElement, value)) else: if InferenceElement.getInputElement(inferenceElement): self.__outputFieldsMeta.append(FieldMetaInfo(name=inferenceLabel+".actual", type=FieldMetaType.string, special = '')) self.__outputFieldsMeta.append(FieldMetaInfo(name=inferenceLabel, type=FieldMetaType.string, special = '')) if self.__metricNames: for metricName in self.__metricNames: metricField = FieldMetaInfo( name = metricName, type = FieldMetaType.float, special = FieldMetaSpecial.none) self.__outputFieldsMeta.append(metricField) # Create the inference directory for our experiment inferenceDir = _FileUtils.createExperimentInferenceDir(self.__experimentDir) # Consctruct the prediction dataset file path filename = (self.__label + "." + opfutils.InferenceType.getLabel(self.__inferenceType) + ".predictionLog.csv") self.__datasetPath = os.path.join(inferenceDir, filename) # Create the output dataset print "OPENING OUTPUT FOR PREDICTION WRITER AT: {0!r}".format(self.__datasetPath) print "Prediction field-meta: {0!r}".format([tuple(i) for i in self.__outputFieldsMeta]) self.__dataset = FileRecordStream(streamID=self.__datasetPath, write=True, fields=self.__outputFieldsMeta) # Copy data from checkpoint cache if self.__checkpointCache is not None: self.__checkpointCache.seek(0) reader = csv.reader(self.__checkpointCache, dialect='excel') # Skip header row try: header = reader.next() except StopIteration: print "Empty record checkpoint initializer for {0!r}".format(self.__datasetPath) else: assert tuple(self.__dataset.getFieldNames()) == tuple(header), \ "dataset.getFieldNames(): {0!r}; predictionCheckpointFieldNames: {1!r}".format( tuple(self.__dataset.getFieldNames()), tuple(header)) # Copy the rows from checkpoint numRowsCopied = 0 while True: try: row = reader.next() except StopIteration: break #print "DEBUG: restoring row from checkpoint: %r" % (row,) self.__dataset.appendRecord(row) numRowsCopied += 1 self.__dataset.flush() print "Restored {0:d} rows from checkpoint for {1!r}".format( numRowsCopied, self.__datasetPath) # Dispose of our checkpoint cache self.__checkpointCache.close() self.__checkpointCache = None return
def testSimpleMulticlassNetworkPY(self): # Setup data record stream of fake data (with three categories) filename = _getTempFileName() fields = [("timestamp", "datetime", "T"), ("value", "float", ""), ("reset", "int", "R"), ("sid", "int", "S"), ("categories", "list", "C")] records = ( [datetime(day=1, month=3, year=2010), 0.0, 1, 0, "0"], [datetime(day=2, month=3, year=2010), 1.0, 0, 0, "1"], [datetime(day=3, month=3, year=2010), 0.0, 0, 0, "0"], [datetime(day=4, month=3, year=2010), 1.0, 0, 0, "1"], [datetime(day=5, month=3, year=2010), 0.0, 0, 0, "0"], [datetime(day=6, month=3, year=2010), 1.0, 0, 0, "1"], [datetime(day=7, month=3, year=2010), 0.0, 0, 0, "0"], [datetime(day=8, month=3, year=2010), 1.0, 0, 0, "1"]) dataSource = FileRecordStream(streamID=filename, write=True, fields=fields) for r in records: dataSource.appendRecord(list(r)) # Create the network and get region instances. net = Network() net.addRegion("sensor", "py.RecordSensor", "{'numCategories': 3}") net.addRegion("classifier", "py.SDRClassifierRegion", "{steps: '0', alpha: 0.001, implementation: 'py'}") net.link("sensor", "classifier", "UniformLink", "", srcOutput="dataOut", destInput="bottomUpIn") net.link("sensor", "classifier", "UniformLink", "", srcOutput="categoryOut", destInput="categoryIn") sensor = net.regions["sensor"] classifier = net.regions["classifier"] # Setup sensor region encoder and data stream. dataSource.close() dataSource = FileRecordStream(filename) sensorRegion = sensor.getSelf() sensorRegion.encoder = MultiEncoder() sensorRegion.encoder.addEncoder( "value", ScalarEncoder(21, 0.0, 13.0, n=256, name="value")) sensorRegion.dataSource = dataSource # Get ready to run. net.initialize() # Train the network (by default learning is ON in the classifier, but assert # anyway) and then turn off learning and turn on inference mode. self.assertEqual(classifier.getParameter("learningMode"), 1) net.run(8) # Test the network on the same data as it trained on; should classify with # 100% accuracy. classifier.setParameter("inferenceMode", 1) classifier.setParameter("learningMode", 0) # Assert learning is OFF and that the classifier learned the dataset. self.assertEqual(classifier.getParameter("learningMode"), 0, "Learning mode is not turned off.") self.assertEqual(classifier.getParameter("inferenceMode"), 1, "Inference mode is not turned on.") # make sure we can access all the parameters with getParameter self.assertEqual(classifier.getParameter("maxCategoryCount"), 2000) self.assertAlmostEqual(float(classifier.getParameter("alpha")), 0.001) self.assertEqual(int(classifier.getParameter("steps")), 0) self.assertTrue(classifier.getParameter("implementation") == "py") self.assertEqual(classifier.getParameter("verbosity"), 0) expectedCats = ([0.0], [1.0], [0.0], [1.0], [0.0], [1.0], [0.0], [1.0],) dataSource.rewind() for i in xrange(8): net.run(1) inferredCats = classifier.getOutputData("categoriesOut") self.assertSequenceEqual(expectedCats[i], inferredCats.tolist(), "Classififer did not infer expected category " "for record number {}.".format(i)) # Close data stream, delete file. dataSource.close() os.remove(filename)
def _generateOverlapping(filename="overlap.csv", numSequences=2, elementsPerSeq=3, numRepeats=10, hub=[0,1], hubOffset=1, resets=False): """ Generate a temporal dataset containing sequences that overlap one or more elements with other sequences. Parameters: ---------------------------------------------------- filename: name of the file to produce, including extension. It will be created in a 'datasets' sub-directory within the directory containing this script. numSequences: how many sequences to generate elementsPerSeq: length of each sequence numRepeats: how many times to repeat each sequence in the output hub: sub-sequence to place within each other sequence hubOffset: where, within each sequence, to place the hub resets: if True, turn on reset at start of each sequence """ # Check for conflicts in arguments assert (hubOffset + len(hub) <= elementsPerSeq) # Create the output file scriptDir = os.path.dirname(__file__) pathname = os.path.join(scriptDir, 'datasets', filename) print "Creating %s..." % (pathname) fields = [('reset', 'int', 'R'), ('category', 'int', 'C'), ('field1', 'string', '')] outFile = FileRecordStream(pathname, write=True, fields=fields) # Create the sequences with the hub in the middle sequences = [] nextElemIdx = max(hub)+1 for _ in range(numSequences): seq = [] for j in range(hubOffset): seq.append(nextElemIdx) nextElemIdx += 1 for j in hub: seq.append(j) j = hubOffset + len(hub) while j < elementsPerSeq: seq.append(nextElemIdx) nextElemIdx += 1 j += 1 sequences.append(seq) # Write out the sequences in random order seqIdxs = [] for _ in range(numRepeats): seqIdxs += range(numSequences) random.shuffle(seqIdxs) for seqIdx in seqIdxs: reset = int(resets) seq = sequences[seqIdx] for (x) in seq: outFile.appendRecord([reset, str(seqIdx), str(x)]) reset = 0 outFile.close()
def checkpoint(self, checkpointSink, maxRows): """ [virtual method override] Save a checkpoint of the prediction output stream. The checkpoint comprises up to maxRows of the most recent inference records. Parameters: ---------------------------------------------------------------------- checkpointSink: A File-like object where predictions checkpoint data, if any, will be stored. maxRows: Maximum number of most recent inference rows to checkpoint. """ checkpointSink.truncate() if self.__dataset is None: if self.__checkpointCache is not None: self.__checkpointCache.seek(0) shutil.copyfileobj(self.__checkpointCache, checkpointSink) checkpointSink.flush() return else: # Nothing to checkpoint return self.__dataset.flush() totalDataRows = self.__dataset.getDataRowCount() if totalDataRows == 0: # Nothing to checkpoint return # Open reader of prediction file (suppress missingValues conversion) reader = FileRecordStream(self.__datasetPath, missingValues=[]) # Create CSV writer for writing checkpoint rows writer = csv.writer(checkpointSink) # Write the header row to checkpoint sink -- just field names writer.writerow(reader.getFieldNames()) # Determine number of rows to checkpoint numToWrite = min(maxRows, totalDataRows) # Skip initial rows to get to the rows that we actually need to checkpoint numRowsToSkip = totalDataRows - numToWrite for i in xrange(numRowsToSkip): reader.next() # Write the data rows to checkpoint sink numWritten = 0 while True: row = reader.getNextRecord() if row is None: break; row = [str(element) for element in row] #print "DEBUG: _BasicPredictionWriter: checkpointing row: %r" % (row,) writer.writerow(row) numWritten +=1 assert numWritten == numToWrite, \ "numWritten ({0!s}) != numToWrite ({1!s})".format(numWritten, numToWrite) checkpointSink.flush() return
def _generateFile(filename, numRecords, categoryList, initProb, firstOrderProb, secondOrderProb, seqLen, numNoise=0, resetsEvery=None): """ Generate a set of records reflecting a set of probabilities. Parameters: ---------------------------------------------------------------- filename: name of .csv file to generate numRecords: number of records to generate categoryList: list of category names initProb: Initial probability for each category. This is a vector of length len(categoryList). firstOrderProb: A dictionary of the 1st order probabilities. The key is the 1st element of the sequence, the value is the probability of each 2nd element given the first. secondOrderProb: A dictionary of the 2nd order probabilities. The key is the first 2 elements of the sequence, the value is the probability of each possible 3rd element given the first two. seqLen: Desired length of each sequence. The 1st element will be generated using the initProb, the 2nd element by the firstOrder table, and the 3rd and all successive elements by the secondOrder table. None means infinite length. numNoise: Number of noise elements to place between each sequence. The noise elements are evenly distributed from all categories. resetsEvery: If not None, generate a reset every N records Here is an example of some parameters: categoryList: ['cat1', 'cat2', 'cat3'] initProb: [0.7, 0.2, 0.1] firstOrderProb: {'[0]': [0.3, 0.3, 0.4], '[1]': [0.3, 0.3, 0.4], '[2]': [0.3, 0.3, 0.4]} secondOrderProb: {'[0,0]': [0.3, 0.3, 0.4], '[0,1]': [0.3, 0.3, 0.4], '[0,2]': [0.3, 0.3, 0.4], '[1,0]': [0.3, 0.3, 0.4], '[1,1]': [0.3, 0.3, 0.4], '[1,2]': [0.3, 0.3, 0.4], '[2,0]': [0.3, 0.3, 0.4], '[2,1]': [0.3, 0.3, 0.4], '[2,2]': [0.3, 0.3, 0.4]} """ # Create the file print "Creating %s..." % (filename) fields = [('reset', 'int', 'R'), ('name', 'string', '')] outFile = FileRecordStream(filename, write=True, fields=fields) # -------------------------------------------------------------------- # Convert the probabilitie tables into cumulative probabilities initCumProb = initProb.cumsum() firstOrderCumProb = dict() for (key,value) in firstOrderProb.iteritems(): firstOrderCumProb[key] = value.cumsum() secondOrderCumProb = dict() for (key,value) in secondOrderProb.iteritems(): secondOrderCumProb[key] = value.cumsum() # -------------------------------------------------------------------- # Write out the sequences elementsInSeq = [] numElementsSinceReset = 0 maxCatIdx = len(categoryList) - 1 for i in xrange(numRecords): # Generate a reset? if numElementsSinceReset == 0: reset = 1 else: reset = 0 # Pick the next element, based on how are we are into the 2nd order # sequence. rand = numpy.random.rand() if len(elementsInSeq) == 0: catIdx = numpy.searchsorted(initCumProb, rand) elif len(elementsInSeq) == 1: catIdx = numpy.searchsorted(firstOrderCumProb[str(elementsInSeq)], rand) elif (len(elementsInSeq) >=2) and \ (seqLen is None or len(elementsInSeq) < seqLen-numNoise): catIdx = numpy.searchsorted(secondOrderCumProb[str(elementsInSeq[-2:])], rand) else: # random "noise" catIdx = numpy.random.randint(len(categoryList)) # Write out the record catIdx = min(maxCatIdx, catIdx) outFile.appendRecord([reset,categoryList[catIdx]]) #print categoryList[catIdx] # ------------------------------------------------------------ # Increment counters elementsInSeq.append(catIdx) numElementsSinceReset += 1 # Generate another reset? if resetsEvery is not None and numElementsSinceReset == resetsEvery: numElementsSinceReset = 0 elementsInSeq = [] # Start another 2nd order sequence? if seqLen is not None and (len(elementsInSeq) == seqLen+numNoise): elementsInSeq = [] outFile.close()
def generateStats(filename, maxSamples = None,): """ Collect statistics for each of the fields in the user input data file and return a stats dict object. Parameters: ------------------------------------------------------------------------------ filename: The path and name of the data file. maxSamples: Upper bound on the number of rows to be processed retval: A dictionary of dictionaries. The top level keys are the field names and the corresponding values are the statistics collected for the individual file. Example: { 'consumption':{'min':0,'max':90,'mean':50,...}, 'gym':{'numDistinctCategories':10,...}, ... } """ # Mapping from field type to stats collector object statsCollectorMapping = {'float': FloatStatsCollector, 'int': IntStatsCollector, 'string': StringStatsCollector, 'datetime': DateTimeStatsCollector, 'bool': BoolStatsCollector, } filename = resource_filename("nupic.datafiles", filename) print "*"*40 print "Collecting statistics for file:'%s'" % (filename,) dataFile = FileRecordStream(filename) # Initialize collector objects # statsCollectors list holds statsCollector objects for each field statsCollectors = [] for fieldName, fieldType, fieldSpecial in dataFile.getFields(): # Find the corresponding stats collector for each field based on field type # and intialize an instance statsCollector = \ statsCollectorMapping[fieldType](fieldName, fieldType, fieldSpecial) statsCollectors.append(statsCollector) # Now collect the stats if maxSamples is None: maxSamples = 500000 for i in xrange(maxSamples): record = dataFile.getNextRecord() if record is None: break for i, value in enumerate(record): statsCollectors[i].addValue(value) # stats dict holds the statistics for each field stats = {} for statsCollector in statsCollectors: statsCollector.getStats(stats) # We don't want to include reset field in permutations # TODO: handle reset field in a clean way if dataFile.getResetFieldIdx() is not None: resetFieldName,_,_ = dataFile.getFields()[dataFile.reset] stats.pop(resetFieldName) if VERBOSITY > 0: pprint.pprint(stats) return stats
def testSimpleMulticlassNetwork(self): # Setup data record stream of fake data (with three categories) filename = _getTempFileName() fields = [("timestamp", "datetime", "T"), ("value", "float", ""), ("reset", "int", "R"), ("sid", "int", "S"), ("categories", "list", "C")] records = ( [datetime(day=1, month=3, year=2010), 0.0, 1, 0, ""], [datetime(day=2, month=3, year=2010), 1.0, 0, 0, "1 2"], [datetime(day=3, month=3, year=2010), 1.0, 0, 0, "1 2"], [datetime(day=4, month=3, year=2010), 2.0, 0, 0, "0"], [datetime(day=5, month=3, year=2010), 3.0, 0, 0, "1 2"], [datetime(day=6, month=3, year=2010), 5.0, 0, 0, "1 2"], [datetime(day=7, month=3, year=2010), 8.0, 0, 0, "0"], [datetime(day=8, month=3, year=2010), 13.0, 0, 0, "1 2"]) dataSource = FileRecordStream(streamID=filename, write=True, fields=fields) for r in records: dataSource.appendRecord(list(r)) # Create the network and get region instances. net = Network() net.addRegion("sensor", "py.RecordSensor", "{'numCategories': 3}") net.addRegion("classifier","py.KNNClassifierRegion", "{'k': 2,'distThreshold': 0,'maxCategoryCount': 3}") net.link("sensor", "classifier", "UniformLink", "", srcOutput = "dataOut", destInput = "bottomUpIn") net.link("sensor", "classifier", "UniformLink", "", srcOutput = "categoryOut", destInput = "categoryIn") sensor = net.regions["sensor"] classifier = net.regions["classifier"] # Setup sensor region encoder and data stream. dataSource.close() dataSource = FileRecordStream(filename) sensorRegion = sensor.getSelf() sensorRegion.encoder = MultiEncoder() sensorRegion.encoder.addEncoder( "value", ScalarEncoder(21, 0.0, 13.0, n=256, name="value")) sensorRegion.dataSource = dataSource # Get ready to run. net.initialize() # Train the network (by default learning is ON in the classifier, but assert # anyway) and then turn off learning and turn on inference mode. self.assertEqual(classifier.getParameter("learningMode"), 1) net.run(8) classifier.setParameter("inferenceMode", 1) classifier.setParameter("learningMode", 0) # Assert learning is OFF and that the classifier learned the dataset. self.assertEqual(classifier.getParameter("learningMode"), 0, "Learning mode is not turned off.") self.assertEqual(classifier.getParameter("inferenceMode"), 1, "Inference mode is not turned on.") self.assertEqual(classifier.getParameter("categoryCount"), 3, "The classifier should count three total categories.") # classififer learns 12 patterns b/c there are 12 categories amongst the # records: self.assertEqual(classifier.getParameter("patternCount"), 12, "The classifier should've learned 12 samples in total.") # Test the network on the same data as it trained on; should classify with # 100% accuracy. expectedCats = ([0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.5, 0.0], [0.0, 0.5, 0.5]) dataSource.rewind() for i in xrange(8): net.run(1) inferredCats = classifier.getOutputData("categoriesOut") self.assertSequenceEqual(expectedCats[i], inferredCats.tolist(), "Classififer did not infer expected category probabilites for record " "number {}.".format(i)) # Close data stream, delete file. dataSource.close() os.remove(filename)
def generateDataset(aggregationInfo, inputFilename, outputFilename=None): """Generate a dataset of aggregated values Parameters: ---------------------------------------------------------------------------- aggregationInfo: a dictionary that contains the following entries - fields: a list of pairs. Each pair is a field name and an aggregation function (e.g. sum). The function will be used to aggregate multiple values during the aggregation period. aggregation period: 0 or more of unit=value fields; allowed units are: [years months] | [weeks days hours minutes seconds milliseconds microseconds] NOTE: years and months are mutually-exclusive with the other units. See getEndTime() and _aggregate() for more details. Example1: years=1, months=6, Example2: hours=1, minutes=30, If none of the period fields are specified or if all that are specified have values of 0, then aggregation will be suppressed, and the given inputFile parameter value will be returned. inputFilename: filename (or relative path form NTA_DATA_PATH) of the input dataset outputFilename: name for the output file. If not given, a name will be generated based on the input filename and the aggregation params retval: Name of the generated output file. This will be the same as the input file name if no aggregation needed to be performed If the input file contained a time field, sequence id field or reset field that were not specified in aggregationInfo fields, those fields will be added automatically with the following rules: 1. The order will be R, S, T, rest of the fields 2. The aggregation function for all will be to pick the first: lambda x: x[0] Returns: the path of the aggregated data file if aggregation was performed (in the same directory as the given input file); if aggregation did not need to be performed, then the given inputFile argument value is returned. """ # Create the input stream inputFullPath = findDataset(inputFilename) inputObj = FileRecordStream(inputFullPath) # Instantiate the aggregator aggregator = Aggregator(aggregationInfo=aggregationInfo, inputFields=inputObj.getFields()) # Is it a null aggregation? If so, just return the input file unmodified if aggregator.isNullAggregation(): return inputFullPath # ------------------------------------------------------------------------ # If we were not given an output filename, create one based on the # aggregation settings if outputFilename is None: outputFilename = 'agg_%s' % \ os.path.splitext(os.path.basename(inputFullPath))[0] timePeriods = 'years months weeks days '\ 'hours minutes seconds milliseconds microseconds' for k in timePeriods.split(): if aggregationInfo.get(k, 0) > 0: outputFilename += '_%s_%d' % (k, aggregationInfo[k]) outputFilename += '.csv' outputFilename = os.path.join(os.path.dirname(inputFullPath), outputFilename) # ------------------------------------------------------------------------ # If some other process already started creating this file, simply # wait for it to finish and return without doing anything lockFilePath = outputFilename + '.please_wait' if os.path.isfile(outputFilename) or \ os.path.isfile(lockFilePath): while os.path.isfile(lockFilePath): print 'Waiting for %s to be fully written by another process' % \ lockFilePath time.sleep(1) return outputFilename # Create the lock file lockFD = open(lockFilePath, 'w') # ------------------------------------------------------------------------- # Create the output stream outputObj = FileRecordStream(streamID=outputFilename, write=True, fields=inputObj.getFields()) # ------------------------------------------------------------------------- # Write all aggregated records to the output while True: inRecord = inputObj.getNextRecord() (aggRecord, aggBookmark) = aggregator.next(inRecord, None) if aggRecord is None and inRecord is None: break if aggRecord is not None: outputObj.appendRecord(aggRecord) return outputFilename
class Sensor(Node): """ A super class only to group properties related to sensors. """ #region Constructor def __init__(self, name): """ Initializes a new instance of this class. """ Node.__init__(self, name, NodeType.sensor) #region Instance fields self.bits = [] """An array of the bit objects that compose the current output of this node.""" self.dataSource = None """Data source which provides records to fed into a region.""" self.dataSourceType = DataSourceType.file """Type of the data source (File or Database)""" self.fileName = '' """The input file name to be handled. Returns the input file name only if it is in the project directory, full path otherwise.""" self.databaseConnectionString = "" """Connection string of the database.""" self.databaseTable = '' """Target table of the database.""" self.encoder = None """Multi-encoder which concatenate sub-encodings to convert raw data to htm input and vice-versa.""" self.encodings = [] """List of sub-encodings that handles the input from database""" self.predictionsMethod = PredictionsMethod.reconstruction """Method used to get predicted values and their probabilities.""" self.enableClassificationLearning = True """Switch for classification learning""" self.enableClassificationInference = True """Switch for classification inference""" #endregion #region Statistics properties self.statsPrecisionRate = 0. #endregion #endregion #region Methods def getBit(self, x, y): """ Return the bit located at given position """ bit = self.bits[(y * self.width) + x] return bit def initialize(self): """ Initialize this node. """ Node.initialize(self) # Initialize input bits self.bits = [] for x in range(self.width): for y in range(self.height): bit = Bit() bit.x = x bit.y = y self.bits.append(bit) if self.dataSourceType == DataSourceType.file: """ Initialize this node opening the file and place cursor on the first record. """ # If file name provided is a relative path, use project file path if self.fileName != '' and os.path.dirname(self.fileName) == '': fullFileName = os.path.dirname(Global.project.fileName) + '/' + self.fileName else: fullFileName = self.fileName # Check if file really exists if not os.path.isfile(fullFileName): QtGui.QMessageBox.warning(None, "Warning", "Input stream file '" + fullFileName + "' was not found or specified.", QtGui.QMessageBox.Ok) return # Create a data source for read the file self.dataSource = FileRecordStream(fullFileName) elif self.dataSourceType == DataSourceType.database: pass self.encoder = MultiEncoder() for encoding in self.encodings: encoding.initialize() # Create an instance class for an encoder given its module, class and constructor params encoding.encoder = getInstantiatedClass(encoding.encoderModule, encoding.encoderClass, encoding.encoderParams) # Take the first part of encoder field name as encoder name # Ex: timestamp_weekend.weekend => timestamp_weekend encoding.encoder.name = encoding.encoderFieldName.split('.')[0] # Add sub-encoder to multi-encoder list self.encoder.addEncoder(encoding.dataSourceFieldName, encoding.encoder) # If encoder size is not the same to sensor size then throws exception encoderSize = self.encoder.getWidth() sensorSize = self.width * self.height if encoderSize > sensorSize: QtGui.QMessageBox.warning(None, "Warning", "'" + self.name + "': Encoder size (" + str(encoderSize) + ") is different from sensor size (" + str(self.width) + " x " + str(self.height) + " = " + str(sensorSize) + ").", QtGui.QMessageBox.Ok) return return True def nextStep(self): """ Performs actions related to time step progression. """ # Update states machine by remove the first element and add a new element in the end for encoding in self.encodings: encoding.currentValue.rotate() if encoding.enableInference: encoding.predictedValues.rotate() encoding.bestPredictedValue.rotate() Node.nextStep(self) for bit in self.bits: bit.nextStep() # Get record value from data source # If the last record was reached just rewind it data = self.dataSource.getNextRecordDict() if not data: self.dataSource.rewind() data = self.dataSource.getNextRecordDict() # Pass raw values to encoder and get a concatenated array outputArray = numpy.zeros(self.encoder.getWidth()) self.encoder.encodeIntoArray(data, outputArray) # Get values obtained from the data source. outputValues = self.encoder.getScalars(data) # Get raw values and respective encoded bit array for each field prevOffset = 0 for i in range(len(self.encodings)): encoding = self.encodings[i] # Convert the value to its respective data type currValue = outputValues[i] if encoding.encoderFieldDataType == FieldDataType.boolean: currValue = bool(currValue) elif encoding.encoderFieldDataType == FieldDataType.integer: currValue = int(currValue) elif encoding.encoderFieldDataType == FieldDataType.decimal: currValue = float(currValue) elif encoding.encoderFieldDataType == FieldDataType.dateTime: currValue = dateutil.parser.parse(str(currValue)) elif encoding.encoderFieldDataType == FieldDataType.string: currValue = str(currValue) encoding.currentValue.setForCurrStep(currValue) # Update sensor bits for i in range(len(outputArray)): if outputArray[i] > 0.: self.bits[i].isActive.setForCurrStep(True) else: self.bits[i].isActive.setForCurrStep(False) # Mark falsely predicted bits for bit in self.bits: if bit.isPredicted.atPreviousStep() and not bit.isActive.atCurrStep(): bit.isFalselyPredicted.setForCurrStep(True) self._output = outputArray def getPredictions(self): """ Get the predictions after an iteration. """ if self.predictionsMethod == PredictionsMethod.reconstruction: # Prepare list with predictions to be classified # This list contains the indexes of all bits that are predicted output = [] for i in range(len(self.bits)): if self.bits[i].isPredicted.atCurrStep(): output.append(1) else: output.append(0) output = numpy.array(output) # Decode output and create predictions list fieldsDict, fieldsOrder = self.encoder.decode(output) for encoding in self.encodings: if encoding.enableInference: predictions = [] encoding.predictedValues.setForCurrStep(dict()) # If encoder field name was returned by decode(), assign the the predictions to it if encoding.encoderFieldName in fieldsOrder: predictedLabels = fieldsDict[encoding.encoderFieldName][1].split(', ') predictedValues = fieldsDict[encoding.encoderFieldName][0] for i in range(len(predictedLabels)): predictions.append([predictedValues[i], predictedLabels[i]]) encoding.predictedValues.atCurrStep()[1] = predictions # Get the predicted value with the biggest probability to happen if len(predictions) > 0: bestPredictionRange = predictions[0][0] min = bestPredictionRange[0] max = bestPredictionRange[1] bestPredictedValue = (min + max) / 2.0 encoding.bestPredictedValue.setForCurrStep(bestPredictedValue) elif self.predictionsMethod == PredictionsMethod.classification: # A classification involves estimate which are the likely values to occurs in the next time step. offset = 0 for encoding in self.encodings: encoderWidth = encoding.encoder.getWidth() if encoding.enableInference: # Prepare list with predictions to be classified # This list contains the indexes of all bits that are predicted patternNZ = [] for i in range(offset, encoderWidth): if self.bits[i].isActive.atCurrStep(): patternNZ.append(i) # Get the bucket index of the current value at the encoder actualValue = encoding.currentValue.atCurrStep() bucketIdx = encoding.encoder.getBucketIndices(actualValue)[0] # Perform classification clasResults = encoding.classifier.compute(recordNum=Global.currStep, patternNZ=patternNZ, classification={'bucketIdx': bucketIdx, 'actValue': actualValue}, learn=self.enableClassificationLearning, infer=self.enableClassificationInference) encoding.predictedValues.setForCurrStep(dict()) for step in encoding.steps: # Calculate probability for each predicted value predictions = dict() for (actValue, prob) in zip(clasResults['actualValues'], clasResults[step]): if actValue in predictions: predictions[actValue] += prob else: predictions[actValue] = prob # Remove predictions with low probabilities maxVal = (None, None) for (actValue, prob) in predictions.items(): if len(predictions) <= 1: break if maxVal[0] is None or prob >= maxVal[1]: if maxVal[0] is not None and maxVal[1] < encoding.minProbabilityThreshold: del predictions[maxVal[0]] maxVal = (actValue, prob) elif prob < encoding.minProbabilityThreshold: del predictions[actValue] # Sort the list of values from more probable to less probable values # an decrease the list length to max predictions per step limit predictions = sorted(predictions.iteritems(), key=operator.itemgetter(1), reverse=True) predictions = predictions[:maxFutureSteps] encoding.predictedValues.atCurrStep()[step] = predictions # Get the predicted value with the biggest probability to happen bestPredictedValue = encoding.predictedValues.atCurrStep()[1][0][0] encoding.bestPredictedValue.setForCurrStep(bestPredictedValue) offset += encoderWidth def calculateStatistics(self): """ Calculate statistics after an iteration. """ if Global.currStep > 0: precision = 0. # Calculate the prediction precision comparing if the current value is in the range of any prediction. for encoding in self.encodings: if encoding.enableInference: predictions = encoding.predictedValues.atPreviousStep()[1] for predictedValue in predictions: min = None max = None value = predictedValue[0] if self.predictionsMethod == PredictionsMethod.reconstruction: min = value[0] max = value[1] elif self.predictionsMethod == PredictionsMethod.classification: min = value max = value if isinstance(min, (int, long, float, complex)) and isinstance(max, (int, long, float, complex)): min = math.floor(min) max = math.ceil(max) if min <= encoding.currentValue.atCurrStep() <= max: precision = 100. break # The precision rate is the average of the precision calculated in every step self.statsPrecisionRate = (self.statsPrecisionRate + precision) / 2 else: self.statsPrecisionRate = 0. for bit in self.bits: bit.calculateStatistics()
def _testSamePredictions(self, experiment, predSteps, checkpointAt, predictionsFilename, additionalFields=None, newSerialization=False): """ Test that we get the same predictions out from the following two scenarios: a_plus_b: Run the network for 'a' iterations followed by 'b' iterations a, followed by b: Run the network for 'a' iterations, save it, load it back in, then run for 'b' iterations. Parameters: ----------------------------------------------------------------------- experiment: base directory of the experiment. This directory should contain the following: base.py a_plus_b/description.py a/description.py b/description.py The sub-directory description files should import the base.py and only change the first and last record used from the data file. predSteps: Number of steps ahead predictions are for checkpointAt: Number of iterations that 'a' runs for. IMPORTANT: This must match the number of records that a/description.py runs for - it is NOT dynamically stuffed into the a/description.py. predictionsFilename: The name of the predictions file that the OPF generates for this experiment (for example 'DefaulTask.NontemporalMultiStep.predictionLog.csv') newSerialization: Whether to use new capnproto serialization. """ # Get the 3 sub-experiment directories aPlusBExpDir = os.path.join(_EXPERIMENT_BASE, experiment, "a_plus_b") aExpDir = os.path.join(_EXPERIMENT_BASE, experiment, "a") bExpDir = os.path.join(_EXPERIMENT_BASE, experiment, "b") # Run a+b args = self._createExperimentArgs(aPlusBExpDir, newSerialization=newSerialization) _aPlusBExp = runExperiment(args) # Run a, the copy the saved checkpoint into the b directory args = self._createExperimentArgs(aExpDir, newSerialization=newSerialization) _aExp = runExperiment(args) if os.path.exists(os.path.join(bExpDir, 'savedmodels')): shutil.rmtree(os.path.join(bExpDir, 'savedmodels')) shutil.copytree(src=os.path.join(aExpDir, 'savedmodels'), dst=os.path.join(bExpDir, 'savedmodels')) args = self._createExperimentArgs(bExpDir, newSerialization=newSerialization, additionalArgs=['--load=DefaultTask']) _bExp = runExperiment(args) # Now, compare the predictions at the end of a+b to those in b. aPlusBPred = FileRecordStream(os.path.join(aPlusBExpDir, 'inference', predictionsFilename)) bPred = FileRecordStream(os.path.join(bExpDir, 'inference', predictionsFilename)) colNames = [x[0] for x in aPlusBPred.getFields()] actValueColIdx = colNames.index('multiStepPredictions.actual') predValueColIdx = colNames.index('multiStepPredictions.%d' % (predSteps)) # Skip past the 'a' records in aPlusB for i in range(checkpointAt): aPlusBPred.next() # Now, read through the records that don't have predictions yet for i in range(predSteps): aPlusBPred.next() bPred.next() # Now, compare predictions in the two files rowIdx = checkpointAt + predSteps + 4 - 1 epsilon = 0.0001 while True: rowIdx += 1 try: rowAPB = aPlusBPred.next() rowB = bPred.next() # Compare actuals self.assertEqual(rowAPB[actValueColIdx], rowB[actValueColIdx], "Mismatch in actual values: row %d of a+b has %s and row %d of " "b has %s" % (rowIdx, rowAPB[actValueColIdx], rowIdx-checkpointAt, rowB[actValueColIdx])) # Compare predictions, within nearest epsilon predAPB = eval(rowAPB[predValueColIdx]) predB = eval(rowB[predValueColIdx]) # Sort with highest probabilities first predAPB = [(a, b) for b, a in predAPB.items()] predB = [(a, b) for b, a in predB.items()] predAPB.sort(reverse=True) predB.sort(reverse=True) if additionalFields is not None: for additionalField in additionalFields: fieldIdx = colNames.index(additionalField) self.assertEqual(rowAPB[fieldIdx], rowB[fieldIdx], "Mismatch in field \'%s\' values: row %d of a+b has value: (%s)\n" " and row %d of b has value: %s" % \ (additionalField, rowIdx, rowAPB[fieldIdx], rowIdx-checkpointAt, rowB[fieldIdx])) self.assertEqual(len(predAPB), len(predB), "Mismatch in predicted values: row %d of a+b has %d predictions: " "\n (%s) and row %d of b has %d predictions:\n (%s)" % \ (rowIdx, len(predAPB), predAPB, rowIdx-checkpointAt, len(predB), predB)) for i in range(len(predAPB)): (aProb, aValue) = predAPB[i] (bProb, bValue) = predB[i] self.assertLess(abs(aValue-bValue), epsilon, "Mismatch in predicted values: row %d of a+b predicts value %s " "and row %d of b predicts %s" % (rowIdx, aValue, rowIdx-checkpointAt, bValue)) self.assertLess(abs(aProb-bProb), epsilon, "Mismatch in probabilities: row %d of a+b predicts %s with " "probability %s and row %d of b predicts %s with probability %s" \ % (rowIdx, aValue, aProb, rowIdx-checkpointAt, bValue, bProb)) except StopIteration: break # clean up model checkpoint directories shutil.rmtree(getCheckpointParentDir(aExpDir)) shutil.rmtree(getCheckpointParentDir(bExpDir)) shutil.rmtree(getCheckpointParentDir(aPlusBExpDir)) print "Predictions match!"
class StreamReader(RecordStreamIface): """ Implements a stream reader. This is a high level class that owns one or more underlying implementations of a RecordStreamIFace. Each RecordStreamIFace implements the raw reading of records from the record store (which could be a file, hbase table or something else). In the future, we will support joining of two or more RecordStreamIface's ( which is why the streamDef accepts a list of 'stream' elements), but for now only 1 source is supported. The class also implements aggregation of the (in the future) joined records from the sources. This module parses the stream definition (as defined in /nupic/frameworks/opf/jsonschema/stream_def.json), creates the RecordStreamIFace for each source ('stream's element) defined in the stream def, performs aggregation, and returns each record in the correct format according to the desired column names specified in the streamDef. This class implements the RecordStreamIFace interface and thus can be used in place of a raw record stream. This is an example streamDef: { 'version': 1 'info': 'test_hotgym', 'streams': [ {'columns': [u'*'], 'info': u'hotGym.csv', 'last_record': 4000, 'source': u'file://extra/hotgym/hotgym.csv'}. ], 'timeField': 'timestamp', 'aggregation': { 'hours': 1, 'fields': [ ('timestamp', 'first'), ('gym', 'first'), ('consumption', 'sum') ], } } """ def __init__(self, streamDef, bookmark=None, saveOutput=False, isBlocking=True, maxTimeout=0, eofOnTimeout=False): """ Base class constructor, performs common initialization Parameters: ---------------------------------------------------------------- streamDef: The stream definition, potentially containing multiple sources (not supported yet). See /nupic/frameworks/opf/jsonschema/stream_def.json for the format of this dict bookmark: Bookmark to start reading from. This overrides the first_record field of the streamDef if provided. saveOutput: If true, save the output to a csv file in a temp directory. The path to the generated file can be found in the log output. isBlocking: should read operation block *forever* if the next row of data is not available, but the stream is not marked as 'completed' yet? maxTimeout: if isBlocking is False, max seconds to wait for more data before timing out; ignored when isBlocking is True. eofOnTimeout: If True and we get a read timeout (isBlocking must be False to get read timeouts), assume we've reached the end of the input and produce the last aggregated record, if one can be completed. """ # Call superclass constructor super(StreamReader, self).__init__() loggerPrefix = 'com.numenta.nupic.data.StreamReader' self._logger = logging.getLogger(loggerPrefix) jsonhelpers.validate(streamDef, schemaPath=pkg_resources.resource_filename( jsonschema.__name__, "stream_def.json")) assert len(streamDef['streams']) == 1, "Only 1 source stream is supported" # Save constructor args sourceDict = streamDef['streams'][0] self._recordCount = 0 self._eofOnTimeout = eofOnTimeout self._logger.debug('Reading stream with the def: %s', sourceDict) # Dictionary to store record statistics (min and max of scalars for now) self._stats = None # --------------------------------------------------------------------- # Get the stream definition params # Limiting window of the stream. It would not return any records until # 'first_record' ID is read (or very first with the ID above that). The # stream will return EOS once it reads record with ID 'last_record' or # above (NOTE: the name 'lastRecord' is misleading because it is NOT # inclusive). firstRecordIdx = sourceDict.get('first_record', None) self._sourceLastRecordIdx = sourceDict.get('last_record', None) # If a bookmark was given, then override first_record from the stream # definition. if bookmark is not None: firstRecordIdx = None # Column names must be provided in the streamdef json # Special case is ['*'], meaning all available names from the record stream self._streamFieldNames = sourceDict.get('columns', None) if self._streamFieldNames != None and self._streamFieldNames[0] == '*': self._needFieldsFiltering = False else: self._needFieldsFiltering = True # Types must be specified in streamdef json, or in case of the # file_recod_stream types could be implicit from the file streamFieldTypes = sourceDict.get('types', None) self._logger.debug('Types from the def: %s', streamFieldTypes) # Validate that all types are valid if streamFieldTypes is not None: for dataType in streamFieldTypes: assert FieldMetaType.isValid(dataType) # Reset, sequence and time fields might be provided by streamdef json streamResetFieldName = streamDef.get('resetField', None) streamTimeFieldName = streamDef.get('timeField', None) streamSequenceFieldName = streamDef.get('sequenceIdField', None) self._logger.debug('r, t, s fields: %s, %s, %s', streamResetFieldName, streamTimeFieldName, streamSequenceFieldName) # ======================================================================= # Open up the underlying record store dataUrl = sourceDict.get('source', None) assert dataUrl is not None self._recordStore = self._openStream(dataUrl, isBlocking, maxTimeout, bookmark, firstRecordIdx) assert self._recordStore is not None # ======================================================================= # Prepare the data structures we need for returning just the fields # the caller wants from each record recordStoreFields = self._recordStore.getFields() self._recordStoreFieldNames = self._recordStore.getFieldNames() if not self._needFieldsFiltering: self._streamFieldNames = self._recordStoreFieldNames # Build up the field definitions for each field. This is a list of tuples # of (name, type, special) self._streamFields = [] for dstIdx, name in enumerate(self._streamFieldNames): if name not in self._recordStoreFieldNames: raise RuntimeError("The column '%s' from the stream definition " "is not present in the underlying stream which has the following " "columns: %s" % (name, self._recordStoreFieldNames)) fieldIdx = self._recordStoreFieldNames.index(name) fieldType = recordStoreFields[fieldIdx].type fieldSpecial = recordStoreFields[fieldIdx].special # If the types or specials were defined in the stream definition, # then override what was found in the record store if streamFieldTypes is not None: fieldType = streamFieldTypes[dstIdx] if streamResetFieldName is not None and streamResetFieldName == name: fieldSpecial = FieldMetaSpecial.reset if streamTimeFieldName is not None and streamTimeFieldName == name: fieldSpecial = FieldMetaSpecial.timestamp if (streamSequenceFieldName is not None and streamSequenceFieldName == name): fieldSpecial = FieldMetaSpecial.sequence self._streamFields.append(FieldMetaInfo(name, fieldType, fieldSpecial)) # ======================================================================== # Create the aggregator which will handle aggregation of records before # returning them. self._aggregator = Aggregator( aggregationInfo=streamDef.get('aggregation', None), inputFields=recordStoreFields, timeFieldName=streamDef.get('timeField', None), sequenceIdFieldName=streamDef.get('sequenceIdField', None), resetFieldName=streamDef.get('resetField', None)) # We rely on the aggregator to tell us the bookmark of the last raw input # that contributed to the aggregated record self._aggBookmark = None # Compute the aggregation period in terms of months and seconds if 'aggregation' in streamDef: self._aggMonthsAndSeconds = nupic.support.aggregationToMonthsSeconds( streamDef.get('aggregation')) else: self._aggMonthsAndSeconds = None # ======================================================================== # Are we saving the generated output to a csv? if saveOutput: tmpDir = tempfile.mkdtemp() outFilename = os.path.join(tmpDir, "generated_output.csv") self._logger.info("StreamReader: Saving generated records to: '%s'" % outFilename) self._writer = FileRecordStream(streamID=outFilename, write=True, fields=self._streamFields) else: self._writer = None @staticmethod def _openStream(dataUrl, isBlocking, # pylint: disable=W0613 maxTimeout, # pylint: disable=W0613 bookmark, firstRecordIdx): """Open the underlying file stream This only supports 'file://' prefixed paths. :returns: record stream instance :rtype: FileRecordStream """ filePath = dataUrl[len(FILE_PREF):] if not os.path.isabs(filePath): filePath = os.path.join(os.getcwd(), filePath) return FileRecordStream(streamID=filePath, write=False, bookmark=bookmark, firstRecord=firstRecordIdx) def close(self): """ Close the stream """ return self._recordStore.close() def getNextRecord(self): """ Returns combined data from all sources (values only). Returns None on EOF; empty sequence on timeout. """ # Keep reading from the raw input till we get enough for an aggregated # record while True: # Reached EOF due to lastRow constraint? if self._sourceLastRecordIdx is not None and \ self._recordStore.getNextRecordIdx() >= self._sourceLastRecordIdx: preAggValues = None # indicates EOF bookmark = self._recordStore.getBookmark() else: # Get the raw record and bookmark preAggValues = self._recordStore.getNextRecord() bookmark = self._recordStore.getBookmark() if preAggValues == (): # means timeout error occurred if self._eofOnTimeout: preAggValues = None # act as if we got EOF else: return preAggValues # Timeout indicator self._logger.debug('Read source record #%d: %r', self._recordStore.getNextRecordIdx()-1, preAggValues) # Perform aggregation (fieldValues, aggBookmark) = self._aggregator.next(preAggValues, bookmark) # Update the aggregated record bookmark if we got a real record back if fieldValues is not None: self._aggBookmark = aggBookmark # Reached EOF? if preAggValues is None and fieldValues is None: return None # Return it if we have a record if fieldValues is not None: break # Do we need to re-order the fields in the record? if self._needFieldsFiltering: values = [] srcDict = dict(zip(self._recordStoreFieldNames, fieldValues)) for name in self._streamFieldNames: values.append(srcDict[name]) fieldValues = values # Write to debug output? if self._writer is not None: self._writer.appendRecord(fieldValues) self._recordCount += 1 self._logger.debug('Returning aggregated record #%d from getNextRecord(): ' '%r. Bookmark: %r', self._recordCount-1, fieldValues, self._aggBookmark) return fieldValues def getDataRowCount(self): """Iterates through stream to calculate total records after aggregation. This will alter the bookmark state. """ inputRowCountAfterAggregation = 0 while True: record = self.getNextRecord() if record is None: return inputRowCountAfterAggregation inputRowCountAfterAggregation += 1 if inputRowCountAfterAggregation > 10000: raise RuntimeError('No end of datastream found.') def getLastRecords(self, numRecords): """Saves the record in the underlying storage.""" raise RuntimeError("Not implemented in StreamReader") def getRecordsRange(self, bookmark=None, range=None): """ Returns a range of records, starting from the bookmark. If 'bookmark' is None, then records read from the first available. If 'range' is None, all available records will be returned (caution: this could be a lot of records and require a lot of memory). """ raise RuntimeError("Not implemented in StreamReader") def getNextRecordIdx(self): """Returns the index of the record that will be read next from getNextRecord() """ return self._recordCount def recordsExistAfter(self, bookmark): """Returns True iff there are records left after the bookmark.""" return self._recordStore.recordsExistAfter(bookmark) def getAggregationMonthsAndSeconds(self): """ Returns the aggregation period of the record stream as a dict containing 'months' and 'seconds'. The months is always an integer and seconds is a floating point. Only one is allowed to be non-zero at a time. If there is no aggregation associated with the stream, returns None. Typically, a raw file or hbase stream will NOT have any aggregation info, but subclasses of RecordStreamIFace, like StreamReader, will and will return the aggregation period from this call. This call is used by the getNextRecordDict() method to assign a record number to a record given its timestamp and the aggregation interval Parameters: ------------------------------------------------------------------------ retval: aggregationPeriod (as a dict) or None 'months': number of months in aggregation period 'seconds': number of seconds in aggregation period (as a float) """ return self._aggMonthsAndSeconds def appendRecord(self, record, inputRef=None): """Saves the record in the underlying storage.""" raise RuntimeError("Not implemented in StreamReader") def appendRecords(self, records, inputRef=None, progressCB=None): """Saves multiple records in the underlying storage.""" raise RuntimeError("Not implemented in StreamReader") def removeOldData(self): raise RuntimeError("Not implemented in StreamReader") def seekFromEnd(self, numRecords): """Seeks to numRecords from the end and returns a bookmark to the new position. """ raise RuntimeError("Not implemented in StreamReader") def getFieldNames(self): """ Returns all fields in all inputs (list of plain names). NOTE: currently, only one input is supported """ return [f.name for f in self._streamFields] def getFields(self): """ Returns a sequence of nupic.data.fieldmeta.FieldMetaInfo name/type/special tuples for each field in the stream. """ return self._streamFields def getBookmark(self): """ Returns a bookmark to the current position """ return self._aggBookmark def clearStats(self): """ Resets stats collected so far. """ self._recordStore.clearStats() def getStats(self): """ Returns stats (like min and max values of the fields). TODO: This method needs to be enhanced to get the stats on the *aggregated* records. """ # The record store returns a dict of stats, each value in this dict is # a list with one item per field of the record store # { # 'min' : [f1_min, f2_min, f3_min], # 'max' : [f1_max, f2_max, f3_max] # } recordStoreStats = self._recordStore.getStats() # We need to convert each item to represent the fields of the *stream* streamStats = dict() for (key, values) in recordStoreStats.items(): fieldStats = dict(zip(self._recordStoreFieldNames, values)) streamValues = [] for name in self._streamFieldNames: streamValues.append(fieldStats[name]) streamStats[key] = streamValues return streamStats def getError(self): """ Returns errors saved in the stream. """ return self._recordStore.getError() def setError(self, error): """ Saves specified error in the stream. """ self._recordStore.setError(error) def isCompleted(self): """ Returns True if all records have been read. """ return self._recordStore.isCompleted() def setCompleted(self, completed=True): """ Marks the stream completed (True or False) """ # CSV file is always considered completed, nothing to do self._recordStore.setCompleted(completed) def setTimeout(self, timeout): """ Set the read timeout """ self._recordStore.setTimeout(timeout) def flush(self): """ Flush the file to disk """ raise RuntimeError("Not implemented in StreamReader")