def createPredictionModel(dataFrame): with open(MODEL_PARAMS_PATH, "r") as dataIn: modelParams = json.loads(dataIn.read()) minInput, maxInput = getMinMax(dataFrame) # RDSE - resolution calculation valueEncoderParams = \ modelParams["modelParams"]["sensorParams"]["encoders"]["value"] numBuckets = float(valueEncoderParams.pop("numBuckets")) resolution = max(0.001, (maxInput - minInput) / numBuckets) valueEncoderParams["resolution"] = resolution model = ModelFactory.create(modelParams) model.enableInference({"predictedField": "value"}) return model
def createPredictionModel(dataFrame): with open(MODEL_PARAMS_PATH, "r") as dataIn: modelParams = json.loads(dataIn.read()) minInput, maxInput = getMinMax(dataFrame) # min: 8 max: 39197 # RDSE - resolution calculation valueEncoderParams = \ modelParams["modelParams"]["sensorParams"]["encoders"]["value"] # {'type': 'RandomDistributedScalarEncoder', # 'seed': 42, 'fieldname': 'value', 'name': 'value', 'numBuckets': 130.0} numBuckets = float(valueEncoderParams.pop("numBuckets")) resolution = max(0.001, (maxInput - minInput) / numBuckets) # 301.45 valueEncoderParams["resolution"] = resolution model = ModelFactory.create(modelParams) model.enableInference({"predictedField": "value"}) return model