def run(): sp = SpatialPooler(inputDimensions=[10, 15], columnDimensions=[5, 10], potentialRadius=2, potentialPct=0.5, synPermInactiveDec=0.1, synPermActiveInc=0.1, synPermConnected=0.1, localAreaDensity=0.1, numActiveColumnsPerInhArea=-1, globalInhibition=True) inputArray = numpy.zeros(sp.getNumInputs()) activeArray = numpy.zeros(sp.getNumColumns()) Patcher().patchSP(sp) for i in range(100): generateInput(inputArray) sp.compute(inputArray, True, activeArray) print "Ran iteration:\t{0}".format(i)
def run(): sp = SpatialPooler( inputDimensions=[10, 15], columnDimensions=[5, 10], potentialRadius=2, potentialPct=0.5, synPermInactiveDec=0.1, synPermActiveInc=0.1, synPermConnected=0.1, localAreaDensity=0.1, numActiveColumnsPerInhArea=-1, globalInhibition=True ) inputArray = numpy.zeros(sp.getNumInputs()) activeArray = numpy.zeros(sp.getNumColumns()) Patcher().patchSP(sp) for i in range(100): generateInput(inputArray) sp.compute(inputArray, True, activeArray) print "Ran iteration:\t{0}".format(i)
spVerbosity=0) tm = TemporalMemory( columnDimensions=sp.getColumnDimensions(), initialPermanence=0.4, connectedPermanence=0.5, minThreshold=4, maxNewSynapseCount=4, permanenceDecrement=0.05, permanenceIncrement=0.05, activationThreshold=4, ) cla = CLAClassifierCond((1, 2)) spIn = numpy.zeros(sp.getNumInputs(), dtype=numpy.uint8) spOut = numpy.zeros(sp.getNumColumns(), dtype=numpy.uint8) trainingData = [['a', 'b', 'c'], ['a', 'c', 'b']] trainingData2 = [(['b', 'c', 'a'], ['z', 'x', 'y'])] recordNum = 0 for i in xrange(20): # recordNum = 0 # for dataList in trainingData: # print("----------dataList = {}----------".format(dataList)) # # for data in dataList: # spIn.fill(0)