def project_kitti_box_to_image(box: Box, p_left: np.ndarray, imsize: Tuple[int, int]) \ -> Union[None, Tuple[int, int, int, int]]: """ Projects 3D box into image FOV. :param box: 3D box in camera coordinate :param p_left: <np.float: 3, 4>. Projection matrix. :param imsize: (width, height). Image size. :return: (xmin, ymin, xmax, ymax). Bounding box in image plane or None if box is not in the image. """ # Check that some corners are inside the image. corners = np.array([corner for corner in box.corners().T if corner[2] > 0]).T if len(corners) == 0: return None # Project corners that are in front of the camera to 2d to get bbox in pixel coords. imcorners = view_points(corners, p_left, normalize=True)[:2] bbox = (np.min(imcorners[0]), np.min(imcorners[1]), np.max(imcorners[0]), np.max(imcorners[1])) # Crop bbox to prevent it extending outside image. bbox_crop = tuple(max(0, b) for b in bbox) bbox_crop = (min(imsize[0], bbox_crop[0]), min(imsize[0], bbox_crop[1]), min(imsize[0], bbox_crop[2]), min(imsize[1], bbox_crop[3])) # Detect if a cropped box is empty. if bbox_crop[0] >= bbox_crop[2] or bbox_crop[1] >= bbox_crop[3]: return None return bbox_crop
def project_kitti_box_to_image( box: Box, p_left: np.ndarray, imsize: Tuple[int, int]) -> Tuple[int, int, int, int]: """ Projects 3D box into KITTI image FOV. :param box: 3D box in KITTI reference frame. :param p_left: <np.float: 3, 4>. Projection matrix. :param imsize: (width , height). Image size. :return: (xmin, ymin, xmax, ymax). Bounding box in image plane. """ # Create a new box. box = box.copy() # KITTI defines the box center as the bottom center of the object. # We use the true center, so we need to adjust half height in negative y direction. box.translate(np.array([0, -box.wlh[2] / 2, 0])) # Project corners to 2d to get bbox in pixel coords. corners = np.array( [corner for corner in box.corners().T if corner[2] > 0]).T imcorners = view_points(corners, p_left, normalize=True)[:2] bbox = (np.min(imcorners[0]), np.min(imcorners[1]), np.max(imcorners[0]), np.max(imcorners[1])) # Crop bbox to prevent it extending outside image bbox_crop = (max(0, bbox[0]), max(0, bbox[1]), min(imsize[0], bbox[2]), min(imsize[1], bbox[3])) return bbox_crop
def cropimg(img: Image, bbox: Box, camera_intrinsic: np.ndarray) -> Image: bbox_img = view_points(bbox.corners(), view=camera_intrinsic, normalize=True) # in case the annotation runs off the edge of the page bbox_img[bbox_img < 0] = 0 bbox_img[0, bbox_img[0, :] > img.size[0]] = img.size[0]-1 bbox_img[1, bbox_img[1, :] > img.size[1]] = img.size[1]-1 # crop return img.crop((min(bbox_img[0]), min(bbox_img[1]), max(bbox_img[0]), max(bbox_img[1])))
def bev_iou(self, det1, det2, dist_thresh=2): ious = [] for det in det2: dist = np.linalg.norm( np.array(det1['translation'][:2]) - np.array(det['translation'][:2])) if dist > dist_thresh: ious.append(0) continue box1 = Box(det1['translation'], det1['size'], Quaternion(det1['rotation'])) box2 = Box(det['translation'], det['size'], Quaternion(det['rotation'])) iou, iou_2d = iou3d_global(box1.corners(), box2.corners()) ious.append(iou_2d) return ious
def project_kitti_box_to_image( box: Box, p_left: np.ndarray, imsize: Tuple[int, int]) -> Union[None, Tuple[int, int, int, int]]: """ Projects 3D box into KITTI image FOV. :param box: 3D box in KITTI reference frame. :param p_left: <np.float: 3, 4>. Projection matrix. :param imsize: (width, height). Image size. :return: (xmin, ymin, xmax, ymax). Bounding box in image plane or None if box is not in the image. """ # Create a new box. # box = box.copy() # KITTI defines the box center as the bottom center of the object. # We use the true center, so we need to adjust half height in negative y direction. box.translate(np.array([0, -box.wlh[2] / 2, 0])) # Check that some corners are inside the image. corners = np.array( [corner for corner in box.corners().T if corner[2] > 0]).T if len(corners) == 0: return None # Project corners that are in front of the camera to 2d to get bbox in pixel coords. imcorners = view_points(corners, p_left, normalize=True)[:2] bbox = (np.min(imcorners[0]), np.min(imcorners[1]), np.max(imcorners[0]), np.max(imcorners[1])) # Crop bbox to prevent it extending outside image. bbox_crop = tuple(max(0, b) for b in bbox) bbox_crop = ( min(imsize[0], bbox_crop[0]), min(imsize[0], bbox_crop[1]), min(imsize[0], bbox_crop[2]), min(imsize[1], bbox_crop[3]), ) # Detect if a cropped box is empty. if bbox_crop[0] >= bbox_crop[2] or bbox_crop[1] >= bbox_crop[3]: return None return bbox_crop
def render(self, events: DataFrame, timestamp: int, frame_gt: List[TrackingBox], frame_pred: List[TrackingBox], points=None, pose_record=None, cs_record=None, ifplotgt=False,\ threshold=0.1, ifpltsco=False, outscen_class=False,nusc=None, ifplthis=False, pltve=False) \ -> None: """ Render function for a given scene timestamp :param events: motmetrics events for that particular :param timestamp: timestamp for the rendering :param frame_gt: list of ground truth boxes :param frame_pred: list of prediction boxes """ # Init. #print('Rendering {}'.format(timestamp)) switches = events[events.Type == 'SWITCH'] switch_ids = switches.HId.values #对应frame_pred的tracking_id switch_gt_ids = switches.OId.values #对应GT的tracking_id FN = events[events.Type == 'MISS'] #FN = FN.HId.values FN = FN.OId.values #对应GT的tracking_id FP = events[events.Type == 'FP'] FP = FP.HId.values #对应frame_pred的tracking_id fig, ax = plt.subplots() #plt.style.use('dark_background') # 黑 背景颜色 plt.style.use('classic') # 白 背景颜色 points.render_height(ax, view=np.eye(4), x_lim=(-50, 50), y_lim=(-50, 50), marker_size=0.1) #BEV #points.render_height(ax, view=np.eye(4) )#BEV #points = points.rotate(Quaternion( pose_record["rotation"]).inverse) sam_anno = [] if len(frame_gt) > 0: sample = nusc.get('sample', frame_gt[0].sample_token) sample_annotation_tokens = sample['anns'] #标注 for anno_token in sample_annotation_tokens: sam_anno.append( nusc.get('sample_annotation', anno_token)["instance_token"]) vislev = {'v0-40': 0, 'v40-60': 1, 'v60-80': 2, 'v80-100': 3} #points.render_intensity(ax) # Plot GT boxes. if ifplotgt: for i, b in enumerate(frame_gt): color = 'k' #qua = tuple(self.list_add(list(b.rotation),[0.924,0.0,0.0,0.383])) box = Box(np.array(b.ego_translation, dtype=float), b.size, Quaternion(b.rotation), name=b.tracking_name, token=b.tracking_id) #qua = tuple(self.list_add(list(pose_record["rotation"]),[ 0.831,0.0,0.0,0.556])) #box.translate(-np.array(pose_record["translation"])) box.rotate(Quaternion(pose_record["rotation"]).inverse) # move box to sensor coord system box.translate(-np.array(cs_record["translation"])) box.rotate(Quaternion(cs_record["rotation"]).inverse) if outscen_class: #####TrackingRenderer.gt_ptsnumrange = {'0-5nums':0, '5-10nums':0, '10-50nums':0, '50-200nums':0, '>200nums': 0 } #car lidar点云数 #####TrackingRenderer.gt_ptsnumrange = {'0-5nums':0, '5-10nums':0, '10-20nums':0, '20-30nums':0, '>30nums': 0 } #ped lidar点云数 num_pts = frame_gt[i].num_pts #####car if TrackingRenderer.outscen == 'car': if num_pts > 0 and num_pts <= 5: TrackingRenderer.gt_ptsnumrange['0-5nums'] += 1 elif num_pts > 5 and num_pts <= 10: TrackingRenderer.gt_ptsnumrange['5-10nums'] += 1 elif num_pts > 10 and num_pts <= 50: TrackingRenderer.gt_ptsnumrange['10-50nums'] += 1 elif num_pts > 50 and num_pts <= 200: TrackingRenderer.gt_ptsnumrange['50-200nums'] += 1 elif num_pts > 200: TrackingRenderer.gt_ptsnumrange['>200nums'] += 1 else: ####ped if num_pts > 0 and num_pts <= 5: TrackingRenderer.gt_ptsnumrange['0-5nums'] += 1 elif num_pts > 5 and num_pts <= 10: TrackingRenderer.gt_ptsnumrange['5-10nums'] += 1 elif num_pts > 10 and num_pts <= 20: TrackingRenderer.gt_ptsnumrange['10-20nums'] += 1 elif num_pts > 20 and num_pts <= 30: TrackingRenderer.gt_ptsnumrange['20-30nums'] += 1 elif num_pts > 30: TrackingRenderer.gt_ptsnumrange['>30nums'] += 1 if box.token in FN: #####distance dis = math.sqrt(box.center[0]**2 + box.center[1]**2) if dis > 0 and dis <= 15: TrackingRenderer.fn_disrange[ '<15m'] = TrackingRenderer.fn_disrange[ '<15m'] + 1 elif dis > 15 and dis <= 30: TrackingRenderer.fn_disrange[ '15-30m'] = TrackingRenderer.fn_disrange[ '15-30m'] + 1 elif dis > 30 and dis <= 45: TrackingRenderer.fn_disrange[ '30-45m'] = TrackingRenderer.fn_disrange[ '30-45m'] + 1 elif dis > 45 and dis <= 54: TrackingRenderer.fn_disrange[ '45-54m'] = TrackingRenderer.fn_disrange[ '45-54m'] + 1 else: TrackingRenderer.fn_disrange[ '-1'] = TrackingRenderer.fn_disrange['-1'] + 1 #####ve TrackingRenderer.fn_verange = {'0-0.1m/s':0, '0.1-2.5m/s':0, '2.5-5m/s':0, '5-10m/s':0, '>10m/s': 0 } #car 绝对速度 ##### TrackingRenderer.fn_verange = {'0-0.1m/s':0, '0.1-1.0m/s':0, '1.0-1.5m/s':0, '1.5-2m/s':0, '>2m/s': 0 } #ped 绝对速度 ve = math.sqrt(frame_gt[i].velocity[0]**2 + frame_gt[i].velocity[1]**2) if TrackingRenderer.outscen == 'car': if ve > 0 and ve <= 0.1: TrackingRenderer.fn_verange['0-0.1m/s'] += 1 elif ve > 0.1 and ve <= 2.5: TrackingRenderer.fn_verange['0.1-2.5m/s'] += 1 elif ve > 2.5 and ve <= 5: TrackingRenderer.fn_verange['2.5-5m/s'] += 1 elif ve > 5 and ve <= 10: TrackingRenderer.fn_verange['5-10m/s'] += 1 else: TrackingRenderer.fn_verange['>10m/s'] += 1 else: if ve > 0 and ve <= 0.1: TrackingRenderer.fn_verange['0-0.1m/s'] += 1 elif ve > 0.1 and ve <= 1.0: TrackingRenderer.fn_verange['0.1-1.0m/s'] += 1 elif ve > 1.0 and ve <= 1.5: TrackingRenderer.fn_verange['1.0-1.5m/s'] += 1 elif ve > 1.5 and ve <= 2: TrackingRenderer.fn_verange['1.5-2m/s'] += 1 else: TrackingRenderer.fn_verange['>2m/s'] += 1 #####num_pts TrackingRenderer.fn_ptsnumrange = {'0-5nums':0, '5-10nums':0, '10-50nums':0, '50-200nums':0, '>200nums': 0 } #car lidar点云数 抽样参考比例:0.21 0.23 0.26,0.2,0.1 #############TrackingRenderer.fn_ptsnumrange = {'0-5nums':0, '5-10nums':0, '10-20nums':0, '20-30nums':0, '>30nums': 0 } #ped lidar点云数 num_pts = frame_gt[i].num_pts if TrackingRenderer.outscen == 'car': if num_pts > 0 and num_pts <= 5: TrackingRenderer.fn_ptsnumrange['0-5nums'] += 1 elif num_pts > 5 and num_pts <= 10: TrackingRenderer.fn_ptsnumrange[ '5-10nums'] += 1 elif num_pts > 10 and num_pts <= 50: TrackingRenderer.fn_ptsnumrange[ '10-50nums'] += 1 elif num_pts > 50 and num_pts <= 200: TrackingRenderer.fn_ptsnumrange[ '50-200nums'] += 1 elif num_pts > 200: TrackingRenderer.fn_ptsnumrange[ '>200nums'] += 1 else: TrackingRenderer.fn_ptsnumrange['-1'] += 1 else: if num_pts > 0 and num_pts <= 5: TrackingRenderer.fn_ptsnumrange['0-5nums'] += 1 elif num_pts > 5 and num_pts <= 10: TrackingRenderer.fn_ptsnumrange[ '5-10nums'] += 1 elif num_pts > 10 and num_pts <= 20: TrackingRenderer.fn_ptsnumrange[ '10-20nums'] += 1 elif num_pts > 20 and num_pts <= 30: TrackingRenderer.fn_ptsnumrange[ '20-30nums'] += 1 elif num_pts > 200: TrackingRenderer.fn_ptsnumrange['>30nums'] += 1 else: TrackingRenderer.fn_ptsnumrange['-1'] += 1 ######读取 #sample = nusc.get('sample', frame_gt[i].sample_token) #sample_annotation_tokens = sample['anns'] #标注 try: ind = sam_anno.index(b.tracking_id) sample_annotation = nusc.get( 'sample_annotation', sample_annotation_tokens[ind]) ####TrackingRenderer.vis_ratio = {'0-0.4':0, '0.4-0.6':0, '0.6-0.8':0, '0.8-1.0':0} #相机视角 0-40%, 40-60%, 60-80% and 80-100% The visibility of an instance is the fraction of annotation visible in all 6 images. visibility = nusc.get( 'visibility', sample_annotation['visibility_token']) vis_level = vislev[visibility["level"]] if vis_level == 0: TrackingRenderer.vis_ratio['0-0.4'] += 1 elif vis_level == 1: TrackingRenderer.vis_ratio['0.4-0.6'] += 1 elif vis_level == 2: TrackingRenderer.vis_ratio['0.6-0.8'] += 1 elif vis_level == 3: TrackingRenderer.vis_ratio['0.8-1.0'] += 1 ####TrackingRenderer.gt_ratio = {'ang_muta':0, 've_muta':0, 'aug_other':0, 've_other':0, 'firfn_trk':0, 'nonfirfn_trk':0} #仅包含与上一帧持续追踪的样本,角度和速度突变分别与other相并 pre_token = sample_annotation['prev'] if pre_token == '': #仅作为first_FN TrackingRenderer.gt_ratio['firfn_trk'] += 1 else: TrackingRenderer.gt_ratio['nonfirfn_trk'] += 1 pre_annotation = nusc.get( 'sample_annotation', pre_token) vari_ang = abs( R.from_quat(list(frame_gt[i].rotation)). as_euler('zxy', degrees=False)[0] - R.from_quat( list(pre_annotation['rotation']) ).as_euler('zxy', degrees=False)[0]) if vari_ang > 0.52: #30度 TrackingRenderer.gt_ratio['angvar>30'] += 1 elif 0.52 > vari_ang and vari_ang > 0.35: TrackingRenderer.gt_ratio[ '30>angvar>20'] += 1 elif 0.35 > vari_ang and vari_ang > 0.17: TrackingRenderer.gt_ratio[ '20>angvar>10'] += 1 elif vari_ang < 0.17: TrackingRenderer.gt_ratio['10>angvar'] += 1 else: pass pre_ve = nusc.box_velocity( pre_annotation['token']) ve_varity = abs(ve - math.sqrt(pre_ve[0]**2 + pre_ve[1]**2)) if ve_varity > TrackingRenderer.mutave_thr[0]: TrackingRenderer.gt_ratio[ 'vevari>%s' % (TrackingRenderer.mutave_thr[0])] += 1 elif ve_varity < TrackingRenderer.mutave_thr[ 0] and ve_varity >= TrackingRenderer.mutave_thr[ 1]: TrackingRenderer.gt_ratio[ '%s<vevari<%s' % (TrackingRenderer.mutave_thr[1], TrackingRenderer.mutave_thr[0])] += 1 elif ve_varity < TrackingRenderer.mutave_thr[ 1] and ve_varity >= TrackingRenderer.mutave_thr[ 2]: TrackingRenderer.gt_ratio[ '%s<vevari<%s' % (TrackingRenderer.mutave_thr[2], TrackingRenderer.mutave_thr[1])] += 1 else: TrackingRenderer.gt_ratio[ 'vevari<%s' % TrackingRenderer.mutave_thr[2]] += 1 except ValueError: #标注错误 TrackingRenderer.fault_datas += 1 box.render(ax, view=np.eye(4), colors=(color, color, color), linewidth=1) else: pass # Plot predicted boxes. pred_trackid = [] for i, b in enumerate(frame_pred): box = Box( b.ego_translation, b.size, Quaternion(b.rotation), name=b.tracking_name, token=b.tracking_id, score=b.tracking_score, ) # move box to ego vehicle coord system before has done the translation box.rotate(Quaternion(pose_record["rotation"]).inverse) # move box to sensor coord system box.translate(-np.array(cs_record["translation"])) box.rotate(Quaternion(cs_record["rotation"]).inverse) pred_trackid.append(b.tracking_id) if outscen_class: if b.tracking_id in FP: #####distance TrackingRenderer.fp_disrange = {'<15m':0, '15-30m':0, '30-45m':0, '45-54m':0} dis = math.sqrt(box.center[0]**2 + box.center[1]**2) if dis > 0 and dis <= 15: TrackingRenderer.fp_disrange[ '<15m'] = TrackingRenderer.fp_disrange['<15m'] + 1 elif dis > 15 and dis <= 30: TrackingRenderer.fp_disrange[ '15-30m'] = TrackingRenderer.fp_disrange[ '15-30m'] + 1 elif dis > 30 and dis <= 45: TrackingRenderer.fp_disrange[ '30-45m'] = TrackingRenderer.fp_disrange[ '30-45m'] + 1 elif dis > 45 and dis <= 54: TrackingRenderer.fp_disrange[ '45-54m'] = TrackingRenderer.fp_disrange[ '45-54m'] + 1 else: TrackingRenderer.fp_disrange[ '-1'] = TrackingRenderer.fp_disrange['-1'] + 1 #####ve TrackingRenderer.fp_verange = {'0-0.1m/s':0, '0.1-2.5m/s':0, '2.5-5m/s':0, '5-10m/s':0, '>10m/s': 0 } #car 绝对速度 #####TrackingRenderer.fp_verange = {'0-0.1m/s':0, '0.1-1.0m/s':0, '1.0-1.5m/s':0, '1.5-2m/s':0, '>2m/s': 0 } #ped 绝对速度 ve = math.sqrt(frame_pred[i].velocity[0]**2 + frame_pred[i].velocity[1]**2) if TrackingRenderer.outscen == 'car': if ve > 0 and ve <= 0.1: TrackingRenderer.fp_verange['0-0.1m/s'] += 1 elif ve > 0.1 and ve <= 2.5: TrackingRenderer.fp_verange['0.1-2.5m/s'] += 1 elif ve > 2.5 and ve <= 5: TrackingRenderer.fp_verange['2.5-5m/s'] += 1 elif ve > 5 and ve <= 10: TrackingRenderer.fp_verange['5-10m/s'] += 1 else: TrackingRenderer.fp_verange['>10m/s'] += 1 else: if ve > 0 and ve <= 0.1: TrackingRenderer.fp_verange['0-0.1m/s'] += 1 elif ve > 0.1 and ve <= 1.0: TrackingRenderer.fp_verange['0.1-1.0m/s'] += 1 elif ve > 1.0 and ve <= 1.5: TrackingRenderer.fp_verange['1.0-1.5m/s'] += 1 elif ve > 1.5 and ve <= 2: TrackingRenderer.fp_verange['1.5-2m/s'] += 1 else: TrackingRenderer.fp_verange['>2m/s'] += 1 #####num_pts TrackingRenderer.fp_ptsnumrange = {'0-5nums':0, '5-10nums':0, '10-50nums':0, '50-200nums':0, '>200nums': 0 } #car lidar点云数 抽样参考比例:0.21 0.23 0.26,0.2,0.1 ########## TrackingRenderer.fp_ptsnumrange = {'0-5nums':0, '5-10nums':0, '10-20nums':0, '20-30nums':0, '>30nums': 0 } #ped lidar点云数 points_xyzr = np.stack(points.points, 1) points_xyz = points_xyzr[:, :3] points_mask = points_in_box(box, points.points[:3]) mask_indx = np.arange(points_mask.shape[0]) mask_indx = mask_indx[points_mask] num_pts = mask_indx.shape[0] if TrackingRenderer.outscen == 'car': if num_pts > 0 and num_pts <= 5: TrackingRenderer.fp_ptsnumrange['0-5nums'] += 1 elif num_pts > 5 and num_pts <= 10: TrackingRenderer.fp_ptsnumrange['5-10nums'] += 1 elif num_pts > 10 and num_pts <= 50: TrackingRenderer.fp_ptsnumrange['10-50nums'] += 1 elif num_pts > 50 and num_pts <= 200: TrackingRenderer.fp_ptsnumrange['50-200nums'] += 1 elif num_pts > 200: TrackingRenderer.fp_ptsnumrange['>200nums'] += 1 else: if num_pts > 0 and num_pts <= 5: TrackingRenderer.fp_ptsnumrange['0-5nums'] += 1 elif num_pts > 5 and num_pts <= 10: TrackingRenderer.fp_ptsnumrange['5-10nums'] += 1 elif num_pts > 10 and num_pts <= 20: TrackingRenderer.fp_ptsnumrange['10-20nums'] += 1 elif num_pts > 20 and num_pts <= 30: TrackingRenderer.fp_ptsnumrange['20-30nums'] += 1 elif num_pts > 30: TrackingRenderer.fp_ptsnumrange['>30nums'] += 1 #####TrackingRenderer.fpscorrange = {'0-0.1':0, '0.2-0.4':0, '0.4-0.6':0,'0.6-1.0':0} score = box.score if score >= 0 and score <= 0.1: TrackingRenderer.fpscorrange['0-0.1'] += 1 if score >= 0.2 and score <= 0.4: TrackingRenderer.fpscorrange['0.2-0.4'] += 1 if score >= 0.4 and score <= 0.6: TrackingRenderer.fpscorrange['0.4-0.6'] += 1 if score >= 0.6 and score <= 1.0: TrackingRenderer.fpscorrange['0.6-1.0'] += 1 #####TrackingRenderer.trk_ratio = {'ang_muta':0, 've_muta':0, 'aug_other':0, 've_other':0} #仅包含与上一帧持续追踪的样本,角度和速度突变分别与other相并 if box.token in TrackingRenderer.his_trackid: pre_box = TrackingRenderer.his_track[ TrackingRenderer.his_trackid.index(box.token)] vari_ang = abs( (R.from_quat(list(frame_pred[i].rotation)). as_euler('zxy', degrees=False)[0]) - (R.from_quat(list(pre_box.rotation)).as_euler( 'zxy', degrees=False)[0])) if vari_ang > 0.52: #30度 TrackingRenderer.trk_ratio['angvar>30'] += 1 elif 0.52 > vari_ang > 0.35: TrackingRenderer.trk_ratio['30>angvar>20'] += 1 elif 0.35 > vari_ang > 0.17: TrackingRenderer.trk_ratio['20>angvar>10'] += 1 elif vari_ang < 0.17: TrackingRenderer.trk_ratio['10>angvar'] += 1 pre_ve = pre_box.velocity ve = frame_pred[i].velocity ve_varity = abs( math.sqrt(ve[0]**2 + ve[1]**2) - math.sqrt(pre_ve[0]**2 + pre_ve[1]**2)) if ve_varity > TrackingRenderer.mutave_thr[ 0]: # car均匀加速度为2.778m/s^2 3*0.5s=1.5 TrackingRenderer.trk_ratio[ 'vevari>%s' % TrackingRenderer.mutave_thr[0]] += 1 elif ve_varity < TrackingRenderer.mutave_thr[ 0] and ve_varity >= TrackingRenderer.mutave_thr[ 1]: TrackingRenderer.trk_ratio[ '%s<vevari<%s' % (TrackingRenderer.mutave_thr[1], TrackingRenderer.mutave_thr[0])] += 1 elif ve_varity < TrackingRenderer.mutave_thr[ 1] and ve_varity >= TrackingRenderer.mutave_thr[ 2]: TrackingRenderer.trk_ratio[ '%s<vevari<%s' % (TrackingRenderer.mutave_thr[2], TrackingRenderer.mutave_thr[1])] += 1 else: TrackingRenderer.trk_ratio[ 'vevari<%s' % TrackingRenderer.mutave_thr[2]] += 1 # Determine color for this tracking id. if b.tracking_id not in self.id2color.keys(): self.id2color[b.tracking_id] = ( float(hash(b.tracking_id + 'r') % 256) / 255, float(hash(b.tracking_id + 'g') % 256) / 255, float(hash(b.tracking_id + 'b') % 256) / 255) if ifplthis: box_for_path = copy.deepcopy(box) box_for_path.rotate(Quaternion(cs_record["rotation"])) box_for_path.translate(np.array(cs_record["translation"])) box_for_path.rotate(Quaternion(pose_record["rotation"])) box_for_path.translate(np.array( pose_record["translation"])) #到全局 # 记录轨迹坐标 if b.tracking_id in self.track_path.keys(): self.track_path[b.tracking_id].append(box_for_path) else: self.track_path[b.tracking_id] = [box_for_path] # Render box. Highlight identity switches in red. if b.tracking_id in switch_ids: color = self.id2color[b.tracking_id] box.render(ax, view=np.eye(4), colors=('r', 'r', color)) if outscen_class: ###TrackingRenderer.ids_verange = {'0-0.1m/s':0, '0.1-2.5m/s':0, '2.5-5m/s':0, '5-10m/s':0, '>10m/s': 0 } #car 绝对速度 ###TrackingRenderer.ids_verange = {'0-0.1m/s':0, '0.1-1.0m/s':0, '1.0-1.5m/s':0, '1.5-2m/s':0, '>2m/s': 0 } #ped 绝对速度 ve = math.sqrt(frame_pred[i].velocity[0]**2 + frame_pred[i].velocity[1]**2) if TrackingRenderer.outscen == 'car': if ve > 0 and ve <= 0.1: TrackingRenderer.ids_verange['0-0.1m/s'] += 1 elif ve > 0.1 and ve <= 2.5: TrackingRenderer.ids_verange['0.1-2.5m/s'] += 1 elif ve > 2.5 and ve <= 5: TrackingRenderer.ids_verange['2.5-5m/s'] += 1 elif ve > 5 and ve <= 10: TrackingRenderer.ids_verange['5-10m/s'] += 1 else: TrackingRenderer.ids_verange['>10m/s'] += 1 else: if ve > 0 and ve <= 0.1: TrackingRenderer.ids_verange['0-0.1m/s'] += 1 elif ve > 0.1 and ve <= 1.0: TrackingRenderer.ids_verange['0.1-1.0m/s'] += 1 elif ve > 1.0 and ve <= 1.5: TrackingRenderer.ids_verange['1.0-1.5m/s'] += 1 elif ve > 1.5 and ve <= 2: TrackingRenderer.ids_verange['1.5-2m/s'] += 1 else: TrackingRenderer.ids_verange['>2m/s'] += 1 ####TrackingRenderer.ids_factratio = {'delay_trk':0, 'del_oth_trk':0, 'reappear':0, 'reapother':0, 've_muta':0, 've_other':0, 'reapdeltrk':0 } indx = np.where(switch_ids == b.tracking_id) gt_id = switch_gt_ids[indx] try: x = sam_anno.index(gt_id) #sample = nusc.get('sample', frame_gt[x].sample_token) #sample_annotation_tokens = sample['anns'] #标注 sample_annotation = nusc.get( 'sample_annotation', sample_annotation_tokens[x]) if sample_annotation['prev'] == '': #参考意义不大 TrackingRenderer.ids_factratio['del_oth_trk'] += 1 else: TrackingRenderer.ids_factratio['delay_trk'] += 1 visibility = nusc.get( 'visibility', sample_annotation['visibility_token']) vis_level = vislev[visibility["level"]] pre_annotation = nusc.get( "sample_annotation", sample_annotation['prev']) pre_vis = nusc.get( 'visibility', pre_annotation['visibility_token']) pre_vislevel = vislev[pre_vis["level"]] if vis_level > pre_vislevel or (vis_level == pre_vislevel and vis_level < 3): TrackingRenderer.ids_factratio['reappear'] += 1 elif vis_level == pre_vislevel: TrackingRenderer.ids_factratio[ 'reapdeltrk'] += 1 else: TrackingRenderer.ids_factratio[ 'reapother'] += 1 pre_ve = nusc.box_velocity(pre_annotation['token']) ve = nusc.box_velocity(sample_annotation['token']) ve_varity = abs( math.sqrt(ve[0]**2 + ve[1]**2) - math.sqrt(pre_ve[0]**2 + pre_ve[1]**2)) if ve_varity > TrackingRenderer.mutave_thr[ 0]: # car均匀加速度为2.778m/s^2 3*0.5s=1.5 TrackingRenderer.ids_factratio[ 'vevari>%s' % (TrackingRenderer.mutave_thr[0])] += 1 elif ve_varity < TrackingRenderer.mutave_thr[ 0] and ve_varity >= TrackingRenderer.mutave_thr[ 1]: TrackingRenderer.ids_factratio[ '%s<vevari<%s' % (TrackingRenderer.mutave_thr[1], TrackingRenderer.mutave_thr[0])] += 1 elif ve_varity < TrackingRenderer.mutave_thr[ 1] and ve_varity >= TrackingRenderer.mutave_thr[ 2]: TrackingRenderer.ids_factratio[ '%s<vevari<%s' % (TrackingRenderer.mutave_thr[2], TrackingRenderer.mutave_thr[1])] += 1 else: TrackingRenderer.ids_factratio[ 'vevari<%s' % TrackingRenderer.mutave_thr[2]] += 1 except: #标注错误 pass else: color = self.id2color[b.tracking_id] box.render(ax, view=np.eye(4), colors=(color, color, color)) # Render other infos if ifpltsco: corners = view_points(box.corners(), view=np.eye(4), normalize=False)[:2, :] # ax.text(4,5,"hhaa0.8", fontsize=5) # ax.text(4,5,"%.2f\n%.2f,%.2f"%(b.tracking_score,b.velocity[0],b.velocity[1]), fontsize=5) ax.text(box.center[0], box.center[1], "%.2f\nvx=%.2f,vy=%.2f" % (b.tracking_score, b.velocity[0], b.velocity[1]), fontdict={ 'size': '6', 'color': 'b' }) #ax.text(box.center[0],box.center[1],"%.2f\n%.2f,%.2f"%(b.tracking_score,b.velocity[0],b.velocity[1]), fontsize=5) #if pltve: #删去当前帧多余轨迹线 keys = list(self.track_path.keys()) for key in keys: if key not in pred_trackid: self.track_path.pop(key) # 画历史轨迹线: if ifplthis: for id in self.track_path.keys(): color = self.id2color[id] for box_path in self.track_path[id]: #转到当前帧局部 # move box to ego vehicle coord system before has done the translation box_path.translate(-np.array(pose_record["translation"])) box_path.rotate( Quaternion(pose_record["rotation"]).inverse) # move box to sensor coord system box_path.translate(-np.array(cs_record["translation"])) box_path.rotate(Quaternion(cs_record["rotation"]).inverse) ax.scatter(box_path.center[0], box_path.center[1], 10, color) #转回全局 box_path.rotate(Quaternion(cs_record["rotation"])) box_path.translate(np.array(cs_record["translation"])) box_path.rotate(Quaternion(pose_record["rotation"])) box_path.translate(np.array(pose_record["translation"])) TrackingRenderer.his_track = frame_pred TrackingRenderer.his_trackid = pred_trackid # Plot MOTA metrics. ly # 目标位置 左上角,距离 Y 轴 0.01 倍距离,距离 X 轴 0.95倍距离 self.cursumfp += len(FP) #当前场景累积值 self.cursumfn += len(FN) #print("FN=%d,FP=%d,switch_ids=%d,cursumfp=%d,cursumfn=%d" % ( len(FN), len(FP), len(switch_ids), self.cursumfp, self.cursumfn )) #ax.text(0.01, 0.95, "IDS:%d\nFP:%d\nFN:%d\ncur_sce sumfp:%d sumfn:%d\nthreshold:%f"%(len(switch_ids),len(FP),len(FN),self.cursumfp,self.cursumfn,threshold), transform=ax.transAxes, fontdict={'size': '10', 'color': 'b'}) # Plot ego pose. plt.scatter(0, 0, s=96, facecolors='none', edgecolors='k', marker='o') plt.xlim(-50, 50) plt.ylim(-50, 50) plt.axis('off') # Save to disk and close figure. fig.savefig(os.path.join(self.save_path, '{}.png'.format(timestamp))) plt.close(fig)
# Test iou3d (camera coord) box_1 = compute_box_3d(dim=[1.599275, 1.9106505, 4.5931444], location=[7.1180778, 2.1364648, 41.784885], rotation_y=-1.1312813047259618) box_2 = compute_box_3d(dim=[1.599275, 1.9106505, 4.5931444], location=[7.1180778, 2.1364648, 41.784885], rotation_y=-1.1312813047259618) iou = iou3d(box_1, box_2) print("Results should be almost 1.0: ", iou) # # Test iou3d (global coord) translation1 = [634.7540893554688, 1620.952880859375, 0.4360223412513733] size1 = [1.9073231220245361, 4.5971598625183105, 1.5940513610839844] rotation1 = [ -0.6379619591303222, 0.6256341359192967, -0.320485847319929, 0.31444441216651253 ] translation2 = [634.7540893554688, 1620.952880859375, 0.4360223412513733] size2 = [1.9073231220245361, 4.5971598625183105, 1.5940513610839844] rotation2 = [ -0.6379619591303222, 0.6256341359192967, -0.320485847319929, 0.31444441216651253 ] box_1 = Box(translation1, size1, Quaternion(rotation1)) box_2 = Box(translation2, size2, Quaternion(rotation2)) iou, iou_2d = iou3d_global(box_1.corners(), box_2.corners()) print(iou, iou_2d)
my_sample = nusc.get('sample', my_sample['next']) img = get_image(my_sample, root_dir) sample_data = nusc.get_sample_data(my_sample['data']['CAM_FRONT']) labels = sample_data[1] # this label is according to camera, what we have is lidar # converts top lidar intrinsic = sample_data[2] for label in labels: c2d = project_cam_coords_to_pixel([label.center], intrinsic)[0] cv2.circle(img, (int(c2d[0]), int(c2d[1])), 3, (0, 255, 255), -1) # convert center and wlh to 3d box box = Box(center=label.center, size=label.wlh, orientation=label.orientation) corners3d = box.corners() corners3d_2d = project_cam_coords_to_pixel(corners3d, intrinsic) idx = all_category_db.index(label.name) c = get_unique_color_by_id(idx) draw_3d_box(corners3d_2d, img, c) if len(corners3d_2d) > 4: cv2.putText(img, '{0}'.format(all_category[idx]), (int(corners3d_2d[1][0]), int(corners3d_2d[1][1])), cv2.FONT_HERSHEY_PLAIN, .9, (255, 255, 255)) # show some image and lidar points cv2.imshow('aa', img) cv2.imwrite('results/{}.png'.format(i), img) i += 1 cv2.waitKey(0)