예제 #1
0
 def pipe(max_batch_size, input_data, device, input_layout):
     pipe = Pipeline(batch_size=max_batch_size, num_threads=4, device_id=0)
     data = fn.external_source(source=input_data, cycle=False, device=device,
                               layout=input_layout)
     processed = fn.reinterpret(data, rel_shape=[.5, 1, -1])
     pipe.set_outputs(processed)
     return pipe
예제 #2
0
    def define_graph(self):
        inputs, bboxes, labels, polygons, vertices = fn.readers.coco(
                                            file_root=self.file_root,
                                            annotations_file=self.annotation_file,
                                            skip_empty=True,
                                            shard_id=self.share_id,
                                            num_shards=self.num_gpus,
                                            ratio=True,
                                            ltrb=True,
                                            polygon_masks = True,
                                            random_shuffle=self.random_shuffle,
                                            shuffle_after_epoch=self.shuffle_after_epoch,
                                            name="Reader")

        input_shape = fn.slice(fn.cast(fn.peek_image_shape(inputs), dtype=types.INT32), 0, 2, axes=[0])
        h = fn.slice(input_shape, 0, 1, axes = [0], dtype=types.FLOAT)
        w = fn.slice(input_shape, 1, 1, axes = [0], dtype=types.FLOAT)
        short_side = math.min(w, h)        
        scale = fn.random.uniform(range=[0.3, 1.])
        crop_side = fn.cast(math.ceil(scale * short_side), dtype=types.INT32)    
        crop_shape = fn.cat(crop_side, crop_side)
        anchor_rel, shape_rel, bboxes, labels, bbox_indices = fn.random_bbox_crop(
                        bboxes,
                        labels,
                        input_shape=input_shape,
                        crop_shape=crop_shape,
                        shape_layout="HW",
                        thresholds=[0.],            # No minimum intersection-over-union, for demo purposes
                        allow_no_crop=False,        # No-crop is disallowed, for demo purposes 
                        seed=-1,                    # Fixed random seed for deterministic results
                        bbox_layout="xyXY",         # left, top, right, back
                        output_bbox_indices=True,   # Output indices of the filtered bounding boxes
                        total_num_attempts=1024,
        )
        polygons, vertices = fn.segmentation.select_masks(
            bbox_indices, polygons, vertices
        )
        images = fn.decoders.image_slice(
            inputs, anchor_rel, shape_rel, normalized_anchor=False, normalized_shape=False, device='mixed'
        )
        images = fn.color_space_conversion(images, image_type=types.RGB, output_type=types.BGR)
        MT_1_vertices = fn.transforms.crop(
            to_start=(0.0, 0.0), to_end=fn.cat(w, h)
        )    
        MT_2_vertices = fn.transforms.crop(
            from_start=anchor_rel, from_end=(anchor_rel + shape_rel),
            to_start=(0.0, 0.0), to_end=(1., 1.)
        )    
        vertices = fn.coord_transform(fn.coord_transform(vertices, MT=MT_1_vertices), MT=MT_2_vertices)    
        targets = fn.cat( bboxes, fn.reshape(vertices, shape=[-1, 10]), axis=1)

        interp_methods = [types.INTERP_LINEAR, types.INTERP_CUBIC, types.INTERP_LANCZOS3, types.INTERP_GAUSSIAN, types.INTERP_NN, types.INTERP_TRIANGULAR]
        interp_method = fn.random.uniform(values=[int(x) for x in interp_methods], dtype=types.INT32)
        interp_method = fn.reinterpret(interp_method, dtype=types.INTERP_TYPE)
        images = fn.resize(images, dtype=types.FLOAT, size=self.input_dim, interp_type=interp_method)

        labels = labels.gpu()
        targets = targets.gpu()
        return (images, targets, labels)
예제 #3
0
 def load_data(self, features):
     img = fn.reshape(features["X"],
                      shape=features["X_shape"],
                      layout=self.layout)
     lbl = fn.reshape(features["Y"],
                      shape=features["Y_shape"],
                      layout=self.layout)
     lbl = fn.reinterpret(lbl, dtype=types.DALIDataType.UINT8)
     return img, lbl